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Results of a search for gluino pair production with subsequent R-parity-violating decays to quarks are 
presented. This search uses 36.1 fb−1 of data collected by the ATLAS detector in proton–proton collisions 
with a centre-of-mass energy of 

√
s = 13 TeV at the LHC. The analysis is performed using requirements 

on the number of jets and the number of jets tagged as containing a b-hadron as well as a topological 
observable formed by the scalar sum of masses of large-radius jets in the event. No significant excess 
above the expected Standard Model background is observed. Limits are set on the production of gluinos 
in models with the R-parity-violating decays of either the gluino itself (direct decay) or the neutralino 
produced in the R-parity-conserving gluino decay (cascade decay). In the gluino cascade decay model, 
gluino masses below 1850 GeV are excluded for 1000 GeV neutralino mass. For the gluino direct decay 
model, the 95% confidence level upper limit on the cross section times branching ratio varies between 
0.80 fb at mg̃ = 900 GeV and 0.011 fb at mg̃ = 1800 GeV.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Supersymmetry (SUSY) [1–6] is a theoretical extension of the 
Standard Model (SM) which fundamentally relates fermions and 
bosons. It is an alluring theoretical possibility given its poten-
tial to solve the hierarchy problem [7–10]. This Letter presents a 
search for supersymmetric gluino pair production with subsequent 
R-parity-violating (RPV) [11–16] decays into quarks in events with 
many jets using 36.1 fb−1 of p–p collision data at 

√
s = 13 TeV 

collected by the ATLAS detector in 2015 and 2016. In the minimal 
supersymmetric extension of the Standard Model, the RPV compo-

nent of a generic superpotential can be written as [15,17]:

WRPV = 1

2
λi jk Li L j Ēk + λ′

i jk Li Q j D̄k + 1

2
λ′′
i jkŪ i D̄ j D̄k + κi Li H2, (1)

where i, j, k = 1, 2, 3 are generation indices. The generation indices 
are omitted in the discussions that follow if the statement being 
made is not specific to any generation. The first three terms in 
Eq. (1) are often referred to as the trilinear couplings, whereas the 
last term is referred to as bilinear. The Li and Q i represent the lep-
ton and quark SU (2)L doublet superfields, whereas H2 represents 
the Higgs superfield. The Ē j , D̄ j , and Ū j are the charged lepton, 
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down-type quark, and up-type quark SU (2)L singlet superfields, 
respectively. The couplings for each term are given by λ, λ′, and λ′′ , 
while κ is a mass parameter. In the benchmark models considered 
in this search, the couplings of λ and λ′ are set to zero and only 
the baryon-number-violating coupling λ′′

i jk
is non-zero. Because of 

the structure of Eq. (1), scenarios in which only λ′′
i jk

�= 0 are of-
ten referred to as UDD scenarios. The diagrams shown in Fig. 1

represent the benchmark processes used in the optimization and 
design of the search presented in this Letter. In the gluino direct 
decay model (Fig. 1(a)), the gluino directly decays into three quarks 
via the RPV UDD coupling λ′′ , leading to six quarks at tree level 
in the final state of gluino pair production. In the gluino cascade 
decay model (Fig. 1(b)), the gluino decays into two quarks and a 
neutralino, which, in turn, decays into three quarks via the RPV 
UDD coupling λ′′ , resulting in ten quarks at tree level in the final 
state of gluino pair production. Events produced in these processes 
typically have a high multiplicity of reconstructed jets. In signal 
models considered in this search, the production of the gluino pair 
is assumed to be independent of the value of λ′′ . Decay branching 
ratios of all possible λ′′ flavour combinations given by the struc-
ture of Eq. (1) are assumed to be equal, and decays of the gluino 
and neutralino are implemented as prompt decays via modifying 
the decay widths of gluinos and neutralinos. In this configuration, 
a significant portion of signal events contain at least one bottom 
or top quark. Other models of the RPV UDD scenario, such as the 
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Fig. 1. Diagrams for the benchmark processes considered for this analysis. The black 
lines represent Standard Model particles, the red lines represent SUSY partners, the 
grey shaded circles represent effective vertices that include off-shell propagators 
(e.g. heavy squarks coupling to a χ̃0

1 neutralino and a quark), and the blue solid 
circles represent effective RPV vertices allowed by the baryon-number-violating λ′′
couplings with off-shell propagators (e.g. heavy squarks coupling to two quarks). 
Quark and antiquark are not distinguished in the diagrams. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

Minimal Flavour Violation model [18,19], predict that the gluino 
decays preferentially into final states with third-generation quarks. 
These theoretical arguments motivate the introduction of b-tagging 
requirements into the search.

This analysis is an update to previous ATLAS searches for sig-
nals arising from RPV UDD scenarios [20,21] performed with data 
taken at 

√
s = 8 TeV. The search strategy closely follows the one 

implemented in Ref. [21], which excludes a gluino with mass up to 
917 GeV in the gluino direct decay model, and a gluino with mass 
up to 1000 GeV for a neutralino mass of 500 GeV in the gluino cas-
cade decay model. Two other publications [22,23] from the ATLAS 
Collaboration reported on the searches for signals from a differ-
ent gluino cascade decay model where the quarks/antiquarks from 
the gluino decay are top quark–anti-quark pairs and the quarks 
from the neutralino decays are u, d or s quarks. These searches 
probed events with at least one electron or muon. The most strin-
gent lower limit on the gluino mass, from Ref. [22], is 2100 GeV 
for a neutralino mass of 1000 GeV. In a recent publication [24], 
the CMS Collaboration set a lower limit of 1610 GeV on the gluino 
mass in an RPV UDD scenario where the gluino exclusively decays 
into a final state of a top quark, a bottom quark and a strange 
quark, using 

√
s = 13 TeV pp collision data.

2. ATLAS detector

The ATLAS detector [25] covers almost the whole solid an-
gle around the collision point with layers of tracking detectors, 
calorimeters and muon chambers. The inner detector, immersed 
in a magnetic field provided by a solenoid, has full coverage in 
φ and covers the pseudorapidity range |η| < 2.5.1 It consists of 
a silicon pixel detector, a silicon microstrip detector and a transi-
tion radiation straw-tube tracker. The innermost pixel layer, the 
insertable B-layer, was added between Run-1 and Run-2 of the 
LHC, at a radius of 33 mm around a new, thinner, beam pipe [26]. 
In the pseudorapidity region |η| < 3.2, high granularity lead/liquid-
argon (LAr) electromagnetic (EM) sampling calorimeters are used. 
A steel/scintillator tile calorimeter provides hadronic calorimetry 
coverage over |η| < 1.7. The end-cap and forward regions, span-
ning 1.5 < |η| < 4.9, are instrumented with LAr calorimetry for 
both the EM and hadronic measurements. The muon spectrometer 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point in the centre of the detector and the z-axis along the beam di-
rection. The x-axis points toward the centre of the LHC ring, and the y-axis points 
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the 
azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of 
the polar angle θ by η ≡ − ln[tan(θ/2)].

surrounds these calorimeters, and comprises a system of precision 
tracking chambers and fast-response detectors for triggering, with 
three large toroidal magnets, each consisting of eight coils, provid-
ing the magnetic field for the muon detectors. A two-level trigger 
system is used to select events [27]. The first-level trigger is imple-

mented in hardware and uses a subset of the detector information. 
This is followed by the software-based high-level trigger, reducing 
the event rate to about 1 kHz.

3. Simulation samples

Signal samples were produced covering a wide range of gluino 
and neutralino masses. In the gluino direct decay model, the 
gluino mass (mg̃ ) was varied from 900 GeV to 1800 GeV. In the 
case of the cascade decays, for each gluino mass (1000 GeV to 
2100 GeV), separate samples were generated with multiple neu-
tralino masses (mχ̃0

1
) ranging from 50 GeV to 1.65 TeV. In each 

case, mχ̃0
1

< mg̃ . In the gluino cascade decay model, the two 
quarks produced from the gluino decay were restricted to be 
first or second generation quarks. All three generations of quarks 
were allowed to be in the final state of the lightest supersym-

metric particle decay. Signal samples were generated at leading-
order (LO) accuracy with up to two additional partons using the 
MadGraph5_aMC@NLO v2.3.3 event generator [28] interfaced with

PYTHIA 8.186 [29] for the parton shower, fragmentation and un-
derlying event. The A14 set of tuned parameters [30] was used 
together with the NNPDF2.3LO parton distribution function (PDF) 
set [31]. The EvtGen v1.2.0 program was used to describe the prop-
erties of the b- and c-hadron decays in the signal samples. The 
signal production cross sections were calculated at next-to-leading 
order (NLO) in the strong coupling constant, adding the resumma-

tion of soft gluon emission at next-to-leading-logarithm accuracy 
(NLO + NLL) [32–36]. The nominal cross section and its uncer-
tainty were taken from Ref. [37]. Cross sections were evaluated 
assuming masses of 450 TeV for the light-flavour squarks in the 
case of gluino pair production. In the simulation, the total widths 
of gluinos and neutralinos were set to be 1 GeV, effectively making 
their decays prompt.

While a data-driven method was used to estimate the back-
ground, simulated events were used to establish, test and vali-
date the methodology of the analysis. Multijet events constitute 
the dominant background in the search region, with small con-
tributions from top-quark pair production (tt̄). Contributions from 
γ + jets, W + jets, Z + jets, single-top-quark, and diboson 
background processes are found to be negligible from studies per-
formed with simulated events. The multijet background was stud-
ied with three different leading order Monte Carlo samples. The
PYTHIA 8.186 event generator was used together with the A14 
tune and the NNPDF2.3LO parton distribution functions, while the 
Herwig++ 2.7.1 event generator was used together with the UEEE5 
tune [38] and CTEQ6L1 PDF sets [39]. The Sherpa event genera-
tor [40] was also used to generate multijet events for the study of 
background estimation. Matrix elements were calculated with up 
to three partons at LO, were showered with Sherpa as well, and 
were merged using the ME+PS@LO prescription [41]. The CT10 PDF 
set [42] was used in conjunction with dedicated parton shower 
tuning developed by the Sherpa authors. For the generation of 
fully hadronic decays of tt̄ events, the Powheg-Box v2 event gener-
ator [43] was used with the CT10 PDF set and was interfaced with

PYTHIA 6.428 [44]. The EvtGen v1.2.0 program [45] was also used 
to describe the properties of the b- and c-hadron decays for the 
background samples except those generated with Sherpa [46].

The effect of additional p–p interactions per bunch crossing 
(“pile-up”) as a function of the instantaneous luminosity was taken 
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into account by overlaying simulated minimum-bias events accord-
ing to the observed distribution of the number of pile-up interac-
tions in data. All Monte Carlo simulated background samples were 
passed through a full Geant4 simulation [47] of the ATLAS detec-
tor [48]. The signal samples were passed through a fast detector 
simulation [49] based on a parameterization of the performance 
of the ATLAS electromagnetic and hadronic calorimeters and on
Geant4 elsewhere. The compatibility of the signal selection effi-

ciency between the fast simulation sample and the full simulation 
sample was validated at a number of signal points in the gluino 
direct decay model and gluino cascade decay model considered in 
this Letter.

4. Event selection

The data were recorded in 2015 and 2016, with the LHC op-
erating at a centre-of-mass energy of 

√
s = 13 TeV. All detector 

elements are required to be operational. The integrated luminos-

ity is measured to be 3.2 fb−1 and 32.9 fb−1, for the 2015 and 
2016 data sets, respectively. The uncertainty in the combined 2015 
and 2016 integrated luminosity is 2.1%. It is derived, following a 
methodology similar to that detailed in Ref. [50], from a calibra-
tion of the luminosity scale using x–y beam-separation scans.

The events used in this search are selected using an HT trig-

ger, seeded from a first-level jet trigger with an ET threshold of 
100 GeV, which requires the scalar sum of jet transverse energies 
at the high level trigger to be greater than 1.0 TeV. This require-
ment is found to be fully efficient for signal regions considered in 
this Letter. Events are required to have a primary vertex with at 
least two associated tracks with transverse momentum (pT) above 
0.4 GeV. The primary vertex assigned to the hard-scattering colli-
sion is the one with the highest 

∑
track p

2
T, where the sum of track 

p2
T is taken over all tracks associated with that vertex. To reject 

events with detector noise or non-collision backgrounds, events are 
removed if they fail basic quality criteria [51,52].

Jets are reconstructed from three-dimensional topological clus-
ters of energy deposits in the calorimeter calibrated at the EM 
scale [53], using the anti-kt algorithm [54,55] with two different 
radius parameters of R = 1.0 and R = 0.4, hereafter referred to 
as large-R jets and small-R jets, respectively. The four-momenta 
of the jets are calculated as the sum of the four-momenta of the 
clusters, which are assumed to be massless. For the large-R jets, 
the original constituents are calibrated using the local cell weight-

ing algorithm [53,56] prior to jet-finding and reclustered using the 
longitudinally-invariant kt algorithm [57] with a radius parame-

ter of Rsub-jet = 0.2, to form a collection of sub-jets. A sub-jet is 
discarded if it carries less than 5% of the large-R jet pT of the orig-
inal jet. The constituents in the remaining sub-jets are then used 
to recalculate the large-R jet four-momenta, and the jet energy 
and mass are further calibrated to particle level using correction 
factors derived from simulation [58]. The resulting “trimmed” [58,

59] large-R jets are required to have pT > 200 GeV and |η| < 2.0. 
The analysis does not place any requirement on the vertex asso-
ciation of tracks within a jet nor on the timing of the calorimeter 
cells within a jet, which preserves the sensitivity of this analysis to 
models containing non-prompt jets. The small-R jets are corrected 
for pile-up contributions and are then calibrated to the particle 
level using simulated events followed by a correction based on in 
situ measurements [53,60,61].

The identification of jets containing b-hadrons is based on the 
small-R jets with pT > 50 GeV and |η| < 2.5 and a multivari-

ate tagging algorithm [62,63]. This algorithm is applied to a set 
of tracks with loose impact parameter constraints in a region of 
interest around each jet axis to enable the reconstruction of the 
b-hadron decay vertex. The b-tagging requirements result in an 

efficiency of 70% for jets containing b-hadrons, as determined in 
a sample of simulated tt̄ events [63]. A small-R jet passing the 
b-tagging requirement is referred to as a b-tagged jet.

The analysis of data is primarily based on observables built 
from large-R jets. The small-R jets are used to classify events and 
for categorization of the large-R jets based on the b-tagging in-
formation. Specifically, events selected in the analysis are divided 
into a b-tagging sample where at least one b-tagged jet is present 
in the event, and a b-veto sample where no b-tagged jet is 
present in the event. Events selected without taking into account 
any b-tagging requirement are referred to as inclusive events. 
Large-R jets are classified as either those that are matched to a 
b-tagged jet within 
R = 1.0 (b-matched jets), or those that are 
not matched to a b-tagged jet.

5. Analysis strategy

The analysis uses a kinematic observable, the total jet mass, 
M�

J [64–66], as the primary discriminating variable to separate sig-
nal and background. The observable M�

J is defined as the sum of 
the masses of the four leading large-R jets.

M�
J =

∑

pT>200 GeV
|η|≤2.0
j=1−4

m
j
jet

(2)

This observable provides significant sensitivity for gluinos with 
very high mass. Fig. 2(a) presents examples of the discrimination 
that the M�

J observable provides between the background (rep-
resented here by Sherpa, PYTHIA 8.186 and Herwig++ multijet 
Monte Carlo simulation) and several signal samples, as well as the 
comparison of the data to the simulated multijet background.

Another discriminating variable that is independent of M�
J is 

necessary in order to define suitable control and validation re-
gions where the background estimation can be studied and tested. 
The signal is characterized by a higher rate of central-jet events 
as compared to the primary multijet background. This is expected 
due to the difference in the production modes: predominantly 
s-channel for the signal, whereas the background can also be pro-
duced through u- and t-channel processes. Fig. 2(b) shows the dis-
tribution of the pseudorapidity difference between the two leading 
large-R jets, |
η12| for several signal and background Monte Carlo 
samples, as well as data. A high-|
η12| requirement can be ap-
plied to establish a control region or a validation region where the 
potential signal contamination needs to be suppressed.

The use of M�
J in this analysis provides an opportunity to em-

ploy the fully data-driven jet mass template method to estimate the 
background contribution in signal regions. The jet mass template 
method is discussed in Ref. [66], and its first experimental im-

plementation is described in Ref. [21]. In this method, single-jet 
mass templates are extracted from signal-depleted control regions. 
These jet mass templates are created in bins that are defined by 
a number of observables, which include jet pT and |η|, and the 
b-matching status. They provide a probability density function that 
describes the relative probability for a jet with a given pT and η to 
have a certain mass. This method assumes that jet mass templates 
only depend on these observables and are the same in the control 
regions and signal regions. A sample where the background M�

J

distribution needs to be estimated, such as a validation region or a 
signal region, is referred to as the kinematic sample. The only in-
formation used is the jet pT and η, as well as its b-matching status, 
which are inputs to the templates. For each jet in the kinematic 
sample, its corresponding jet mass template is used to generate 
a random jet mass. An M�

J distribution can be constructed from 
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Fig. 2. Comparison between signal samples and background control samples for (a) the sum of the masses of the four leading large-R jets M�
J and (b) the difference in 

pseudorapidity between the two leading large-R jets |
η12|. Two typical signal points for gluino cascade decay models are shown, as well as the distributions obtained from 
the data. All distributions are normalized to the same area. The selection requires four or more jets, is inclusive in |
η12| and has no b-tagging requirements.

Table 1
Summary of the event-level and jet-level requirements used to define various regions. Requirements on large-R jet multiplicity (Njet), 
whether or not a b-tagged jet is present (b-tag), and the pseudorapidity gap between the two leading-large-R-jets (|
η12|) are applied 
to define control, validation and signal regions. In addition, each signal region includes an additional M�

J requirement for statistical inter-
pretation. Control regions are defined separately for non-matched jets and b-matched jets. For the uncertainty determination regions, the 
Njet and leading-jet pT (pT,1) requirements are used.

Njet (pT > 200 GeV) b-tag pT,1 |
η12| M�
J

CR 3jCR = 3 – – – –

UDR UDR1 = 2 – > 400 GeV – –

UDR2 = 4 – < 400 GeV – –

VR 4jVR ≥ 4 – > 400 GeV > 1.4 –

5jVR ≥ 5 – – > 1.4 –

4jVRb ≥ 4 ≥ 1 > 400 GeV > 1.4 –

5jVRb ≥ 5 ≥ 1 – > 1.4 –

SR 4jSR ≥ 4 – > 400 GeV < 1.4 > 1.0 TeV

5jSR ≥ 5 – – < 1.4 > 0.8 TeV

4jSRb ≥ 4 ≥ 1 > 400 GeV < 1.4 > 1.0 TeV

5jSRb_1 ≥ 5 ≥ 1 – < 1.4 > 0.8 TeV

5jSRb_2 ≥ 5 ≥ 1 – < 1.4 > 0.6 TeV

the randomized jet masses of the kinematic sample. If jet mass 
templates are created from a control sample of background events, 
then the M�

J distribution constructed from randomized jet masses 
should reproduce the shape of the M�

J distribution for the back-
ground.2

This jet mass prediction procedure is similar to the one em-

ployed in Ref. [21] with two minor differences. First, the statistical 
fluctuations in the jet mass templates are propagated to the back-
ground yield prediction in the signal region, and therefore consid-
ered as a systematic uncertainty of the jet mass template method, 
whereas the Run-1 analysis made assumptions about the form of 
the template shape by smoothing using a Gaussian kernel tech-
nique. Second, the predicted M�

J distribution is normalized to the 
observation in 0.2 TeV < M�

J < 0.6 TeV, whereas the Run-1 anal-
ysis did not introduce any normalization region, effectively nor-
malizing the prediction to the observation in the entire M�

J range. 
The boundaries of the normalization region are determined so that 
contamination from signal models not yet excluded by the previ-
ous search [21] is negligible compared to the statistical uncertainty 
of the background.

2 When signal events are present in the kinematic sample, a correction is needed 
in order to remove the bias in the background estimate, and this correction is dis-
cussed later in this letter.

The selected events are divided into control, uncertainty deter-
mination, validation and signal regions, as summarized in Table 1. 
Control regions (CRs) are defined with events that have exactly 
three large-R jets with pT > 200 GeV. Jets in the control regions 
are divided into 4 |η| bins uniformly defined between 0 and 2, 
15 pT bins uniformly defined in log10(pT), and 2 b-matching sta-
tus bins (b-matched or not). A total of 120 jet mass templates 
are created. Fig. 3 shows example jet mass template distributions 
in two pT–|η| bins for both the data and Pythia8 multijet sam-

ples. The shapes of the jet mass templates are different between 
b-matched jets and non-matched jets. A |
η12| > 1.4 requirement 
is included for control region events where at least one b-matched 
jet is present, in order to suppress potential signal contamination.

Five overlapping signal regions (SRs) are considered in this 
analysis. All signal regions are required to have |
η12| < 1.4. 
The first set of signal regions does not require the presence of 
a b-tagged jet and is used to test more generic BSM signals of 
pair-produced heavy particles cascade-decaying into many quarks 
or gluons. Two selections on the large-R jet multiplicity are used, 
Njet ≥ 4 (4jSR) and Njet ≥ 5 (5jSR). In order to further improve 
the sensitivity to the benchmark signal models of the RPV UDD 
scenario, subsets of events in the 4jSR and 5jSR are selected by re-
quiring the presence of at least one b-tagged small-R jet. To ensure 
that the HT trigger is fully efficient for the offline data analysis, 
a leading-jet pT > 400 GeV requirement is added for signal regions 
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Fig. 3. Example jet mass template distributions for b-matched jets and non-matched jets in data (solid and open circles) and Pythia8 multijet (solid and dashed lines) 
samples. (a) shows the jet mass template distributions in the bin of 600 GeV < pT < 644 GeV, 0.5 < |η| < 1.0, while (b) shows the jet mass template distributions in the bin 
of 733 GeV < pT < 811 GeV, 1.5 < |η| < 2.0.

with four or more large-R jets. Finally, a requirement on the M�
J

variable is placed in each signal region, with the requirement op-
timized for the direct decay and cascade decay models. For each 
signal region, a validation region is defined by reversing the |
η12|
requirement. These validation regions are used to cross-check the 
background estimation, thus validating the background prediction 
in the signal region.

Uncertainties in the jet mass prediction include a statistical 
component and a systematic component. The statistical uncertainty 
arises from the finite sample size in the control region, and the 
jet mass randomization, which can be quantified through pseudo-
experiments. Systematic uncertainties of the jet mass prediction 
can be attributed to a number of factors; for example, jet mass 
templates are assumed to only depend on a given number of ob-
servables (jet pT, |η|, and b-matching information, in this analysis), 
jet mass templates are created for each of these observables with 
a given bin width, and jets in the same event are assumed to be 
uncorrelated with each other, such that their masses can be mod-

elled independently. These systematic uncertainties are estimated 
in uncertainty determination regions (UDRs) in data, where the 
predicted and observed jet masses are compared. The difference 
between them provides an estimate of the size of the systematic 
uncertainty.

The UDRs represent extreme scenarios in terms of jet origin 
and multiplicity of an event, and the uncertainties estimated from 
these regions are found to be large enough to cover the poten-
tial difference between the true and estimated background in the 
signal regions. This strategy has been validated with the simulated 
background samples. One UDR (UDR1) requires exactly two large-R
jets with the leading large-R jet pT greater than 400 GeV. Events 
in this UDR contain high-pT jets and can have an imbalance in 
pT between the leading-jet and the subleading-jet. The other UDR 
(UDR2) is defined by requiring exactly four large-R jets with the 
leading large-R jet pT less than 400 GeV. Events in this UDR con-
tain fewer energetic jets, which tend to be more balanced in pT. In 
each UDR, selected jets are binned in the same way as they are in 
the control regions.

In order to quantify the small difference between the predicted 
and observed jet mass distributions, the jet mass response, defined 
as the ratio of the average observed jet mass to the average pre-
dicted jet mass, is studied with both UDRs. It is found that the 
difference between jet mass distributions in the same pT and |η|
bin between regions with different selections can be largely cap-

tured by a scale factor between the distributions, and therefore the 
jet mass response reflects the size of this scale factor. Studies us-
ing Monte Carlo multijet events have shown that scaling up and 
down the predicted jet mass by the jet mass response in the UDRs 
leads to variations in the predicted M�

J distributions that cover the 
difference between the observed and predicted M�

J distributions.

Fig. 4 shows the jet mass responses in the UDRs as a function 
of jet pT and |η|. An under-prediction of jet mass is seen in the 
UDR1, varying between a few percent and 14%. In the pT range of 
200 GeV–400 GeV, the UDR2 indicates an over-prediction, at the 
4–5% level. Overall, the behaviour of the jet mass response is quite 
similar between different pseudorapidity regions. It was checked 
and found that the difference between predicted and observed 
jet masses in the UDRs are not due to the trigger inefficiency in 
the UDRs and CR, based on studies performed with Monte Carlo 
multijet samples and data. In these studies, additional HT require-

ments are introduced in the analysis so that the UDRs and CR 
are fully efficient with respect to the HLT_ht1000 trigger, and the 
differences in the UDRs remain qualitatively the same. The differ-
ences in the jet mass response are used as an estimate for the pT-

and |η|-dependent systematic uncertainty of the jet mass predic-
tion. Since the signs of the differences from the UDR1 and UDR2 
are opposite in the pT range of 200 GeV–400 GeV, the larger of 
the differences from these UDRs is used as the uncertainty and 
symmetrized. The uncertainty of the jet mass prediction is uncor-
related between the pT range of 200 GeV–400 GeV (“low-pT”) and 
the pT range of > 400 GeV (“high-pT”). For jets within the low-pT

or high-pT range, the jet mass prediction uncertainties are corre-
lated between different pT and |η| bins.

Possible bias on the background estimate due to the presence 
of tt̄ events, where the jet origin is different from that in multi-

jet events, is not explicitly addressed by the background estima-

tion strategy. However, a study using Monte Carlo multijet and 
tt̄ samples finds that the background prediction is insensitive to 
the presence of tt̄ events, because of its relatively small cross
section.

The jet mass template method is then applied to data in the 
validation and signal regions. Uncertainties in the jet mass predic-
tion derived from the UDRs are propagated to the predicted M�

J

distribution. The background estimation performance is first exam-

ined in the validation regions. Fig. 5 shows the observed and pre-
dicted M�

J distributions in the validation regions, where in general 
they are seen to agree well. The difference between the observed 
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Fig. 4. The average observed and predicted jet masses (top panes) and the jet mass responses (bottom pane) in UDR1 and UDR2 are shown for four different pseudorapidity 
regions.

and predicted M�
J distributions is consistent with variations of the 

jet mass prediction due to correlated systematic uncertainties and 
is covered by the total uncertainty. Fig. 6 shows the predicted and 
observed M�

J distributions in the signal regions.
The statistical interpretation is based on the event yield in a 

signal region beyond an M�
J threshold, which maximizes the sen-

sitivity to both the gluino direct decay and cascade decay models. 
For the 5jSR and 5jSRb_1 signal regions, the threshold used is 
0.8 TeV, except that for direct decay models with mg̃ < 1080 GeV, 
5jSRb_2 with M�

J > 0.6 TeV is found to be optimal. For the 4jSR 
and 4jSRb signal regions, the M�

J threshold is 1.0 TeV. The model-

independent interpretation is performed in all the signal regions 
with the M�

J requirements mentioned just above.

6. Signal systematic uncertainties

The main systematic uncertainties for the predicted signal yield 
include the large-R jet mass scale and resolution uncertainties, 
b-tagging uncertainty, Monte Carlo statistical uncertainty, and lu-
minosity uncertainty. The large-R jet mass scale and resolution 
uncertainties are estimated by comparing the performance of 
calorimeter-based jets with the performance of track-based jets in 
data and Monte Carlo simulation samples [67]. The uncertainty 
in the predicted signal yields due to the large-R jet mass scale 
and resolution uncertainty is as large as 24% for signal models 
with mg̃ = 1000 GeV, and decreases to 8% for signal models with 
mg̃ = 1800 GeV. The Monte Carlo samples reproduce the b-tagging 
efficiency measured in data with limited accuracy. Dedicated cor-
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Fig. 5. Predicted (solid line) and observed (dots) M�
J distributions for validation regions (a) 4jVR, (b) 4jVRb, (c) 5jVR, and (d) 5jVRb. The shaded area surrounding the 

predicted M�
J distribution represents the uncertainty of the background estimation. The predicted M�

J distribution is normalized to data in 0.2 TeV < M�
J < 0.6 TeV, where 

the expected contaminations from signals of gluino direct decay or cascade decay models not excluded by the Run-1 analysis [21] are negligible compared to the background 
statistical uncertainty. The expected contributions from two RPV signal samples are also shown.

rection factors, derived from a comparison between tt̄ events in 
data and Monte Carlo simulation, are applied to the signal sam-

ples [62]. The uncertainty of the correction factors is propagated 
to a systematic uncertainty in the yields in the signal region. This 
uncertainty is between 1% and 5% for all signal models considered 
in this analysis. Due to low acceptance, the statistical uncertainty 
of the signal yield predicted by the Monte Carlo samples can be 
as large as 8% for signal models with mg̃ ≤ 1000 GeV. The Monte 
Carlo statistical uncertainty for signal models with large mg̃ is neg-
ligible. Uncertainties in the signal acceptance due to the choices 
of QCD scales and PDF, and the modelling of initial-state radia-

tion (ISR) are studied. The uncertainty due to the PDF and QCD 
scales is found to be as large as 25% for mg̃ = 1000 GeV, 10% for 
mg̃ = 1700 GeV, and a few percent for mg̃ = 2100 GeV. The rel-
atively large uncertainty at mg̃ = 1000 GeV is partly because the 
signal region M�

J requirement is placed at the tail of the M�
J dis-

tribution, which is more sensitive to scale variations.
Since signal events and background events have different kine-

matic distributions and jet flavour compositions, the presence of 
signal events in data can bias the predicted background yield in 
the signal region. The presence of signal events can lead to a pos-
itive contribution to the predicted background yield, which can be 
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Fig. 6. Predicted (solid line) and observed (dots) M�
J distributions for signal regions (a) 4jSR, (b) 4jSRb, (c) 5jSR, and (d) 5jSRb. The shaded area surrounding the predicted 

M�
J distribution represents the uncertainty of background estimation. The predicted M�

J distribution is normalized to data in 0.2 TeV < M�
J < 0.6 TeV, where the expected 

contaminations from signals of gluino direct decay or cascade decay models not excluded by the Run-1 analysis [21] are negligible compared to the background statistical 
uncertainty. The expected contributions from two RPV signal samples are also shown.

determined by studying signal Monte Carlo samples, and there-
fore is subtracted from the background prediction for the model-

dependent interpretation. This potential bias is not considered for 
the model-independent interpretation. As the contribution is in-
duced by the signal events, the correction also scales with the 
cross section of the signal events, which is equivalent to a correc-
tion of the predicted signal yield. The size of the correction relative 
to the predicted signal can be as large as 50% for cascade decay 
models with mχ̃0

1
= 50 GeV, and decreases to a few percent for 

models with a small mass difference between the gluino and neu-
tralino.

7. Results

Table 2 summarizes the predicted and observed event yields 
in signal regions with different M�

J requirements, which are used 
to construct the likelihood function for the statistical interpreta-
tion. The number of events in each signal region’s corresponding 
normalization region is also shown. Modest, but not statistically 
significant, excesses are seen in signal regions requiring five or 
more jets and the 4jSR signal region.

Signal and background systematic uncertainties are incorpo-
rated as nuisance parameters. A frequentist procedure based on 
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Table 2
Predicted and observed yields in various search regions for a number of different M�

J requirements. The number of events in the normalization region, NNR, is also shown.

Region NNR ≥ M�
J [TeV] Expected ( ± (stat.) ± (high-pT) ± (low-pT)) Observed

4jSRb 64081 1.0 23.6 ± 4.6 ± 6.1 ± 1.7 15

4jSR 224862 1.0 8.2 ± 7.6 ± 15.8 ± 4.4 82

5jSRb_1 2177 0.8 7.0 ± 2.4 ± 1.9 ± 0.7 10

5jSRb_2 2177 0.6 44.0 ± 7.5 ± 11.2 ± 7.2 61

5jSR 6592 0.8 18.0 ± 3.7 ± 4.6 ± 1.5 31

Table 3
Expected and observed limits on the signal production cross section for the signal regions. The observed p0-value is also 
shown.

Signal region M�
J requirement Expected limit [fb] Observed limit [fb] p0-value

4jSRb > 1.0 TeV 0.53+0.20
−0.12 0.37 0.5

4jSR > 1.0 TeV 1.12+0.50
−0.32 1.50 0.24

5jSRb_1 > 0.8 TeV 0.24+0.10
−0.06 0.34 0.26

5jSRb_2 > 0.6 TeV 0.86+0.40
−0.20 1.32 0.20

5jSR > 0.8 TeV 0.44+0.18
−0.10 0.84 0.062

Fig. 7. (a) Expected and observed cross-section limits for the gluino direct decay model. The discontinuities in the observed limit and ±1σ and ±2σ bands are caused by 
the use of two different signal regions (5jSRb_2 for mg̃ < 1080 GeV, 5jSRb_1 for mg̃ > 1080 GeV). The long-dashed line and the grey band surrounding it are the expected 
gluino pair production cross section and the associated theoretical uncertainty. (b) Expected and observed exclusion contours in the (mg̃ , mχ̃0

1
) plane for the gluino cascade 

decay model. The dashed black line shows the expected limit at 95% CL, with the light (yellow) band indicating the ±1σ variations due to experimental uncertainties. 
Observed limits are indicated by red curves, where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by 
the renormalization and factorization scale and PDF uncertainties. The observed limit from the Run-1 analysis [21] is also shown as a dotted–dashed line.

the profile likelihood ratio [68] is used to evaluate the p0-values 
of these excesses, and the results are shown in Table 3. Since no 
significant excess is seen in any of the signal regions, a model-

independent limit on σvis, defined as the upper limit on the num-

ber of signal events of a generic BSM model in the signal region 
divided by the integrated luminosity, is calculated using a mod-

ified frequentist procedure (the CLs method [69]). The observed 
and expected limits are shown in Table 3.

Limits are set on the production of gluinos in UDD scenarios 
of RPV SUSY and are shown in Fig. 7. Typically, for RPV signals 
from the gluino cascade decay model with mg̃ = 1800 GeV and 
250 GeV ≤ mχ̃0

1
< 1650 GeV, the detector efficiency, defined as 

the ratio of the selection efficiency at detector level to the event-
generator-level acceptance, is between 1.2 and 1.4, for 5jSRb with 
M�

J > 0.8 TeV. The detector efficiency at mχ̃0
1

= 1050 GeV, varies 
between 1.5 for mg̃ = 1200 GeV to 1.2 for mg̃ = 2000 GeV. The 
ratio is beyond 1 because the migration of events due to effects 
of resolution and efficiency at the reconstruction level. The search 
excludes a gluino with mass 1000–1875 GeV at the 95% confi-

dence level (CL) in the gluino cascade decay model, with the most 
stringent limit achieved at mχ̃0

1
� 1000 GeV and the weakest limit 

achieved at mχ̃0
1
� 50 GeV. The exclusion is weaker for signal 

points with a small mχ̃0
1
or a small gap between mχ̃0

1
and mg̃ , be-

cause these signal points have smaller jet multiplicities and hence 
smaller efficiencies. For the gluino direct decay model, the search 
does not exclude any specific range of gluino mass due to an 
upward fluctuation in the signal regions, nonetheless, the search 
yields a 95% CL upper limit on the production cross section be-
tween 0.011 fb−1 and 0.80 fb−1, in the range of 900 GeV < mχ̃0

1
<

1800 GeV.

8. Conclusion

A search for R-parity-violating SUSY signals in events with mul-

tiple jets is conducted with 36.1 fb−1 of proton–proton collision 
data at 

√
s = 13 TeV collected by the ATLAS detector at the LHC. 

Distributions of events as a function of total jet mass of the four 
leading jets in pT are examined. No significant excess is seen in 
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any signal region. Limits are set on the production of gluinos in the 
gluino direct decay and cascade decay models in the UDD scenar-
ios of RPV SUSY. In the gluino cascade decay model, gluinos with 
masses between 1000 GeV and 1875 GeV are excluded at 95% CL, 
depending on the neutralino mass; in the gluino direct decay 
model, signals with a cross section of 0.011–0.8 fb are excluded at 
95% CL, depending on the gluino mass. Model-independent limits 
are also set on the signal production cross section times branching 
ratio in five overlapping signal regions. These significantly extend 
the limits from the 8 TeV LHC analyses.
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L. Manhaes de Andrade Filho 78a, J. Manjarres Ramos 46, K.H. Mankinen 94, A. Mann 112, A. Manousos 35, 
B. Mansoulie 142, J.D. Mansour 15a, R. Mantifel 101, M. Mantoani 51, S. Manzoni 66a,66b, G. Marceca 30, 
L. March 52, L. Marchese 131, G. Marchiori 132, M. Marcisovsky 137, C.A. Marin Tobon 35, M. Marjanovic 37, 
D.E. Marley 103, F. Marroquim 78b, Z. Marshall 18, M.U.F Martensson 170, S. Marti-Garcia 172, C.B. Martin 122, 
T.A. Martin 176, V.J. Martin 48, B. Martin dit Latour 17, M. Martinez 14,z, V.I. Martinez Outschoorn 100, 
S. Martin-Haugh 141, V.S. Martoiu 27b, A.C. Martyniuk 92, A. Marzin 35, L. Masetti 97, T. Mashimo 161, 
R. Mashinistov 108, J. Masik 98, A.L. Maslennikov 120b,120a, L.H. Mason 102, L. Massa 71a,71b, 
P. Mastrandrea 5, A. Mastroberardino 40b,40a, T. Masubuchi 161, P. Mättig 180, J. Maurer 27b, B. Maček 89, 
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