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Measurement of the suppression and azimuthal anisotropy of muons from heavy-flavor decays

in Pb+Pb collisions at ,/syy = 2.76 TeV with the ATLAS detector
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ATLAS measurements of the production of muons from heavy-flavor decays in /syy = 2.76 TeV Pb+Pb
collisions and /s = 2.76 TeV pp collisions at the LHC are presented. Integrated luminosities of 0.14 nb~!
and 570 nb~! are used for the Pb+Pb and pp measurements, respectively, which are performed over the muon
transverse momentum range 4 < pr < 14 GeV and for five Pb+Pb centrality intervals. Backgrounds arising
from in-flight pion and kaon decays, hadronic showers, and misreconstructed muons are statistically removed
using a template-fitting procedure. The heavy-flavor muon differential cross sections and per-event yields are
measured in pp and Pb+Pb collisions, respectively. The nuclear modification factor R4, obtained from these
is observed to be independent of pr, within uncertainties, and to be less than unity, which indicates suppressed
production of heavy-flavor muons in Pb+-Pb collisions. For the 10% most central Pb+-Pb events, the measured
R4 is approximately 0.35. The azimuthal modulation of the heavy-flavor muon yields is also measured and
the associated Fourier coefficients v, for n = 2, 3, and 4 are given as a function of pr and centrality. They
vary slowly with py and show a systematic variation with centrality which is characteristic of other anisotropy
measurements, such as that observed for inclusive hadrons. The measured R4, and v, values are also compared

with theoretical calculations.

DOLI: 10.1103/PhysRevC.98.044905

I. INTRODUCTION

Heavy quarks, especially bottom quarks, provide an impor-
tant probe of the properties of the quark-gluon plasma created
in high-energy nuclear (A+A) collisions [1-8]. The masses of
the charm and bottom quarks are much larger than the temper-
atures of 200-500 MeV attained in the plasma (Ref. [9] and
references therein). As a result, the heavy quarks are mostly
produced early in the collision at rates that are, in princi-
ple, calculable using perturbative QCD, and their subsequent
interactions with the plasma give experimentally observable
signatures. At transverse momenta (pr) much greater than
the mass of the bottom quark, heavy quarks are expected to
lose energy similarly to light quarks but with mass-dependent
modifications to the pattern of collisional and radiative energy
loss [3,10-15]. At lower transverse momenta, pr < m,, the
quarks are expected to diffuse in the plasma [4,7,16], los-
ing energy and partially thermalizing [1,17]. As a result of
their interactions with the collectively expanding medium, the
heavy quarks may acquire an azimuthal anisotropy. Previous
measurements of heavy-flavor production in A+A collisions
at RHIC and the LHC, using semileptonic decays [18-21]
and direct reconstruction of heavy-flavor mesons [22-26],
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have shown both substantial suppression in the yield of
heavy quarks due to energy loss and significant azimuthal
anisotropy. Measurements of the heavy-quark yield and az-
imuthal anisotropy in Pb+Pb collisions at the LHC can
provide valuable constraints on plasma transport parameters,
such as the heavy-quark diffusion coefficient, and potentially
distinguish between weak- and strong-coupling models for
heavy-quark interactions in the plasma [5,27-31].

The yield of particles produced in hard-scattering pro-
cesses in A+A collisions is often characterized using the
nuclear modification factor
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where 7 is the pseudorapidity, the numerator is the differen-
tial per-event yield in A+A collisions for a given centrality
interval, the denominator is the pp differential cross section
for producing the given particles, and (7T44) represents the
nuclear overlap function averaged over the centrality inter-
val [32]. In the absence of significant modification to the nu-
clear parton distributions and of final-state interactions of the
outgoing partons, R4 4 should be unity. Measurements of the
production of vector bosons [33-37] in Pb+Pb collisions at
the LHC have verified this expectation. In contrast, measure-
ments of R4 4 for jets [38,39] and single hadrons [40—-42] have
shown a centrality-dependent suppression that is understood
to result from the energy loss of the parent quarks and gluons
(Refs. [43—45] and references therein). Measurements of D-
meson production in Pb+Pb collisions at the LHC [24] have
shown a centrality- and pr-dependent suppression similar to
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that observed for single hadrons. A measurement of h-hadron
production, via their inclusive decays to J /¢ mesons, has also
shown significant suppression [46]. Separate measurements
of the production of forward heavy-flavor electrons [47] and
muons [20] that are predominantly produced in semileptonic
B- and D-meson decays give R 44 values that are significantly
larger than those observed for inclusive hadrons. However, the
b — J /¥ X and forward muon measurements are statistically
limited and insufficient to test theoretical calculations.

The azimuthal anisotropy of particles produced in an A+ A
collision is often characterized by harmonic coefficients v,
in a Fourier expansion of the particle yield as a function of
azimuthal angle ¢ [48],
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where @&, represents the event-plane angle for the nth har-
monic. In noncentral collisions, the azimuthal anisotropy is
usually dominated by the n = 2 term due to the almondlike
shape of the collision geometry in the transverse plane re-
sulting from the nonzero impact parameter. Measurements of
inclusive [49-53] and identified hadron [54,55] v, values in
A+ A collisions at the LHC and at RHIC show the presence of
significant azimuthal anisotropies, which are well reproduced
by hydrodynamic calculations. These results provide the basis
for the interpretation that the medium created in heavy-ion
collisions is strongly coupled. The elliptic flow of heavy-
flavor hadrons depends both on the coupling of the heavy
quark with the medium and on the transfer of the collective
motion of the medium to the heavy-flavor hadron in the
hadronization process [56]. The measurements of D-meson
elliptic flow at midrapidity at the LHC [25,26] give v, values
that are similar to those measured for light hadrons, while
the forward-rapidity heavy-flavor v, values measured using
semileptonic decays to muons are significantly smaller. How-
ever, those measurements are statistically limited and, thus,
do not provide stringent constraints on theoretical calculations
of the heavy-flavor elliptic flow. This paper presents ATLAS
measurements of muons from heavy-flavor semileptonic de-
cays (heavy-flavor muons, hereafter) in pp collisions at /s =
276 TeV and Pb+Pb collisions at /5., = 2.76 TeV. The
Pb+Pb data were recorded during 2011, and the pp data were
recorded during 2013. The measurements are performed using
data sets with integrated luminosities of 570 and 0.14 nb~"! for
pp and Pb+Pb collisions, respectively. They are performed
for several intervals of collision centrality, characterized using
the total transverse energy measured in the forward calorime-
ters, and for different muon py intervals spanning the range 4—
14 GeV. Heavy-flavor muons are statistically separated from
background muons resulting from pion and kaon decays and
from hadronic interactions using a “momentum-imbalance”
variable (Sec. III C) that compares the momenta of the muons
measured in the inner detector and muon spectrometer.

Over the pr range of the measurement, the residual irre-
ducible contamination by non-heavy-flavor muons, including
contributions from J /v decays [57,58], is less than 1% and is
neglected in the following. The heavy-flavor muon differential
per-event yields in Pb+Pb collisions and differential cross

sections in pp collisions measured over the pseudorapidity in-
terval |n| < 1 are used to calculate the heavy-flavor muon R 44
as a function of pr in different Pb4-Pb centrality intervals. In
addition, heavy-flavor muon v,, values are measured for n =
2—4 as a function of p7 and collision centrality over |n| < 2
using both the event-plane and scalar-product [59] methods.
The scalar-product method has become the de facto standard
procedure for v, measurements using event-plane reconstruc-
tion. However, the method introduces additional complexity
to the background subtraction procedure (see Sec. III D), so
results obtained using both methods are provided. The results
presented in this paper provide significantly improved statisti-
cal precision over previous measurements of the suppression
and the anisotropic flow of semileptonically decaying heavy-
flavor hadrons in Pb+4-Pb collisions at the LHC.

This paper is structured as follows. Section II describes
the components of the ATLAS detector and trigger system
used in the measurement, Sec. III describes the data analysis,
Sec. IV discusses the systematic uncertainties, and the results
are discussed in Sec. V. Section VI provides a summary and
outlook.

II. ATLAS DETECTOR

The measurements presented in this paper use the ATLAS
muon spectrometer (MS), inner detector (ID), calorimeter,
trigger, and data acquisition systems. A detailed description
of these detectors and their performance in pp collisions is
given in Ref. [60]. Muons are reconstructed by combining
independent measurements of the muon trajectories from the
ID and the MS. The ID measures charged particles within
the pseudorapidity interval'|n| < 2.5 using silicon pixel de-
tectors, silicon microstrip detectors (SCTs), and a straw-
tube tracker, all immersed in a 2-T axial magnetic field. A
charged particle typically traverses three layers of silicon
pixel detectors, four layers of double-sided microstrip sensors,
and 36 straws. The ID is surrounded by electromagnetic
and hadronic calorimeters that absorb efficiently the copious
charged and neutral hadrons produced in Pb+Pb collisions.
A muon typically loses 3-5 GeV of energy, depending on
the muon pseudorapidity, while crossing the calorimeters.
The MS surrounds the calorimeters and provides tracking
for muons within |n| < 2.7 in the magnetic field produced
by three air-core toroid magnet systems. Muon momenta are
measured in the MS using three stations of precision drift
chambers. Fast tracking detectors are used to trigger on muons
in the MS.

Two forward calorimeters (FCal) are placed symmetrically
with respect to z =0 and cover 3.2 < |n| < 4.9. They are
composed of tungsten and copper absorbers with liquid argon

'ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the center of the detector and
the z axis along the beam pipe. The x axis points from the IP to the
center of the LHC ring, and the y axis points upward. Cylindrical
coordinates (r, ¢) are used in the transverse plane, ¢ being the
azimuthal angle around the z axis. The pseudorapidity is defined in
terms of the polar angle 6 as n = — Intan(6/2).
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as the active medium; each calorimeter has a total thickness
of about ten interaction lengths.

Minimum-bias Pb+Pb collisions are identified using the
zero-degree calorimeters (ZDCs) and the minimum-bias trig-
ger scintillator (MBTS) counters [60]. The ZDCs are located
symmetrically at z = 140 m and cover |n| > 8.3. They are
used only in Pb+Pb collisions where they primarily mea-
sure “spectator” neutrons, which originate from the incident
nuclei and do not scatter hadronically during the collision.
The MBTS system detects charged particles over 2.1 < |n| <
3.9 using two hodoscopes of 16 counters each, placed at
z = £3.6 m. The MBTS counters provide measurements of
both the pulse heights and arrival times of ionization energy
depositions in each hodoscope.

The ATLAS trigger system [61] consists of a first-level
(L1) trigger implemented using a combination of dedicated
electronics with programmable logic, and a software-based
high-level trigger (HLT). Data used for this analysis were
selected using a combination of minimum-bias triggers, which
provided a uniform sampling of the Pb+Pb inelastic cross
section, and triggers that selected rare physics signatures such
as muons. The measurements presented here are primarily
obtained from muon triggers. Events from the minimum-bias
triggers are used only for cross checks.

The muon triggers are formed using a combination of a L1
trigger and an HLT muon trigger whose configuration differed
between Pb+Pb and pp operation. For the Pb+Pb data, the
L1 trigger selected events having a total transverse energy
of more than 50 GeV, and the HLT trigger selected events
containing a track in the MS whose p7, when corrected for the
average muon energy loss in the calorimeter, is greater than
4 GeV. In pp data, the muon trigger required a stand-alone
muon track in the MS at L1, and a muon track reconstructed
using both the ID and MS with py > 4 GeV at the HLT.
The muon trigger was unprescaled throughout the Pb+-Pb run
and sampled essentially all of the delivered luminosity. In the
pp run, the trigger was prescaled such that it sampled ~14%
(570 nb~!) of the 4 pb~! delivered luminosity.

II1I. DATA ANALYSIS
A. Event selection

Charged-particle tracks and vertices are reconstructed from
hits in the ID using a track reconstruction algorithm [62]
whose configuration changed between the pp and Pb+Pb
measurements to account for the high hit density in heavy-ion
collisions [50]. To remove noncollision backgrounds, Pb+Pb
events are required to have a reconstructed primary vertex,
at least one hit in each MBTS counter, and a time difference
between the two MBTS time measurements of less than 5 ns;
pp events are required to have at least one reconstructed
primary vertex.

The centrality of Pb+Pb collisions is characterized by
p) EIT:CM, the total transverse energy measured in the FCal [50].
For the results presented in this paper, the minimum-bias
¥ EFCl distribution is divided into centrality intervals accord-
ing to the following percentiles of the X EXC distribution
ordered from the most central to the most peripheral col-

TABLE I. The (T44) values and their system-
atic uncertainties [38] in each centrality interval
used in this analysis. For the 40-60% centrality
interval, the (744) values are obtained by averag-
ing the values for 40-50% and 50-60% centrality
intervals from Ref. [38].

Centrality interval (%) (T4s) (mb™h)
0-10 2345 £ 0.37
10-20 14.43 £+ 0.30
20-30 8.73 + 0.26
30-40 5.04 + 0.22
40-60 2.02 + 0.15

lisions: 0-10%, 10-20%, 20-30%, 30—40%, and 40-60%.
A Glauber Monte Carlo analysis [63] is used to estimate
(T44) for each of the centrality intervals [38]. The results are
provided in Table 1.

B. Muon reconstruction

Muons in this analysis are formed by combining tracks
reconstructed in the MS [57] with the tracks measured in the
ID. The associated ID tracks are required to satisfy criteria for
the number of hits in the SCT and pixel detectors which are
the same for the pp and Pb+Pb data, but which are optimized
for the Pb+-Pb analysis [50]. In particular, for both data sets,
ID tracks are required to have transverse and longitudinal
impact parameters relative to the reconstructed primary vertex
of less than 5 mm and to have a momentum p > 3 GeV.
The requirements on the longitudinal and transverse impact
parameters are relaxed to 5 mm, compared to the 1 mm (or
1.5 mm) typically used in heavy-ion analyses [50,52], to allow
selection of muons from off-vertex heavy-flavor decays. The
ID tracks are also required to have at least one pixel hit, with
the additional requirement of a hit in the first pixel layer when
one is expected,2 at least seven SCT hits, and at most one hit
that is expected but not found in the pixel and SCT detectors
taken together. The transverse momentum measured in the
MS (p}’S) is required to be greater than 1.2 GeV for both
the pp and Pb+Pb data. In the Pb+-Pb analysis, this selection
removes muons for which the Pb+Pb trigger efficiency is less
than 50%.

The results presented here use muons having 4 < pr <
14 GeV and having |n| < 1 for the heavy-flavor-suppression
analysis or |n| < 2 for the flow measurements. The lower
limit of the py range is constrained by the p; dependence
of the muon trigger and reconstruction efficiencies, while the
upper limit is determined by the number of events available
in the Pb+Pb data. For the R4, measurements, a muon
n interval of |n| < 1 is chosen, as the muon trigger and
reconstruction have optimal performance over this n range.
The n range is extended to |n| < 2 for the v, measurements,

2A hit is expected if the extrapolated track crosses an active region
of a pixel module that has not been disabled.
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as they are not sensitive to the effects of trigger and tracking
efficiency. A total of 9.2 million (1.8 million) muons are
reconstructed within these kinematic ranges from 8.7 million
(1.8 million) events recorded using the Pb+Pb (pp) muon
triggers. The performance of the ATLAS detector and offline
analysis in measuring muons in pp collisions is evaluated
by a GEANT4 [64] simulation of the ATLAS detector [65]
using Monte Carlo (MC)+/s = 2.76 TeV pp events produced
with the PYTHIA event generator [66] (version 6.423 with
parameters chosen according to the AUET2B set of tuned
parameters [67]). The reconstruction performance in Pb+Pb
collisions is evaluated by “overlaying” simulated PYTHIA
pp events on minimum-bias Pb+Pb events. In this overlay
procedure, the simulated hits are combined with the data
from minimum-bias events to produce the final sample. The
minimum-bias Pb+Pb events used in the overlay procedure
were recorded by ATLAS during the same data-taking period
as the data used in this analysis. For both the pp and Pb+Pb
measurements, the muon reconstruction efficiency increases
by about 30% from pr =4 GeV to pr =6 GeV, above
which it is approximately constant at 0.80 and 0.77 for the
pp and Pb+Pb data, respectively. The Pb+Pb muon recon-
struction efficiency is independent of the centrality within
uncertainties.

The Pb+Pb muon trigger efficiency is measured for fully
reconstructed muons using the minimum-bias Pb+Pb data set.
The efficiency is evaluated as the fraction of reconstructed
muons for which the HLT finds a matching muon with py >
4 GeV. It is observed to be independent of centrality, within
statistical uncertainties, and increases from about 0.6 at py =
4 GeV to about 0.8 at 6 GeV, above which it is approxi-
mately constant. The pp muon trigger efficiency is similarly
evaluated using pp events selected by a set of minimum-bias
triggers. The efficiency increases from 0.40 for pr = 4 GeV
to 0.75 for pr = 12 GeV.

C. Heavy-flavor-suppression measurement

The muons measured in the pp and Pb+Pb data sets
contain background from in-flight decays of pions and kaons,
muons produced from the decays of particles produced in
hadronic showers in the material of the detector, and misas-
sociations of ID and MS tracks. Previous studies have shown
that the signal and background contributions to the recon-
structed muon sample can be discriminated statistically [57].
This analysis relies solely on the fractional momentum im-
balance Ap/pmp, which quantifies the difference between
the ID and MS measurements of the muon momentum after
accounting for the energy loss of the muon in the calorimeters.
It is defined as

Ap _ pi — pms — Apeao(p. 1. ¢)
P Pip ’

where pip and pyg represent the reconstructed muon mo-
menta from the ID and MS, respectively, and A pcq, repre-
sents the momentum- and angle-dependent average momen-
tum loss of muons in the calorimeter obtained from simula-
tions. Muons resulting from background processes typically
have pys values smaller than would be expected for a muon
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FIG. 1. Signal and background template distributions in pp col-
lisions (square points) and Pb+-Pb collisions (circular points) in the
0-60% centrality interval for muons having 5 < pr < 6 GeV and
[n| < 1. The signal and background distributions are separately nor-
malized such that their integral is unity. For clarity, the background
distribution is binned more coarsely.

produced directly in pp or Pb+Pb collisions or via the decays
of heavy-flavor hadrons. This is because the background
muons from pion/kaon decays or from hadronic interactions in
the calorimeter have, on average, smaller py compared to the
parent particle. As a result, background muons are expected
to have Ap/pp > 0.

Distributions for A p/pip are obtained from the simulated
samples separately for signal muons and for background
muons. The signal muons include muons directly produced
in electromagnetic decays of hadrons, in decays of t leptons,
in decays of W and Z bosons, in decays of top quarks,
and in semileptonic decays of heavy-flavor hadrons; this
last contribution dominates the signal sample, contributing
about 99% of the muons over the py range measured in
this analysis (Ref. [57] and references therein). The different
contributions to the background—pion decays in flight, kaon
decays in flight, muons produced by secondary interactions
of prompt particles, and misassociations—are evaluated sep-
arately. Figure 1 shows MC distributions of Ap/pmp for
signal and background muons having 5 < py < 6 GeV for
Pb+Pb collisions in the centrality range 0-60% and for
pp collisions. The Ap/ppp distribution for signal muons
is centered at zero while the distribution for background
muons is shifted to positive values. The signal distributions
show only modest differences between pp and Pb+Pb col-
lisions. Similarly, when making separate templates for dif-
ferent Pb+-Pb collision centralities, a weak dependence of
the signal templates on centrality is observed. The back-
ground Ap/pip distributions are much broader and are in-
sensitive to the centrality-dependent effects seen in the signal
distributions.

A template-fitting procedure is used to estimate statistically
the signal fraction for each kinematic and centrality selection
used in the analysis. The measured A p/pip distribution is as-
sumed to result from a combination of signal and background
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FIG. 2. Examples of template fits to Pb+Pb and pp data. The top panels show results for 5 < pr < 5.5 GeV and the bottom panels show
results for 10 < py < 12 GeV. The left, middle, and right panels show results for Pb+Pb 0-10%, Pb+Pb 40-60%, and pp, respectively. The
black points represent the data. The dotted and dashed lines represent the signal and background template distributions weighted by f*¢ and
(1 — f*i2), respectively (see text) and the continuous lines represent the summed template distributions.

distributions,
1 dN, o dpse _ dPpbke
R fmg— _|_(1 _ fmg)—7
N, dAp/pp dAp/pp dAp/pp

where N, is the total number of muons in the sample,
dP%e/dAp/pmp and dP" € /dAp/pp represent the signal
and background Ap/pp probability distributions, respec-
tively, and f*€ represents the signal fraction.

For Pb+Pb data, centrality-dependent templates are used
for the signal while centrality-integrated templates are used
for the background. The latter is motivated by the observed
centrality independence of the background templates and
the limited size of the background sample. Template fits
are performed using binned x? fits that account for the
statistical precision of the signal and background templates.
The fits are performed using MINUIT [68] with f*¢ as the
free parameter. The uncertainties from the fits are used as
statistical uncertainties of the yields and propagated into
the final results. Example template fits are shown for two
muon p7 intervals in Fig. 2 for Pb+Pb events in the 0-
10% and 40-60% centrality intervals and for pp data. As
shown in Fig. 2, the measured A p/pip distributions are well
described by a combination of the signal and background tem-
plates, and this holds for all studied kinematic and centrality
intervals.

The signal fractions f*¢ obtained from the template fits
using these intervals are shown in Fig. 3 for the Pb+Pb and pp
data. The signal fractions increase with py for pr > 5 GeV,
indicating that at higher pr a larger fraction of the recon-

structed muons are heavy-flavor (HF) muons. The increase in
f*i2 at low pr results from the trigger, which is less efficient
for background muons that have low p}'S. Such an increase is
not observed when repeating this analysis using the minimum-
bias Pb-++Pb data set. This increase in the £*¢ due to the trigger
does not affect the measurement, as is demonstrated by studies
of variations in the pl}’ls criterion in Sec. [V A.

With the f%¢ obtained from the template fits, the pp
differential cross section for producing heavy-flavor muons is
calculated according to

dZO'HFM B 1 ANHfSig 1

dprdn S C AprAn Slriggrec’

3)

where L is the integrated luminosity of the pp measurement,
A pr is the width of the given py interval, An = 2 is the size
of the pseudorapidity interval, AN, represents the number of
muons in the given pr and 7 intervals, and &g, and & TEp-
resent the trigger and reconstruction efficiencies, respectively.
The luminosity is calibrated using a set of beam-separation
scans performed in February 2013. It has a relative uncertainty
of 3.1% that was derived following a methodology similar to
that detailed in Ref. [69].

The Pb+Pb differential per-event yields for producing
heavy-flavor muons are calculated according to

1 d*Nury 1 ANt fsie @
Nevyt dedrl cent_ Nec\im AprAn gtriggrec,
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FIG. 3. Signal fraction values obtained from template fits to the Pb+Pb and pp data as a function of the muon p. Results are shown for
different Pb+Pb centrality intervals and for pp collisions in the bottom right panel. The error bars correspond to statistical uncertainties only.

where NS is the number of Pb+Pb collisions in a given cen-
trality interval, Afom represents the number of total muons
with |n| < 1 measured in the given pr and centrality interval,
f%¢ represents the corresponding signal fraction obtained
from the template fits, and &g and & Tepresent the trigger

and reconstruction efficiencies, respectively.

D. Azimuthal anisotropy measurement

The v, measurements additionally require determination of
the event-plane (EP) angles @, [Eq. (2)]. However, due to
detector acceptance effects and finite particle multiplicity in
an event, the measured EP angles, denoted W,,, fluctuate event
by event around the true EP angles [48]. The “observed” v,,
v, is obtained by measuring the distribution of the particle

n

directions relative to the W, planes:

‘[’l_];’ = No[l +2 v cosln(@ — wnn]. 5)
n=1

The v are smaller in magnitude than the true v, because
they are calculated around the W, planes rather than the &,
planes. To account for this, the vfjbs are corrected by the EP
resolution factor Res{nW, }, which accounts for the smearing
of ¥, relative to ®,, [48]:

vobs

v, = m, Res{nV¥,} = (cos[n(¥,, — ®,))evis, (6)

where, the (...)eys indicates averaging over all events in
a given centrality class. In this analysis, the W, angle is
determined using the flow vector or “g-vector” method [48],
in which the g vector is calculated from the Et deposited in

the FCal according to
Y E,cos(ngi) — (X E1,i cos(néi))evis

= YEr,; ’
_ ZEq;sin(ng;) — (X Er,; sin(ng;))evs )
ey XEq, '

where the sum is over all the calorimeter towers® in the FCal,
Er,; is the transverse energy deposited in the ith tower, and
¢; denotes the azimuthal angle of the position of the center
of the tower. The event-averaged terms (X Et; cos(n@;))eyis
and (X Et; sin(n¢;))ews are subtracted in order to remove
detector effects [70]. From the g, vectors, the EP angles W,,,
are determined as [71]

An,y

n,x

tan(nW¥,) =

The parameter Res{nW,} is determined by the two-subevents
(2SE) method [48]. In the 2SE method, the signal from a
detector used to measure the event plane is divided into two
“subevents” covering equal pseudorapidity ranges in opposite
n hemispheres, such that the two subevents nominally have the
same resolution. The FCal detectors located at positive and
negative 1, FCal® and FCal¥, provide such a division. The
resolution of the FCal®™ is calculated from the correlation
between the two subevents

Res(n¥) ™) = \/(cosn(lll},’ —wN)),

where WP is the event-plane angle determined from the pos-
itive (negative) side of the FCal. From the subevent resolution
the full FCal resolution can be determined by the procedure

3Calorimeter towers are localized groups of calorimeter cells that
have a 61 x §¢ segmentation of 0.1 x 0.1.
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FIG. 4. Examples of heavy-flavor muon yields, expressed in thousands of muons, as a function of 2|¢p — W, | in intervals of 7 /4. The left
and right columns show results for the 10-20% and 40-60% centrality intervals, respectively, and the top and bottom rows correspond to
4.0 < pr <4.5GeV and 8 < pr < 10 GeV, respectively. The error bars on the data points show statistical uncertainties from the fits. There
are significant bin-to-bin correlations between the statistical uncertainties due to the use of the same signal and background templates in all
2|¢ — W, | intervals. The continuous lines indicate the results of fits of the data to Eq. (5).

described in Ref. [48]. The Res{nW¥, } for the FCal and their
associated systematic uncertainties were determined in a pre-
vious ATLAS analysis [52]. Those values and uncertainties
are directly used in this paper. Depending on the centrality
class, the EP resolution factor for the FCal varies between
0.7 and 0.9, 0.3 and 0.65, and 0.2 and 0.4 for v,, vs3, and vy,
respectively. The uncertainties in the EP resolution factor are
less than 3%, 4%, and 6% for v,, v3, and vy, respectively, for
all the centrality classes used in this analysis.

The heavy-flavor muon v values are measured by eval-
uating the yields differentially relative to the W, plane. For
this, the template-fitting procedure is repeated in intervals of
n|¢ — W,| for each py and centrality interval. Utilizing the
n-fold symmetry of the W, plane and the fact that cos[n(¢ —
W,)] is an even function, it is sufficient to bin only over
the interval (0, ) in n|¢ — ¥, |. Four intervals of n|¢ — ¥, |
[(0,7/4), (x/4,7/2), (/2,37 /4), and (3 /4, )] are used.
The same signal and background templates are used for the
four n|¢ — ¥, | intervals in a given pr and centrality interval.
As a result, there is a significant correlation between the
statistical uncertainties of the signal fractions measured in the
four cos[n(¢ — W,)] intervals. This correlation is accounted
for in the statistical uncertainties of the final v, values.

Figure 4 shows examples of the differential yields of
heavy-flavor muons obtained from the template fits as a
function of 2|¢p — W, | for two centrality and two pr intervals.

A clear dependence of the yields on 2|¢p — W,| can be ob-
served, with a larger yield in the “in-plane” direction (2|¢ —
W,| ~ 0) compared to the “out-of-plane” direction (2|¢p —
W, | ~ ), implying a significant v, signal. The differential
yields are fitted with a second-order Fourier function of the
form in Eq. (5) to obtain the v$"™ values. In the fits, the x>
minimization takes into account the correlations between the
statistical uncertainties of the yields in the different 2|¢ —
W, | bins. These fits are indicated by the continuous lines
in Fig. 4. The v$® values are then corrected to account for
the EP resolution [Eq. (6)] for the final results presented in
Sec. V.

One drawback of the EP method is that there is an ambigu-
ity in the interpretation of the v,, values obtained from it (from
here on the v, values obtained from the event-plane method
are denoted by vEP). In the limit of perfect EP resolution,
Res{nV¥,} — 1, UEP — (vy), while in the limit of poor resolu-
tion, Res{n\¥,} — 0, U,I::P — /(v2) where the (...) indicates
an average over all events [59]. In general, the v, values
measured with the EP method lie somewhere between (v,)
and (\/vjzl), depending on the value of the resolution. For this
reason, the scalar-product (SP) method is considered to be a
superior measurement technique, as it always measures the
r.m.s. v, value, i.e., /(v2) [59]. The ideal SP method entails
weighting the contribution of each measured signal muon by
the magnitude of the g vector [Eq. (7)] measured in the FCal,

044905-7



M. AABOUD et al.

PHYSICAL REVIEW C 98, 044905 (2018)

giving

SP __ <qn COS[”(¢ - “Iln )]>evts
= Res*F (nW,) ’ ®

where ResSF {nW,} is the resolution for the SP method, given
by

ResSP (nW,) = \/<q}1’q}l" cosn (WP — WN)),

where "™ is the magnitude of the nth-order ¢ vector mea-
sured in the positive z (negative z) side of the FCal. Previous
ATLAS measurements for inclusive charged particles show
that vEF values differ by less than 5% from the r.m.s. v, values
for vy, and harmonics of order n > 3 are consistent with
the r.m.s. v, within systematic uncertainties [72]. However,
Eq. (8) cannot be directly used in the present analysis, since
a priori it is not known whether a reconstructed muon is a
signal or background muon; the number of signal muons is
statistically extracted from the momentum imbalance distri-
butions. Instead, the implementation of the SP method follows
quite closely the EP method. The template fits are done in
four intervals of n|¢ — W, | with each muon weighted with the
measured g, in that event. These fits give the g,-weighted sig-
nal muon yields in each n|¢ — W, | interval. These weighted
yields are then fitted with nth-order Fourier functions, similar
to Fig. 4, to obtain the observed SP v, values, which are then
corrected by ResSF{nW, } to obtain the vSF, presented later in
Sec. V.

While the SP method has advantages over the EP method,
only a modified version of the SP method can be used in the
present analysis. Thus, the results obtained from both the SP
and EP methods are presented.

E. Jet bias in the v, measurement

The heavy-flavor muons measured in this analysis often
result from heavy-flavor jets that have an associated back-to-
back recoil jet. If the recoil jet is in the FCal, it can bias the
orientation of the W, to be aligned with the azimuthal angle of
the muon, yielding a larger measured v,,. This “jet bias effect”
needs to be estimated and corrected for in the measurement.
The magnitude of this effect is estimated using the simulated-
data overlay events described in Sec. III B, where PYTHIA-
generated events are overlaid on minimum-bias Pb+Pb data.
The overlay is done independently of the W, angles and, thus,
should yield a zero v, value when the analysis procedure used
in the data is applied to the simulated events. Any systematic
deviation from v, = 0 seen in the simulated data is, then, a
result of jet bias. The procedure used to evaluate the jet bias
in v, values is as follows.

The presence of the recoil jet biases the observed g vector
in the FCal as*

Biased iny, ing't
p = g™V + ke

“In this section, the two-dimensional g vector is represented using
complex numbers [73].

where the first term on the right is the unbiased ¢ vector,
which only has the natural statistical smearing. The second
term on the right is the bias introduced by the recoil jet, which
shifts the event-plane angle to be aligned with the recoil jet
direction. The factor k represents the strength of the bias and
may depend on the py of the recoil jet as well as the centrality,
and ¢’ is the direction of the jet. Since the recoil jet is
nominally back to back with the muon, its direction can be
written as

¢’ =" + 7 +3,

where ¢* is the azimuthal angle of the muon and § represents
event-by-event fluctuations in the jet direction. This bias af-
fects the numerator in the SP method [Eq. (8)]; the resolution
[denominator in Eq. (8)] is not affected by the bias, as the
resolution is calculated using minimum-bias events and not
from events that are triggered by muons. The dot product
between the muon’s transverse direction and the biased ¢
vector, averaged over many events, [numerator of Eq. (8)] now
becomes

(ein¢” (qne—in‘ll,, + ke—in(¢”+n+5))>

— <einq>M

evts

—in\ll,,) + (ke_in(”+5)>evls- (9)

qn€

evts

The first term on the right is the numerator of Eq. (8) for no
bias, and the second term is the bias, which conveniently sep-
arates out as an additive contribution. The second term on the
right of Eq. (9) corrected by ResSF {nW, } is the jet bias in V3P,

The bias determined in this manner is independent of pr
within statistical errors. The magnitude of the bias varies
with centrality. It is smallest in the most central events—
where the underlying event is quite large, and the additional
energy deposited by the jet does not cause a significant
perturbation—and increases with decreasing centrality. For
vy, the pr-averaged value of this bias is 0.0025 in the 0—-10%
centrality interval; it increases to 0.011 in the 40-60% cen-
trality interval. For comparison, the v, at py = 4 GeV in the
0-10% and 40-60% centrality intervals is about 0.04 and 0.07,
respectively. Because the jet yield is suppressed by as much
as a factor of 2 in Pb+Pb collisions [38], only half of this
estimated bias is applied as a correction. Half of this estimated
bias is also conservatively taken as the systematic uncertainty
of the correction. In principle, the jet bias also affects the R4
measurements since the correlated jet, if it falls within the
FCal acceptance, also alters the centrality interval to which
the event is assigned. However, this effect, estimated from the
simulated-data overlay sample, is negligible compared to the
systematic uncertainties in the R 44 measurement (Sec. [V A),
and corrections for it are not applied.

IV. SYSTEMATIC UNCERTAINTIES

A. Yield, cross-section, and R, systematic uncertainties

The measurements of the heavy-flavor muon differential
cross sections and per-event yields are subject to system-
atic uncertainties arising from the muon-trigger selection,
muon-reconstruction efficiencies, the template-fitting proce-
dure, muon pr resolution, and the pp luminosity. They are
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TABLE II. Relative systematic uncertainties in the heavy-flavor muon R4 4, quoted in percent, for selected pr intervals.

pr interval

4 < pr <4.5GeV

6 < pr <7GeV 10 < pr < 12 GeV

Muon selection (%) 2.5
PYS selection (%) 7.5
Background template variation (%) 0.5
Template fitting (%) 13
Efficiency (%) 2.5

4 4
2 2
0.5 0.5
7 5
1.5 1.5

described below. Where appropriate, the uncertainties are
smoothed as a function of pr, to reduce the statistical fluctu-
ations in the uncertainty estimates. The systematic uncertain-
ties for the Pb+-Pb data do not show any significant variation
with collision centrality.

The systematic uncertainty in the Pb+Pb muon-trigger
efficiency is evaluated by varying the selections applied to the
offline-reconstructed muons in the minimum-bias reference
sample and re-evaluating the trigger efficiency. The resulting
changes in the trigger efficiency are less than 0.5% over 4 <
pr < 14 GeV and are taken as the estimate of the systematic
uncertainty in &ue. The uncertainty in the pp muon-trigger
efficiency is evaluated similarly, and is less than 2.5% for
pr < 6 GeV and less than 1.5% for py > 6 GeV. The sys-
tematic uncertainty associated with the muon-reconstruction
efficiency is evaluated by varying the muon selections, evalu-
ating the reconstruction efficiency for the new selections, and
repeating the analysis with the updated muon selection and
reconstruction efficiency. This uncertainty is less than about

4% for the pp data and less than about 2.5% for the Pb+-Pb
data. Separately, the minimum pl}’[s (default value of 1.2 GeV,
Sec. IIIB) is varied from 0.5 to 1.5 GeV, and the entire
analysis is repeated. This variation affects the template fitting
but also is sensitive to potential systematic uncertainties in
the muon reconstruction and trigger efficiencies. The change
in the Pb+Pb muon yields from varying the minimum p}'S,
taken as a systematic uncertainty in the heavy-flavor muon
yields, decreases with pr from ~10% to ~1.5% over the
measured pr range. For the pp cross-section measurements,
the systematic uncertainty decreases with py from ~11.5%
to ~3%. The systematic uncertainty associated with the pl}’ls
criterion is somewhat correlated with the systematic uncer-
tainty associated with the trigger efficiency; however, they are
conservatively treated as independent uncertainties.
Systematic uncertainties resulting from the construction
of the templates, particularly the background template, are
evaluated by changing the relative proportions of different
background contributions. The pion and kaon decay-in-flight

TABLE III. Systematic uncertainties in the heavy-flavor muon v, for selected py and centrality intervals. The values are for the EP method
and are quoted either as absolute values or in percent. They are averaged over py intervals that are larger than the intervals used for the

measurement.

pr interval

4 < pr <5GeV

6 < pr <10 GeV 10 < pr < 14 GeV

Centrality 0-10% 40-60% 0-10% 40-60% 0-10% 40-60%
p¥S selection (1072) 0.6 1.0 0.2 0.3 0.2 0.3
Muon selection (1073) 1.0 1.2 2.0 3.0 2.0 3.0
Background template variation (10~2) 0.1 0.5 0.1 0.5 0.1 0.5
vy Template fitting (1073) 0.1 0.1 0.1 0.1 0.1 0.1
Jet bias correction (1073) 1.2 5.5 1.2 5.5 1.2 5.5
pr resolution (%) 1.0 1.0 1.0 0.4 0.6 0.6
EP resolution (%) 3.7 3.3 3.7 3.3 3.7 3.3
p¥S selection (1073) 0.3 0.2 0.3 0.2 0.3 0.2
Muon selection (1073) 0.8 3.0 0.8 3.0 0.8 3.0
Background template variation (10%) 0.5 0.5 0.5 0.5 0.5 0.5
U3 Template fitting (1073) 0.1 0.1 0.1 0.1 0.1 0.1
Jet bias correction (1073) 1.7 11.0 1.7 11.0 1.7 11.0
pr resolution (%) 1 1 1 1 1 1
EP resolution (%) 33 5.4 3.3 5.4 3.3 54
¥ selection (1073) 0.5 0.8 0.5 0.8 0.5 0.8
Muon selection (1073) 0.8 0.6 0.8 0.6 2.0 2.0
Background template variation (10%) 0.2 0.5 0.2 0.5 0.2 1.5
Uy Template fitting (1073) 0.1 0.1 0.1 0.1 0.1 0.1
Jet bias correction (1073) 1.8 15 1.8 15 1.8 15
pr resolution (%) 1 1.0 1.0 1.0 1.0 1.0
EP resolution (%) 4.1 5 4.1 5 4.1 5
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FIG. 5. Top panel: the p; dependence of the measured heavy-flavor muon cross section in /s = 2.76-TeV pp collisions. The data points
are plotted at the average muon pr within a given pr interval. The vertical bars and bands on the data points indicate statistical and systematic
uncertainties, respectively. The cross section for heavy-flavor decays from FONLL calculations is also shown, along with the individual
contributions from bottom and charm quarks. For the FONLL calculations, the vertical width of the band represents theoretical systematic
uncertainties. Middle panel: the ratio of the measured and FONLL cross sections integrated over each pr interval. Statistical and systematic
uncertainties in the data are indicated by error bars and gray shaded boxes, respectively. The systematic uncertainty of the ratio from FONLL
is indicated by the shaded band centered on unity. Bottom panel: the ratio of the bottom contribution to the charm contribution in the FONLL

calculations. All results are averaged over |n| < 1.

components of the background are separately increased by
a factor of 2 and then separately decreased by a factor of
2, as motivated by differences observed in the kaon to pion
yields between PYTHIA—which is used to generate the MC
templates—and data [74]. For each variation, the template
fitting is performed, and a new value for f* is obtained. The
average of the unsigned differences between the varied and
nominal f*¢ values is taken as the systematic uncertainty in
the template fitting due to the background composition. This
is less than 0.5% over the pr range of the measurement for
both the Pb+Pb and pp data.

In order to account for possible inconsistencies between
the data and MC templates that may arise from the effect of
the trigger, or other factors that may not be properly accounted
for in the MC simulation, a separate systematic uncertainty
in the template-fitting method is estimated using a “cut-
and-correct” procedure applied to the Ap/pp distributions.
In this procedure, the fraction of muons having Ap/pp <
Ap/plewts f=, 1s measured in the data in each centrality
and py interval. This fraction provides an estimate of the
signal muon fraction, but it must be corrected for true muons

having Ap/pmp > Ap/pmle (inefficiency) and background
muons having Ap/pmp < Ap/ppleu (fakes). The corrections
are obtained from the MC signal and background Ap/pmp
distributions and are expressed in terms of the efficiencies,
Eque and gpkg, for true and background muons, respectively, to
pass the p/pm> < Ap/plee. In terms of these efficiencies,
f = is given by

f< = fSigetrue + (- fSig)gbkg-

Inverting this equation, the signal fraction estimated using the
cut-and-correct procedure is

<
sig f== Ebkg
Etrue — Ebkg

f

If the MC exactly describes the signal and background
Ap/pp distributions in the data, then the cut-and-correct
f*i¢ values will be identical to the signal fractions obtained
from the template fitting. Differences from the template-
fit signal fractions quantify the impact of inaccuracies in
the MC templates and are taken as a systematic uncer-
tainty. The cut-and-correct f*2 values were evaluated using
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FIG. 6. The pr dependence of the measured Pb+Pb heavy-flavor muon differential per-event yields for different centrality intervals scaled
by the corresponding (744). Also shown is the measured pp heavy-flavor muon differential cross section. For clarity, the results for the
different centralities are multiplied by scale factors that are indicated in the legend. The pp cross section is replotted multiple times, as dashed
lines, multiplied by these scale factors, for comparison with the results for the different Pb+-Pb centralities. The error bars and shaded bands
represent statistical and systematic uncertainties, respectively, and in many cases are too small to be seen.

Ap/pmlet = 0.1. The obtained signal fractions were found
to be systematically higher than the results from the template
fits at both low and high pr and in both the pp and Pb+Pb
data. The relative difference is largest in the lowest p7 interval
where it is ~11% and 6% for the pp and Pb+Pb data, respec-
tively. It decreases with increasing pr, and for the highest
pr interval, is ~6% and 3% for the pp and Pb+Pb data,
respectively.

The pp cross sections and Pb+Pb per-event yields are
not corrected for any bin migrations that result from the
muon momentum resolution. An evaluation of MC bin-by-bin
correction factors gives values that are typically within 1%
(2%) of unity for pp (Pb+Pb) data. These corrections are
sufficiently small that they are not applied to the data. How-
ever, the deviations from unity are included in the systematic
uncertainties of the cross sections and per-event yields.
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FIG. 7. The measured Pb+Pb heavy-flavor muon R4 as a function

of pr. For clarity, the centrality intervals are split between the two

panels. The left panel shows results for the 0-10%, 20-30%, and 40-60% centrality intervals while the right panel shows results for the
10-20% and 30-40% intervals. The error bars represent statistical uncertainties. The boxes indicate theoretical uncertainties of (744). The

shaded bands represent the experimental systematic uncertainties.
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FIG. 8. Comparison of the Pb+Pb heavy-flavor muon R4, measured in this analysis to similar measurements for muons at forward
rapidity (2.5 < y < 4) and heavy-flavor electrons at midrapidity (|y| < 0.6) from the ALICE Collaboration. The error bars represent systematic
and statistical uncertainties added in quadrature. The (74,) errors are identical between the three measurements and are excluded from the
comparison.
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FIG. 9. Comparison of the Pb+Pb heavy-flavor muon R 44 measured in this analysis to the R 44 for inclusive charged hadrons from ATLAS
and the R, for identified D° mesons from the CMS Collaboration. The error bars represent systematic and statistical uncertainties added in
quadrature. The (T4,) errors are identical between the three measurements and are excluded from the comparison. The inclusive charged
hadron R4, values shown in the top left panel are for the 0-5% centrality interval.
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FIG. 10. The pr dependence of the Pb+Pb heavy-flavor muon v,. Results are shown for both the EP and SP methods. Each panel represents
a different centrality interval. The error bars and shaded bands represent statistical and total uncertainties, respectively, and are shown only for

the EP v,. The horizontal dashed lines indicate v, = 0.

The measured pp cross section has an additional normal-
ization systematic uncertainty of 3.1% due to uncertainties in
the integrated luminosity.

For the R44 measurement, the systematic uncertainties
from the pp cross section and Pb+Pb per-event yields are
propagated as if they are correlated, i.e., the systematic vari-
ations are simultaneously performed in the pp and Pb+Pb
data and the change in the R4 value is taken as the sys-
tematic uncertainty. Besides the systematic uncertainties from
the pp cross section and Pb+-Pb per-event yields, additional
systematic uncertainties in the R44 measurement come from
theoretical uncertainties in (744 ), which are listed in Table 1.
Table II summarizes the final experimental systematic uncer-
tainties in R44. The total uncertainty is obtained by adding
the individual uncertainties in quadrature.

B. Systematic uncertainties in v,

The sources of the systematic uncertainties in the v, mea-
surements are primarily the same as those in the R4, mea-
surements (Sec. IV A). However, several sources of systematic
uncertainty that affect R44 do not have a significant effect
on the v, values. The v, measurements are independent of

the trigger and tracking efficiencies. While these efficiencies
have an impact on the absolute muon yields, the v, values,
which measure the relative or fractional modulation in yields,
are insensitive to them. Therefore, the uncertainties in the
efficiencies do not have any effect on the v, measurements.
Varying the muon selection as described in Sec. IV A changes
the measured value of v, by (1-2) x 1073 below pr of 6 GeV.
The pl}ds criterion variation changes the measured value of
v by (0.5-1) x 1073 for pr <6 GeV. At higher pr the
effect of this criterion on v, is about 0.2 x 1073, For v; and
vy the effect of the pMS criterion is (0.5-1) x 1073 across
the measured pry range. The effects of the muon selection
and the p}® criterion are evaluated not just by applying the
selection in the data but also by rebuilding the templates in
the MC simulation while applying the variations, and then
repeating the entire analysis. The variation in the shape of the
background template, when varying the relative contribution
of the pion and kaon backgrounds, results in variations in
the v, values that are less than 0.5 x 103 across most of
the centrality and pr ranges. The systematic uncertainty in
v, due to pr-resolution effects is estimated to be less than
1% (relative) for pr < 10 GeV. This estimate is obtained
by first determining the py resolution using MC simulation
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a different pr interval. The error bars and shaded bands represent statistical and total uncertainties, respectively. The dashed lines indicate

vy = 0. The results are for the EP method.

(Sec. III B), and then evaluating the change in the v, values
when smearing the pr of the reconstructed muons by this
resolution. The uncertainty arising from the p; resolution
is treated as a fractional uncertainty; since if v, changes,
then the pr resolution effects that result in migration of
muons from one pr interval to an adjacent one also increase
proportionally. For pr > 10 GeV, the systematic uncertainties
from all the above sources are partially correlated with the
statistical uncertainties, and are thus somewhat larger.
Additional systematic uncertainties that affect only the v,
but not the R44 measurements are the uncertainty in the EP
resolution for W, and the jet bias correction discussed in
Sec. IIID. The uncertainty in the EP resolution is a relative

uncertainty and depends only on the centrality. It varies be-
tween 1% and 5.5% depending on the harmonic and centrality.
The systematic uncertainty associated with the jet bias cor-
rection is the leading uncertainty in the measurement. The
absolute value of this uncertainty depends on the centrality
and the harmonic order but is independent of pr. It increases
monotonically from central to peripheral events and is much
larger for v3 and vy4 than for v,. Table III summarizes the
systematic uncertainties for the v, in three different py ranges
and for two centrality intervals. The uncertainties associated
with the p7 resolution and EP resolution are intrinsically
fractional uncertainties and are listed as percentages. All other
uncertainties are listed as absolute values.
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V. RESULTS

A. Heavy-flavor muon R 44

Figure 5 shows the measured heavy-flavor muon cross
sections, calculated via Eq. (3), in the /s = 2.76-TeV pp
data as a function of the muon pr. The error bars show
statistical uncertainties resulting from combining the statis-
tical uncertainties of AN, and f*¢. The measured cross
sections are compared with fixed-order plus next-to-leading-
logarithm (FONLL) [75-78] calculations using CTEQ 6.6
PDFs [79]. The FONLL calculations are based on three main
components: (1) the heavy-quark production cross-section
calculated in perturbative QCD by matching the fixed-order
next-to-leading-order (NLO) terms with the next-to-leading-
logarithms (NLLs) high-pr resummation, (2) the nonpertur-
bative heavy-flavor fragmentation functions determined from
eTe™ collisions and extracted in the same framework, and
(3) the decays of the heavy hadrons to leptons using decay
tables and form factors from B factories. The middle panel of
Fig. 5 presents the ratios of the measured and FONLL cross
sections. The FONLL calculation agrees with the data within
systematic uncertainties. The individual contributions of the
bottom and charm quarks to the heavy-flavor muon cross

section obtained from the FONLL calculations are compared
in the lower panel of Fig. 5. It is seen that at 4 GeV the
contribution of the bottom quark to the muon cross section is
about 40% of that of the charm quark. The relative contribu-
tion increases monotonically with the muon pr, and at py =
14 GeV, the contributions from bottom and charm decays are
comparable.

Figure 6 shows the differential per-event heavy-flavor
muon yields in Pb+Pb collisions [Eq. (4)] scaled by the
corresponding (7T44) for the centrality intervals in this anal-
ysis. The statistical uncertainties are the combined statistical
uncertainties of AN, and f sz Figure 6 also compares the
(Taa) scaled yields to the measured pp cross section. There
are significant differences between the scaled Pb+Pb yields
and the pp cross section, which monotonically increase with
increasing centrality.

The heavy-flavor muon R4, is calculated according to
Eq. (1) using the results in Fig. 6 and is shown in Fig. 7. The
parameter R4 4 does not depend on p7 within the uncertainties
of the measurement. This is of note because the suppression of
bottom and charm quarks in the quark-gluon plasma (QGP) is
expected to be different, and the FONLL calculations show
that the contribution of bottom and charm quarks changes
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with pr in the pp case, as shown in Fig. 5. The parameter
R 44 decreases between peripheral 40-60% collisions, where
it is about 0.65, to more central collisions, reaching a value of
about 0.35 in the 0-10% centrality interval.

Figure 8 shows a comparison of the R44 measurements
in this paper with similar measurements for muons at for-
ward rapidity (2.5 < y < 4) [20] and heavy-flavor electrons at
midrapidity (]y| < 0.6) [47] from the ALICE Collaboration.
In general, the results are consistent; however, the present
measurements have considerably smaller uncertainties.

Figure 9 compares the Rjp4 measurement presented in
this paper with the R44 of inclusive charged hadrons [42]
at /s, =2.76 TeV and identified D° mesons [80] from
the CMS Collaboration at /s, = 5.02 TeV. The Raa from
DO analyses is similar to that of inclusive hadrons for p; >
5 GeV [80], implying that the charm suppression is very
similar to that for the light quarks and gluons. On the other
hand, the heavy-flavor muon R44, which includes contribu-
tions from bottom and charm, is observed to be larger than
that of inclusive hadrons. This would imply a significantly
smaller suppression for muons from the decays of b hadrons.
One caveat is that the D° p; and the HF muon py are
related differently to the pr of the HF quark that produced
them. However, this effect is mitigated by the relatively weak

pr dependence of both the D° and HF muon Ry4 over the
4-14-GeV pr range.

B. Heavy-flavor muon v,

Figure 10 shows the v, values measured using the EP
method as a function of py for the five centrality intervals in
this analysis, including the statistical and total uncertainties.
The evaluation of the total uncertainty includes the correla-
tion between the statistical uncertainties and the systematic
uncertainties that are proportional to v,, i.e., the relative
uncertainties associated with the EP and pr resolutions. This
correlation arises because as the measured v, is varied within
its statistical uncertainty, the relative uncertainties that are
proportional to v, also vary. The other (absolute) systematic
uncertainties are added in quadrature to the correlated uncer-
tainty to get the total uncertainty. Over the 10-40% centrality
range, v, is largest at the lowest measured py of 4 GeV and
decreases for higher pr. However, in the 0—10% and 40—
60% centrality intervals, no clear pr dependence is visible.
For all centralities, a significantly nonzero v, is observed up
to a pr of 12 GeV. Figure 10 also shows the vgp values,
which are slightly higher than the EP values. The systematic
uncertainties and a significant fraction of the statistical
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uncertainties are correlated between the EP and SP v, values,
and for clarity are not shown for the v3¥. These measurements
are consistent with previous v, measurements of heavy-flavor
muons [21] and heavy-flavor electrons [81] from the ALICE
Collaboration, but have significantly smaller statistical and
systematic uncertainties, and are performed over wider cen-
trality and py ranges.

Figure 11 shows the v, obtained from the EP method
plotted as a function of centrality for different pr intervals.
For pr in the range 4-8 GeV, the centrality dependencies of
the heavy-flavor muon v, are qualitatively similar in shape,
but considerably smaller in magnitude, to those for charged
hadrons of similar pr [50,52]. In this pr range, the v, first
increases from central to midcentral events, reaches a maxi-
mum between 20% and 40% centrality, and then decreases.
Over the pr range of 8-12 GeV, some deviation from this
trend is observed, with the v, increasing monotonically from
central to peripheral events. However, the associated sta-
tistical and systematic uncertainties are considerably larger.
This monotonically increasing centrality dependence of the
vy at high pr is also seen in the inclusive charged hadron
vy [50,52]. For the highest py interval of 12 < py < 14 GeV,
the statistical and systematic errors are too large to identify a
clear centrality dependence of v;.

Figure 12 shows the pr dependence of vs. At a given pr
and centrality, vs is a factor of 2-3 smaller than the corre-
sponding v,. As with vy, v3 also decreases with increasing
pr over the 4-8-GeV pr range. At higher pr, the statistical
uncertainties are too large to observe clear pr-dependent
trends. The parameter v3 shows a much weaker variation with
centrality: the v3 values at a given pr are consistent within

uncertainties across the different centrality intervals. These
features for the centrality and pr dependence are consistent
with observations of the inclusive charged-hadron v; [52].
Figure 13 shows the pr dependence of vs. The statistical
uncertainties in v4 do not allow inference of any significant
pr- or centrality-dependent trends.

C. Comparison with theoretical models

In this section, the measured R44 and v, values are com-
pared with calculations from the TAMU transport model [82]
and the DABMod model [83]. TAMU is a transport model for
heavy flavor within the QGP and subsequent hadronic phase.
The initial heavy-quark spectra used in the model are obtained
from FONLL calculations, accounting for shadowing effects
in Pb+Pb collisions. The space-time evolution of the bulk
QGP medium, in which the heavy quarks diffuse, is modeled
using ideal relativistic hydrodynamics, tuned to reproduce
the charged-hadron pr spectra and inclusive elliptic flow
measured in Pb+Pb collisions at the LHC. The initial con-
ditions for the hydrodynamic modeling are obtained from the
Glauber model and do not include initial state fluctuations or
initial flow. After this tuning, there are no free parameters in
the model. The hadronization of heavy-flavor quarks is done
partially via recombination of heavy quarks with light-flavor
hadrons in the QGP and partially by fragmentation. Finally,
the diffusion of heavy-flavor hadrons in the hadronic phase is
continued until kinetic freeze-out. DABMod is an energy-loss
model for heavy quarks traversing the QGP. The energy loss is
a parametrized analytic function of the velocity of the heavy
quark and the local temperature. The initial py distribution of
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heavy quarks is obtained from FONLL calculations. The un-
derlying QGP is modeled using (2+1)-dimensional relativistic
viscous hydrodynamics including event-by-event fluctuations
in the initial conditions and subsequent hydrodynamic expan-
sion. All the hydrodynamic parameters are tuned to describe
the experimental flow data at low pr. The heavy quarks
are evolved on top of the hydrodynamic underlying event
until they reach a decoupling temperature below which they
are hadronized via fragmentation. Any subsequent hadronic
rescattering is neglected. The DABMod model calculations
are available for R4 and v,—vy for all the centrality intervals
over which the measurements are performed in this paper.
The TAMU calculations for R 44 are available for the 0-10%,
20-40%, and 40-60% centrality intervals, and for v, for the
20-40% and 40-60% centrality intervals only.

Figure 14 compares the measured heavy-flavor muon R 44
values with theoretical calculations from the TAMU and
DABMod models. Generally, the TAMU model describes
many features of the data well, especially the weak p; depen-
dence of R4, while DABMod only reproduces the measured
Ry for pr > 12 GeV. The failure of the DABMod model
at low pr is understood to result from incomplete modeling
of heavy-flavor suppression for pr < mj;. The TAMU model

predicts a larger suppression in the 40—-60% centrality interval
and a lower suppression in the 0—10% centrality interval than
what is measured. Thus, the range of the suppression seen
in the data is larger than in the TAMU model. As stated
above, the TAMU model does not implement event-by-event
fluctuations in the initial geometry, which are known to affect
the dynamical evolution of bulk medium [63,84]. This may be
one of the possible reasons for the smaller dynamical range of
R 44 predicted by the model.

Figure 15 compares the measured heavy-flavor v, values
with calculations from the TAMU and DABMod models.
The DABMod v, values are systematically larger than the
TAMU values and closer to the measured v,. Unlike TAMU,
the DABMod calculations include event-by-event fluctuations
which are known to increase v, [63,84]. This could be a
possible reason for the systematically larger v, values ob-
tained in the DABMod model. The DABMod calculations are
consistent with the measured values for pr > 6 GeV for all
centralities. However, for 4 < pr < 6 GeV and for the 10—
40% centrality range, the calculated values are significantly
smaller than the measured v, values. The TAMU v, values are
significantly smaller than the measured v, over the 4 < pr <
10 GeV py range. Figure 16 compares the measured v; values
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to calculations from the DABMod model. Features similar
to the v, comparison are observed; the model predictions
are smaller than the measured v; for 4 < pr < 6 GeV but
become consistent with the data at higher pr. The DABMod
calculations are also compared with the vs measurements.
However, the large experimental uncertainties do not allow
detailed comparisons with the model predictions.

VI. CONCLUSION

This paper presents ATLAS measurements of heavy-flavor
muon production in 0.14 nb~" of /s, = 2.76 TeV Pb+Pb
collisions and 570 nb~! of /s = 2.76 TeV pp collisions at
the LHC. The measurements are performed over the trans-
verse momentum range of 4 < pr < 14 GeV. Backgrounds
arising from in-flight pion and kaon decays, hadronic showers,
and misreconstructed muons are statistically removed using
a template-fitting procedure based on the relative difference
between the muon track momenta in the muon spectrometer
and inner detector, corrected for energy loss in the calorimeter
system. The heavy-flavor muon differential cross sections and
per-event yields are measured in pp and Pb+Pb collisions,
respectively. The nuclear modification factor R44 calculated
from these quantities shows a centrality-dependent suppres-
sion that does not depend on pr within uncertainties. In the

0-10% centrality interval, R44 ~ 0.35. In Pb+Pb collisions,
measurements of the heavy-flavor muon yields as a function
of ¢ — ¥, the azimuthal angle of the muons relative to the
event-plane angles, show a clear sinusoidal modulation of the
yield in all centrality intervals. The heavy-flavor muon v,,, for
n = 2-4, is measured in Pb+Pb collisions as a function of
pr for five centrality intervals covering the 0-60% centrality
range. Significant v, values up to about 0.08 are observed at
pr = 4 GeV. In the 10-20%, 20-30%, and 30—40% intervals,
the v, decreases with pr but is still significant at 10 GeV.
At fixed pr, the v, values show a systematic variation with
centrality which is typical of elliptic-flow measurements. For
most centrality intervals, vz also decreases with increasing
pr over the 4-8-GeV pr range. For pr > 8 GeV, the sta-
tistical uncertainties in the measured v; values are too large
to discern any pr-dependent trends. At a given pr and
centrality, the vs values are smaller than the v, values by a
factor of 2—4. Further, vs shows a much weaker centrality
dependence than v,. Conclusions about any pz- or centrality-
dependent trends in the vs are limited by the statistical
precision.

The measured Ry4 and v, are also compared with the-
oretical predictions from the TAMU and DABMod mod-
els. The R44 values from the TAMU model show a weak
pr dependence over the 4-14-GeV p7 range, qualitatively
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similar to the measured R44. However, the predicted R4
values are smaller than the measured values in the 40-60%
centrality interval, and larger than the measured values in the
0-10% centrality interval. On the other hand, the DABMod
model predicts a strong pr dependence for R 44, which is not
observed in the data. The R4 4 value at pr = 4 GeV predicted
by DABMod is significantly smaller than the measured values
but increases with increasing pr and becomes comparable
to the measured values at py = 12 GeV. For v,, the TAMU
and DABMod qualitatively reproduce the observed p; depen-
dence but the DABMod calculations are more consistent with
the measured values. Thus both models fail to simultaneously
reproduce v, and R4 4 over the measured pr range.

The R4 values measured here for || < 1 and v, values
for |n| < 2 are compatible with, but are substantially more
precise than, similar measurements of heavy-flavor muons at
forward rapidity (2.5 < y < 4) and heavy-flavor electrons at
midrapidity (|y| < 0.6) from the ALICE Collaboration. Thus,
they should provide improved insight into the propagation of
heavy quarks in the quark-gluon plasma created in Pb+Pb
collisions.
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