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presented. This search uses 36.1 fb~! of data collected by the ATLAS detector in proton-proton collisions
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on the number of jets and the number of jets tagged as containing a b-hadron as well as a topological
observable formed by the scalar sum of masses of large-radius jets in the event. No significant excess
above the expected Standard Model background is observed. Limits are set on the production of gluinos
in models with the R-parity-violating decays of either the gluino itself (direct decay) or the neutralino
produced in the R-parity-conserving gluino decay (cascade decay). In the gluino cascade decay model,
gluino masses below 1850 GeV are excluded for 1000 GeV neutralino mass. For the gluino direct decay
model, the 95% confidence level upper limit on the cross section times branching ratio varies between
0.80 fb at mz =900 GeV and 0.011 fb at m; = 1800 GeV.
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1. Introduction

Supersymmetry (SUSY) [1-6] is a theoretical extension of the
Standard Model (SM) which fundamentally relates fermions and
bosons. It is an alluring theoretical possibility given its poten-
tial to solve the hierarchy problem [7-10]. This Letter presents a
search for supersymmetric gluino pair production with subsequent
R-parity-violating (RPV) [11-16] decays into quarks in events with
many jets using 36.1 fb~! of p-p collision data at /s = 13 TeV
collected by the ATLAS detector in 2015 and 2016. In the minimal
supersymmetric extension of the Standard Model, the RPV compo-
nent of a generic superpotential can be written as [15,17]:

1 - - 1., - = =
Wrpy = i)h,'jkLiLjEk + )\.;jkLinDk + ik;}kUiDjDk + kiLiHp, (1)

where i, j, k=1, 2,3 are generation indices. The generation indices
are omitted in the discussions that follow if the statement being
made is not specific to any generation. The first three terms in
Eq. (1) are often referred to as the trilinear couplings, whereas the
last term is referred to as bilinear. The L; and Q; represent the lep-
ton and quark SU(2); doublet superfields, whereas H, represents
the Higgs superfield. The E;, Dj, and U; are the charged lepton,
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down-type quark, and up-type quark SU(2). singlet superfields,
respectively. The couplings for each term are given by A, A/, and 1",
while k is a mass parameter. In the benchmark models considered
in this search, the couplings of A and A’ are set to zero and only
the baryon-number-violating coupling A;}k is non-zero. Because of
the structure of Eq. (1), scenarios in which only A;}k # 0 are of-
ten referred to as UDD scenarios. The diagrams shown in Fig. 1
represent the benchmark processes used in the optimization and
design of the search presented in this Letter. In the gluino direct
decay model (Fig. 1(a)), the gluino directly decays into three quarks
via the RPV UDD coupling 1”, leading to six quarks at tree level
in the final state of gluino pair production. In the gluino cascade
decay model (Fig. 1(b)), the gluino decays into two quarks and a
neutralino, which, in turn, decays into three quarks via the RPV
UDD coupling A”, resulting in ten quarks at tree level in the final
state of gluino pair production. Events produced in these processes
typically have a high multiplicity of reconstructed jets. In signal
models considered in this search, the production of the gluino pair
is assumed to be independent of the value of A”. Decay branching
ratios of all possible A" flavour combinations given by the struc-
ture of Eq. (1) are assumed to be equal, and decays of the gluino
and neutralino are implemented as prompt decays via modifying
the decay widths of gluinos and neutralinos. In this configuration,
a significant portion of signal events contain at least one bottom
or top quark. Other models of the RPV UDD scenario, such as the
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(a) gluino direct decay

(b) gluino cascade decay

Fig. 1. Diagrams for the benchmark processes considered for this analysis. The black
lines represent Standard Model particles, the red lines represent SUSY partners, the
grey shaded circles represent effective vertices that include off-shell propagators
(e.g. heavy squarks coupling to a )~(]0 neutralino and a quark), and the blue solid
circles represent effective RPV vertices allowed by the baryon-number-violating 1”
couplings with off-shell propagators (e.g. heavy squarks coupling to two quarks).
Quark and antiquark are not distinguished in the diagrams. (For interpretation of
the colours in the figure(s), the reader is referred to the web version of this article.)

Minimal Flavour Violation model [18,19], predict that the gluino
decays preferentially into final states with third-generation quarks.
These theoretical arguments motivate the introduction of b-tagging
requirements into the search.

This analysis is an update to previous ATLAS searches for sig-
nals arising from RPV UDD scenarios [20,21] performed with data
taken at /s =8 TeV. The search strategy closely follows the one
implemented in Ref. [21], which excludes a gluino with mass up to
917 GeV in the gluino direct decay model, and a gluino with mass
up to 1000 GeV for a neutralino mass of 500 GeV in the gluino cas-
cade decay model. Two other publications [22,23] from the ATLAS
Collaboration reported on the searches for signals from a differ-
ent gluino cascade decay model where the quarks/antiquarks from
the gluino decay are top quark-anti-quark pairs and the quarks
from the neutralino decays are u, d or s quarks. These searches
probed events with at least one electron or muon. The most strin-
gent lower limit on the gluino mass, from Ref. [22], is 2100 GeV
for a neutralino mass of 1000 GeV. In a recent publication [24],
the CMS Collaboration set a lower limit of 1610 GeV on the gluino
mass in an RPV UDD scenario where the gluino exclusively decays
into a final state of a top quark, a bottom quark and a strange
quark, using /s =13 TeV pp collision data.

2. ATLAS detector

The ATLAS detector [25] covers almost the whole solid an-
gle around the collision point with layers of tracking detectors,
calorimeters and muon chambers. The inner detector, immersed
in a magnetic field provided by a solenoid, has full coverage in
¢ and covers the pseudorapidity range |n| < 2.5.! It consists of
a silicon pixel detector, a silicon microstrip detector and a transi-
tion radiation straw-tube tracker. The innermost pixel layer, the
insertable B-layer, was added between Run-1 and Run-2 of the
LHC, at a radius of 33 mm around a new, thinner, beam pipe [26].
In the pseudorapidity region |n| < 3.2, high granularity lead/liquid-
argon (LAr) electromagnetic (EM) sampling calorimeters are used.
A steel/scintillator tile calorimeter provides hadronic calorimetry
coverage over |n| < 1.7. The end-cap and forward regions, span-
ning 1.5 < |n| < 4.9, are instrumented with LAr calorimetry for
both the EM and hadronic measurements. The muon spectrometer

1 ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point in the centre of the detector and the z-axis along the beam di-
rection. The x-axis points toward the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the
azimuthal angle around the beam pipe. The pseudorapidity 7 is defined in terms of
the polar angle 6 by n = —In[tan(0/2)].

surrounds these calorimeters, and comprises a system of precision
tracking chambers and fast-response detectors for triggering, with
three large toroidal magnets, each consisting of eight coils, provid-
ing the magnetic field for the muon detectors. A two-level trigger
system is used to select events [27]. The first-level trigger is imple-
mented in hardware and uses a subset of the detector information.
This is followed by the software-based high-level trigger, reducing
the event rate to about 1 kHz.

3. Simulation samples

Signal samples were produced covering a wide range of gluino
and neutralino masses. In the gluino direct decay model, the
gluino mass (mg) was varied from 900 GeV to 1800 GeV. In the
case of the cascade decays, for each gluino mass (1000 GeV to
2100 GeV), separate samples were generated with multiple neu-
tralino masses (m)-(lo) ranging from 50 GeV to 1.65 TeV. In each

case, myo < mg. In the gluino cascade decay model, the two

quarks produced from the gluino decay were restricted to be
first or second generation quarks. All three generations of quarks
were allowed to be in the final state of the lightest supersym-
metric particle decay. Signal samples were generated at leading-
order (LO) accuracy with up to two additional partons using the
MADGRAPH5_AMC@NLO v2.3.3 event generator [28] interfaced with
PYTHIA 8.186 [29] for the parton shower, fragmentation and un-
derlying event. The A14 set of tuned parameters [30] was used
together with the NNPDF2.3LO parton distribution function (PDF)
set [31]. The EvtGen v1.2.0 program was used to describe the prop-
erties of the b- and c-hadron decays in the signal samples. The
signal production cross sections were calculated at next-to-leading
order (NLO) in the strong coupling constant, adding the resumma-
tion of soft gluon emission at next-to-leading-logarithm accuracy
(NLO + NLL) [32-36]. The nominal cross section and its uncer-
tainty were taken from Ref. [37]. Cross sections were evaluated
assuming masses of 450 TeV for the light-flavour squarks in the
case of gluino pair production. In the simulation, the total widths
of gluinos and neutralinos were set to be 1 GeV, effectively making
their decays prompt.

While a data-driven method was used to estimate the back-
ground, simulated events were used to establish, test and vali-
date the methodology of the analysis. Multijet events constitute
the dominant background in the search region, with small con-
tributions from top-quark pair production (tt). Contributions from
y + jets, W + jets, Z + jets, single-top-quark, and diboson
background processes are found to be negligible from studies per-
formed with simulated events. The multijet background was stud-
ied with three different leading order Monte Carlo samples. The
PYTHIA 8.186 event generator was used together with the A14
tune and the NNPDF2.3LO parton distribution functions, while the
Herwig++ 2.7.1 event generator was used together with the UEEE5
tune [38] and CTEQ6L1 PDF sets [39]. The SHERPA event genera-
tor [40] was also used to generate multijet events for the study of
background estimation. Matrix elements were calculated with up
to three partons at LO, were showered with SHERPA as well, and
were merged using the ME+PS@LO prescription [41]. The CT10 PDF
set [42] was used in conjunction with dedicated parton shower
tuning developed by the SHERPA authors. For the generation of
fully hadronic decays of tf events, the POWHEG-BoX v2 event gener-
ator [43] was used with the CT10 PDF set and was interfaced with
PYTHIA 6.428 [44]. The EvtGen v1.2.0 program [45] was also used
to describe the properties of the b- and c-hadron decays for the
background samples except those generated with SHERPA [46].

The effect of additional p-p interactions per bunch crossing
(“pile-up”) as a function of the instantaneous luminosity was taken
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into account by overlaying simulated minimum-bias events accord-
ing to the observed distribution of the number of pile-up interac-
tions in data. All Monte Carlo simulated background samples were
passed through a full GEANT4 simulation [47] of the ATLAS detec-
tor [48]. The signal samples were passed through a fast detector
simulation [49] based on a parameterization of the performance
of the ATLAS electromagnetic and hadronic calorimeters and on
GEANT4 elsewhere. The compatibility of the signal selection effi-
ciency between the fast simulation sample and the full simulation
sample was validated at a number of signal points in the gluino
direct decay model and gluino cascade decay model considered in
this Letter.

4. Event selection

The data were recorded in 2015 and 2016, with the LHC op-
erating at a centre-of-mass energy of /s = 13 TeV. All detector
elements are required to be operational. The integrated luminos-
ity is measured to be 3.2 fb~! and 32.9 fb~!, for the 2015 and
2016 data sets, respectively. The uncertainty in the combined 2015
and 2016 integrated luminosity is 2.1%. It is derived, following a
methodology similar to that detailed in Ref. [50], from a calibra-
tion of the luminosity scale using x-y beam-separation scans.

The events used in this search are selected using an Hrt trig-
ger, seeded from a first-level jet trigger with an Et threshold of
100 GeV, which requires the scalar sum of jet transverse energies
at the high level trigger to be greater than 1.0 TeV. This require-
ment is found to be fully efficient for signal regions considered in
this Letter. Events are required to have a primary vertex with at
least two associated tracks with transverse momentum (pr) above
0.4 GeV. The primary vertex assigned to the hard-scattering colli-
sion is the one with the highest 3., p3, where the sum of track
p% is taken over all tracks associated with that vertex. To reject
events with detector noise or non-collision backgrounds, events are
removed if they fail basic quality criteria [51,52].

Jets are reconstructed from three-dimensional topological clus-
ters of energy deposits in the calorimeter calibrated at the EM
scale [53], using the anti-k; algorithm [54,55] with two different
radius parameters of R = 1.0 and R = 0.4, hereafter referred to
as large-R jets and small-R jets, respectively. The four-momenta
of the jets are calculated as the sum of the four-momenta of the
clusters, which are assumed to be massless. For the large-R jets,
the original constituents are calibrated using the local cell weight-
ing algorithm [53,56] prior to jet-finding and reclustered using the
longitudinally-invariant k; algorithm [57] with a radius parame-
ter of Rgub-jer = 0.2, to form a collection of sub-jets. A sub-jet is
discarded if it carries less than 5% of the large-R jet pt of the orig-
inal jet. The constituents in the remaining sub-jets are then used
to recalculate the large-R jet four-momenta, and the jet energy
and mass are further calibrated to particle level using correction
factors derived from simulation [58]. The resulting “trimmed” [58,
59] large-R jets are required to have pt > 200 GeV and |n| < 2.0.
The analysis does not place any requirement on the vertex asso-
ciation of tracks within a jet nor on the timing of the calorimeter
cells within a jet, which preserves the sensitivity of this analysis to
models containing non-prompt jets. The small-R jets are corrected
for pile-up contributions and are then calibrated to the particle
level using simulated events followed by a correction based on in
situ measurements [53,60,61].

The identification of jets containing b-hadrons is based on the
small-R jets with pr > 50 GeV and || < 2.5 and a multivari-
ate tagging algorithm [62,63]. This algorithm is applied to a set
of tracks with loose impact parameter constraints in a region of
interest around each jet axis to enable the reconstruction of the
b-hadron decay vertex. The b-tagging requirements result in an

efficiency of 70% for jets containing b-hadrons, as determined in
a sample of simulated tt events [63]. A small-R jet passing the
b-tagging requirement is referred to as a b-tagged jet.

The analysis of data is primarily based on observables built
from large-R jets. The small-R jets are used to classify events and
for categorization of the large-R jets based on the b-tagging in-
formation. Specifically, events selected in the analysis are divided
into a b-tagging sample where at least one b-tagged jet is present
in the event, and a b-veto sample where no b-tagged jet is
present in the event. Events selected without taking into account
any b-tagging requirement are referred to as inclusive events.
Large-R jets are classified as either those that are matched to a
b-tagged jet within AR = 1.0 (b-matched jets), or those that are
not matched to a b-tagged jet.

5. Analysis strategy

The analysis uses a kinematic observable, the total jet mass,
MJZ [64-66], as the primary discriminating variable to separate sig-
nal and background. The observable MJZ is defined as the sum of
the masses of the four leading large-R jets.

ME= Y ml, (2)
pr>200 GeV

In1<2.0

j=1-4
This observable provides significant sensitivity for gluinos with
very high mass. Fig. 2(a) presents examples of the discrimination
that the MJ2 observable provides between the background (rep-
resented here by SHERPA, PYTHIA 8.186 and Herwig++ multijet
Monte Carlo simulation) and several signal samples, as well as the
comparison of the data to the simulated multijet background.

Another discriminating variable that is independent of MJE is
necessary in order to define suitable control and validation re-
gions where the background estimation can be studied and tested.
The signal is characterized by a higher rate of central-jet events
as compared to the primary multijet background. This is expected
due to the difference in the production modes: predominantly
s-channel for the signal, whereas the background can also be pro-
duced through u- and t-channel processes. Fig. 2(b) shows the dis-
tribution of the pseudorapidity difference between the two leading
large-R jets, |Aniz| for several signal and background Monte Carlo
samples, as well as data. A high-|Anqy| requirement can be ap-
plied to establish a control region or a validation region where the
potential signal contamination needs to be suppressed.

The use of MJE in this analysis provides an opportunity to em-
ploy the fully data-driven jet mass template method to estimate the
background contribution in signal regions. The jet mass template
method is discussed in Ref. [66], and its first experimental im-
plementation is described in Ref. [21]. In this method, single-jet
mass templates are extracted from signal-depleted control regions.
These jet mass templates are created in bins that are defined by
a number of observables, which include jet pr and |n|, and the
b-matching status. They provide a probability density function that
describes the relative probability for a jet with a given pr and 7 to
have a certain mass. This method assumes that jet mass templates
only depend on these observables and are the same in the control
regions and signal regions. A sample where the background MJE
distribution needs to be estimated, such as a validation region or a
signal region, is referred to as the kinematic sample. The only in-
formation used is the jet pt and 7, as well as its b-matching status,
which are inputs to the templates. For each jet in the kinematic
sample, its corresponding jet mass template is used to generate
a random jet mass. An MJE distribution can be constructed from
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Fig. 2. Comparison between signal samples and background control samples for (a) the sum of the masses of the four leading large-R jets MJE and (b) the difference in
pseudorapidity between the two leading large-R jets |Ani2|. Two typical signal points for gluino cascade decay models are shown, as well as the distributions obtained from
the data. All distributions are normalized to the same area. The selection requires four or more jets, is inclusive in |Anq2| and has no b-tagging requirements.

Table 1

Summary of the event-level and jet-level requirements used to define various regions. Requirements on large-R jet multiplicity (Njet),
whether or not a b-tagged jet is present (b-tag), and the pseudorapidity gap between the two leading-large-R-jets (|Ani2|) are applied
to define control, validation and signal regions. In addition, each signal region includes an additional M> requirement for statistical inter-
pretation. Control regions are defined separately for non-matched jets and b-matched jets. For the uncertainty determination regions, the

Njer and leading-jet pr (pr,1) requirements are used.

Nijer (pr > 200 GeV) b-tag pra |An2] My

CR 3jCR =3 - - - -

UDR UDR1 -2 - > 400 GeV - -
UDR2 =4 - <400 GeV - -

VR 4jVR >4 - > 400 GeV >14 -
5jVR >5 - - > 14 -
4jVRb >4 >1 > 400 GeV >14 -
5jVRb >5 >1 - >14 -

SR 4jSR >4 - > 400 GeV <14 >1.0 Tev
5iSR >5 - <14 > 0.8 TeV
4jSRb >4 >1 > 400 GeV <14 > 1.0 Tev
5jSRb_1 >5 >1 - <14 > 0.8 TeV
5iSRb_2 >5 >1 - <14 > 0.6 TeV

the randomized jet masses of the kinematic sample. If jet mass
templates are created from a control sample of background events,
then the MJZ distribution constructed from randomized jet masses

should reproduce the shape of the MJE distribution for the back-

ground.’

This jet mass prediction procedure is similar to the one em-
ployed in Ref. [21] with two minor differences. First, the statistical
fluctuations in the jet mass templates are propagated to the back-
ground yield prediction in the signal region, and therefore consid-
ered as a systematic uncertainty of the jet mass template method,
whereas the Run-1 analysis made assumptions about the form of
the template shape by smoothing using a Gaussian kernel tech-
nique. Second, the predicted MJZ distribution is normalized to the
observation in 0.2 TeV < MJE < 0.6 TeV, whereas the Run-1 anal-
ysis did not introduce any normalization region, effectively nor-
malizing the prediction to the observation in the entire MJ2 range.
The boundaries of the normalization region are determined so that
contamination from signal models not yet excluded by the previ-
ous search [21] is negligible compared to the statistical uncertainty
of the background.

2 When signal events are present in the kinematic sample, a correction is needed
in order to remove the bias in the background estimate, and this correction is dis-
cussed later in this letter.

The selected events are divided into control, uncertainty deter-
mination, validation and signal regions, as summarized in Table 1.
Control regions (CRs) are defined with events that have exactly
three large-R jets with pr > 200 GeV. Jets in the control regions
are divided into 4 |n| bins uniformly defined between 0 and 2,
15 pr bins uniformly defined in log;¢(pr), and 2 b-matching sta-
tus bins (b-matched or not). A total of 120 jet mass templates
are created. Fig. 3 shows example jet mass template distributions
in two pr-|n| bins for both the data and PyTHIA8 multijet sam-
ples. The shapes of the jet mass templates are different between
b-matched jets and non-matched jets. A |Anz| > 1.4 requirement
is included for control region events where at least one b-matched
jet is present, in order to suppress potential signal contamination.

Five overlapping signal regions (SRs) are considered in this
analysis. All signal regions are required to have |Aniz| < 1.4.
The first set of signal regions does not require the presence of
a b-tagged jet and is used to test more generic BSM signals of
pair-produced heavy particles cascade-decaying into many quarks
or gluons. Two selections on the large-R jet multiplicity are used,
Njet > 4 (4jSR) and Njer > 5 (5jSR). In order to further improve
the sensitivity to the benchmark signal models of the RPV UDD
scenario, subsets of events in the 4jSR and 5jSR are selected by re-
quiring the presence of at least one b-tagged small-R jet. To ensure
that the Hry trigger is fully efficient for the offline data analysis,
a leading-jet pt > 400 GeV requirement is added for signal regions
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Fig. 3. Example jet mass template distributions for b-matched jets and non-matched jets in data (solid and open circles) and PyTHIA8 multijet (solid and dashed lines)
samples. (a) shows the jet mass template distributions in the bin of 600 GeV < pr < 644 GeV, 0.5 < || < 1.0, while (b) shows the jet mass template distributions in the bin

of 733 GeV < pr <811 GeV, 1.5 < [5] < 2.0.

with four or more large-R jets. Finally, a requirement on the MJ):
variable is placed in each signal region, with the requirement op-
timized for the direct decay and cascade decay models. For each
signal region, a validation region is defined by reversing the |An;z|
requirement. These validation regions are used to cross-check the
background estimation, thus validating the background prediction
in the signal region.

Uncertainties in the jet mass prediction include a statistical
component and a systematic component. The statistical uncertainty
arises from the finite sample size in the control region, and the
jet mass randomization, which can be quantified through pseudo-
experiments. Systematic uncertainties of the jet mass prediction
can be attributed to a number of factors; for example, jet mass
templates are assumed to only depend on a given number of ob-
servables (jet pr, ||, and b-matching information, in this analysis),
jet mass templates are created for each of these observables with
a given bin width, and jets in the same event are assumed to be
uncorrelated with each other, such that their masses can be mod-
elled independently. These systematic uncertainties are estimated
in uncertainty determination regions (UDRs) in data, where the
predicted and observed jet masses are compared. The difference
between them provides an estimate of the size of the systematic
uncertainty.

The UDRs represent extreme scenarios in terms of jet origin
and multiplicity of an event, and the uncertainties estimated from
these regions are found to be large enough to cover the poten-
tial difference between the true and estimated background in the
signal regions. This strategy has been validated with the simulated
background samples. One UDR (UDR1) requires exactly two large-R
jets with the leading large-R jet pt greater than 400 GeV. Events
in this UDR contain high-pt jets and can have an imbalance in
pt between the leading-jet and the subleading-jet. The other UDR
(UDR2) is defined by requiring exactly four large-R jets with the
leading large-R jet pt less than 400 GeV. Events in this UDR con-
tain fewer energetic jets, which tend to be more balanced in pr. In
each UDR, selected jets are binned in the same way as they are in
the control regions.

In order to quantify the small difference between the predicted
and observed jet mass distributions, the jet mass response, defined
as the ratio of the average observed jet mass to the average pre-
dicted jet mass, is studied with both UDRs. It is found that the
difference between jet mass distributions in the same pr and ||
bin between regions with different selections can be largely cap-

tured by a scale factor between the distributions, and therefore the
jet mass response reflects the size of this scale factor. Studies us-
ing Monte Carlo multijet events have shown that scaling up and
down the predicted jet mass by the jet mass response in the UDRs
leads to variations in the predicted MJE distributions that cover the

difference between the observed and predicted MJ2 distributions.

Fig. 4 shows the jet mass responses in the UDRs as a function
of jet pr and |n|. An under-prediction of jet mass is seen in the
UDR1, varying between a few percent and 14%. In the pr range of
200 GeV-400 GeV, the UDR2 indicates an over-prediction, at the
4-5% level. Overall, the behaviour of the jet mass response is quite
similar between different pseudorapidity regions. It was checked
and found that the difference between predicted and observed
jet masses in the UDRs are not due to the trigger inefficiency in
the UDRs and CR, based on studies performed with Monte Carlo
multijet samples and data. In these studies, additional Ht require-
ments are introduced in the analysis so that the UDRs and CR
are fully efficient with respect to the HLT_ht1000 trigger, and the
differences in the UDRs remain qualitatively the same. The differ-
ences in the jet mass response are used as an estimate for the pr-
and |n|-dependent systematic uncertainty of the jet mass predic-
tion. Since the signs of the differences from the UDR1 and UDR2
are opposite in the pr range of 200 GeV-400 GeV, the larger of
the differences from these UDRs is used as the uncertainty and
symmetrized. The uncertainty of the jet mass prediction is uncor-
related between the pt range of 200 GeV-400 GeV (“low-pr”) and
the pr range of > 400 GeV (“high-pt”). For jets within the low-pr
or high-pr range, the jet mass prediction uncertainties are corre-
lated between different pt and |n| bins.

Possible bias on the background estimate due to the presence
of tt events, where the jet origin is different from that in multi-
jet events, is not explicitly addressed by the background estima-
tion strategy. However, a study using Monte Carlo multijet and
tt samples finds that the background prediction is insensitive to
the presence of tt events, because of its relatively small cross
section.

The jet mass template method is then applied to data in the
validation and signal regions. Uncertainties in the jet mass predic-
tion derived from the UDRs are propagated to the predicted MJE
distribution. The background estimation performance is first exam-
ined in the validation regions. Fig. 5 shows the observed and pre-
dicted MJ): distributions in the validation regions, where in general
they are seen to agree well. The difference between the observed
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Fig. 4. The average observed and predicted jet masses (top panes) and the jet mass responses (bottom pane) in UDR1 and UDR2 are shown for four different pseudorapidity

regions.

and predicted MJE distributions is consistent with variations of the
jet mass prediction due to correlated systematic uncertainties and
is covered by the total uncertainty. Fig. 6 shows the predicted and
observed MJZ distributions in the signal regions.

The statistical interpretation is based on the event yield in a
signal region beyond an MJZ threshold, which maximizes the sen-
sitivity to both the gluino direct decay and cascade decay models.
For the 5jSR and 5jSRb_1 signal regions, the threshold used is
0.8 TeV, except that for direct decay models with mz < 1080 GeV,
5jSRb_2 with MJE > 0.6 TeV is found to be optimal. For the 4jSR

and 4jSRb signal regions, the MJ2 threshold is 1.0 TeV. The model-
independent interpretation is performed in all the signal regions
with the MJE requirements mentioned just above.

6. Signal systematic uncertainties

The main systematic uncertainties for the predicted signal yield
include the large-R jet mass scale and resolution uncertainties,
b-tagging uncertainty, Monte Carlo statistical uncertainty, and lu-
minosity uncertainty. The large-R jet mass scale and resolution
uncertainties are estimated by comparing the performance of
calorimeter-based jets with the performance of track-based jets in
data and Monte Carlo simulation samples [67]. The uncertainty
in the predicted signal yields due to the large-R jet mass scale
and resolution uncertainty is as large as 24% for signal models
with mz = 1000 GeV, and decreases to 8% for signal models with
mg = 1800 GeV. The Monte Carlo samples reproduce the b-tagging
efficiency measured in data with limited accuracy. Dedicated cor-
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Fig. 5. Predicted (solid line) and observed (dots) MJZ distributions for validation regions (a) 4jVR, (b) 4jVRb, (c) 5jVR, and (d) 5jVRb. The shaded area surrounding the

predicted M> distribution represents the uncertainty of the background estimation. The predicted M> distribution is normalized to data in 0.2 TeV < M < 0.6 TeV, where
the expected contaminations from signals of gluino direct decay or cascade decay models not excluded by the Run-1 analysis [21] are negligible compared to the background
statistical uncertainty. The expected contributions from two RPV signal samples are also shown.

rection factors, derived from a comparison between tf events in
data and Monte Carlo simulation, are applied to the signal sam-
ples [62]. The uncertainty of the correction factors is propagated
to a systematic uncertainty in the yields in the signal region. This
uncertainty is between 1% and 5% for all signal models considered
in this analysis. Due to low acceptance, the statistical uncertainty
of the signal yield predicted by the Monte Carlo samples can be
as large as 8% for signal models with mg <1000 GeV. The Monte
Carlo statistical uncertainty for signal models with large mg is neg-
ligible. Uncertainties in the signal acceptance due to the choices
of QCD scales and PDF, and the modelling of initial-state radia-

tion (ISR) are studied. The uncertainty due to the PDF and QCD
scales is found to be as large as 25% for mgz = 1000 GeV, 10% for
mg = 1700 GeV, and a few percent for mz = 2100 GeV. The rel-
atlvely large uncertainty at mgz = 1000 GeV is partly because the
signal region MJZ requirement is placed at the tail of the MJE dis-
tribution, which is more sensitive to scale variations.

Since signal events and background events have different kine-
matic distributions and jet flavour compositions, the presence of
signal events in data can bias the predicted background yield in
the signal region. The presence of signal events can lead to a pos-
itive contribution to the predicted background yield, which can be
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uncertainty. The expected contributions from two RPV signal samples are also shown.

determined by studying signal Monte Carlo samples, and there-
fore is subtracted from the background prediction for the model-
dependent interpretation. This potential bias is not considered for
the model-independent interpretation. As the contribution is in-
duced by the signal events, the correction also scales with the
cross section of the signal events, which is equivalent to a correc-
tion of the predicted signal yield. The size of the correction relative
to the predicted signal can be as large as 50% for cascade decay
models with myo = 50 GeV, and decreases to a few percent for
models with a small mass difference between the gluino and neu-
tralino.

7. Results

Table 2 summarizes the predicted and observed event yields
in signal regions with different MJ): requirements, which are used
to construct the likelihood function for the statistical interpreta-
tion. The number of events in each signal region’s corresponding
normalization region is also shown. Modest, but not statistically
significant, excesses are seen in signal regions requiring five or
more jets and the 4jSR signal region.

Signal and background systematic uncertainties are incorpo-
rated as nuisance parameters. A frequentist procedure based on
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Table 2
Predicted and observed yields in various search regions for a number of different MJ): requirements. The number of events in the normalization region, Nyg, is also shown.
Region NnR > MJ): [TeV] Expected ( + (stat.) + (high-pT) + (low-pr)) Observed
4jSRb 64081 1.0 23.6 + 4.6 + 6.1 + 1.7 15
4jSR 224862 1.0 8.2 + 7.6 + 15.8 + 4.4 82
5jSRb_1 2177 0.8 7.0 + 24 + 1.9 + 0.7 10
5jSRb_2 2177 0.6 44.0 + 7.5 + 11.2 + 7.2 61
5jSR 6592 0.8 18.0 + 3.7 + 4.6 + 15 31
Table 3
Expected and observed limits on the signal production cross section for the signal regions. The observed po-value is also
shown.
Signal region MJ): requirement Expected limit [fb] Observed limit [fb] po-value
4jSRb > 1.0 Tev 0.53+9% 037 05
; 0.50
4jSR >1.0 TeV 1127539 150 024
5jSRb_1 > 0.8 TeV 0.2413:8 034 026
5jSRb_2 > 0.6 TeV 0.861949 132 0.20
5jSR > 0.8 TeV 0.447518 0.84 0.062
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Fig. 7. (a) Expected and observed cross-section limits for the gluino direct decay model. The discontinuities in the observed limit and 10 and 420 bands are caused by
the use of two different signal regions (5jSRb_2 for mz < 1080 GeV, 5jSRb_1 for m; > 1080 GeV). The long-dashed line and the grey band surrounding it are the expected
gluino pair production cross section and the associated theoretical uncertainty. (b) Expected and observed exclusion contours in the (mg, m )?10) plane for the gluino cascade

decay model. The dashed black line shows the expected limit at 95% CL, with the light (yellow) band indicating the +1o0 variations due to experimental uncertainties.
Observed limits are indicated by red curves, where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by
the renormalization and factorization scale and PDF uncertainties. The observed limit from the Run-1 analysis [21] is also shown as a dotted-dashed line.

the profile likelihood ratio [68] is used to evaluate the pg-values
of these excesses, and the results are shown in Table 3. Since no
significant excess is seen in any of the signal regions, a model-
independent limit on oyjs, defined as the upper limit on the num-
ber of signal events of a generic BSM model in the signal region
divided by the integrated luminosity, is calculated using a mod-
ified frequentist procedure (the CLg method [69]). The observed
and expected limits are shown in Table 3.

Limits are set on the production of gluinos in UDD scenarios
of RPV SUSY and are shown in Fig. 7. Typically, for RPV signals
from the gluino cascade decay model with mg = 1800 GeV and
250 GeV < m)?? < 1650 GeV, the detector efficiency, defined as
the ratio of the selection efficiency at detector level to the event-
generator-level acceptance, is between 1.2 and 1.4, for 5jSRb with
MJE > 0.8 TeV. The detector efficiency at myo = 1050 GeV, varies
between 1.5 for mz = 1200 GeV to 1.2 for mz = 2000 GeV. The
ratio is beyond 1 because the migration of events due to effects
of resolution and efficiency at the reconstruction level. The search
excludes a gluino with mass 1000-1875 GeV at the 95% confi-

dence level (CL) in the gluino cascade decay model, with the most
stringent limit achieved at m 70 21000 GeV and the weakest limit

achieved at mso 2 50 GeV. The exclusion is weaker for signal

1
points with a small Mo Or a small gap between myo and mg, be-

cause these signal points have smaller jet multiplicities and hence
smaller efficiencies. For the gluino direct decay model, the search
does not exclude any specific range of gluino mass due to an
upward fluctuation in the signal regions, nonetheless, the search
yields a 95% CL upper limit on the production cross section be-
tween 0.011 fb~! and 0.80 fb—!, in the range of 900 GeV < myo <
1800 GeV.

8. Conclusion

A search for R-parity-violating SUSY signals in events with mul-
tiple jets is conducted with 36.1 fb~! of proton-proton collision
data at /s =13 TeV collected by the ATLAS detector at the LHC.
Distributions of events as a function of total jet mass of the four
leading jets in pr are examined. No significant excess is seen in
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any signal region. Limits are set on the production of gluinos in the
gluino direct decay and cascade decay models in the UDD scenar-
ios of RPV SUSY. In the gluino cascade decay model, gluinos with
masses between 1000 GeV and 1875 GeV are excluded at 95% CL,
depending on the neutralino mass; in the gluino direct decay
model, signals with a cross section of 0.011-0.8 fb are excluded at
95% CL, depending on the gluino mass. Model-independent limits
are also set on the signal production cross section times branching
ratio in five overlapping signal regions. These significantly extend
the limits from the 8 TeV LHC analyses.
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