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ABSTRACT

Unmanned Aerial Vehicle (UAV) systems are being increasingly

used in a broad range of applications requiring extensive com-

munications, either to interconnect the UAVs with each other or

with ground resources. Focusing either on the modeling of UAV

operations or communication and network dynamics, available sim-

ulation tools fail to capture the complex interdependencies between

these two aspects of the problem. The main contribution of this

paper is a flexible and scalable open source simulator ś FlyNetSim

ś bridging the two domains. The overall objective is to enable simu-

lation and evaluation of UAV swarms operating within articulated

multi-layered technological ecosystems, such as the Urban Internet

of Things (IoT). To this aim, FlyNetSim interfaces two open source

tools, ArduPilot and ns-3, creating individual data paths between

the devices operating in the system using a publish and subscribe-

based middleware. The capabilities of FlyNetSim are illustrated

through several case-study scenarios including UAVs interconnect-

ing with a multi-technology communication infrastructure and

intra-swarm ad-hoc communications.
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1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are attracting a considerable atten-

tion from the research community. Traditional applications range

from surveillance to precision agriculture, environmental monitor-

ing and disaster management [7, 25]. Recent use cases emphasize

the role of communications and networking in the overall picture,

either to enable intra-swarm coordination or to interconnect the

UAVs to ground resources [17, 30]. A new line of contributions

deeply integrates UAVs into the communication infrastructure to

extend wireless coverage [22].

Clearly, deploying real-world UAV systems poses several chal-

lenges, especially in urban or densely populated environments.

Thus, simulation is an important option to reduce the overhead of

testing new solutions and architectures. However, there has been a

limited amount of effort in developing simulation tools capable to

accurately model the fine-grain operations and characteristics of

both UAV and networking/Internet of Things (IoT) systems. Mature

and popular tools focus on either one of these aspects, often over-

simplifying the other. Recent contributions such as AVENS [14] and

CUSCUS [32] make a first effort in this direction, interlacing UAV

and networking simulation tools. This paper builds on these first

steps to create a comprehensive simulator ś FlyNetSim ś capturing

the intricate interdependencies between the communication and

network environment and UAV operations, such as sensing and

navigation, and inner state dynamics (e.g., battery state). We pose

a particular emphasis on urban IoT systems, where the UAVs are

immersed in a multi-scale technological ecosystem conglomerating

several wireless access technologies and communication strategies ś

e.g., Wi-Fi, Long Term Evolution (LTE) and Device-to-Device (D2D)

ś as well as backhaul wired networks and computation resources

such as edge and cloud servers [5]. Our main objectives are:

• Accurately model UAV operations and dynamics using a software-

in-the-loop approach, where the data structures and control pipeline

of UAV software are fully preserved.

• Accurately model a multi-scale multi-technology IoT communi-

cation environment and its interactions with the UAVs.

• Establish a one-to-one correspondence between UAVs and wire-

less nodes in NS-3, where the UAVs implement a full network stack

supporting multiple network interfaces.

• Preserve individual data paths from and to UAV sensors and

controllers.

• Provide a graphical user interface to visualize the status of the

system and automatically generate UAV/network scenarios.

• Support emulation, where real-world UAVs can perform on-board

simulations of a surrounding network environment while flying.
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• Support computation and real-time data processing in-the-loop,

for instance to implement and test edge computing architectures.

To accomplish these objectives, we take as starting point two

open source simulators ś Network Simulator (NS-3) and ArduPilot ś

and build a fully open source simulation environment for academic

research. NS-3 [9] is an extremely popular tool, with a wide com-

munity contributing to extend its capabilities. ArduPilot [26] is a

widely used software and hardware-in-the-loop simulator, capable

of modeling a broad range of unmanned vehicles characteristics in

terms of navigation, control and mission planning.

FlyNetSim includes a middleware layer to interconnect the two

simulators, providing temporal synchronization between network

and UAV operations, and a publish and subscribe based frame-

work [8] to create end-to-end data-paths across the simulators. The

middleware architecture we propose is lightweight, and enables

FlyNetSim to simulate a large number of UAVs and support a wide

range of IoT infrastructures and applications. We illustrate the

capabilities of FlyNetSim through several case-study scenarios:

• UAV control over Wi-Fi: We use FlyNetSim to evaluate the effect of

mobility, delay, and congestion on the operations of a UAV remotely

controlled by a Ground Control Station (GCS).

• Multi-network communications: We create and test a case-study

scenario in which a UAV uses multiple network technologies for

uplink and downlink communications.

• D2D Communications for UAV swarms: We evaluate through Fly-

NetSim the ability of D2D communications to extend network cov-

erage through intra-swarm communications.

• IoT and Data Streaming: FlyNetSim supports real-time data stream-

ing from the UAVs. We showcase this ability by testing real-time

telemetry and video streaming.

Finally, we also showcase the ability of FlyNetSim to support the

łemulation modež, where the simulator runs on a real-world UAV.

The rest of the paper is organized as follows. Section 2 reviews

state-of-the-art simulation tools. In Section 3 and 4, we discuss

challenges and design criteria and present the architecture of Fly-

NetSim. In Section 5 we describe the use case scenarios used to

illustrate the capabilities of the proposed simulator and provide

extensive numerical evaluations. Section 6 describes the on-board

emulation capabilities of FlyNetSim. Section 7 concludes the paper.

2 STATE OF THE ART

In this section, we provide an overview of UAV and network simu-

lators, and discuss the recently proposed AVENS and CUSCUS.

UAV Simulators - The primary scope of UAV simulators is to

model aerodynamics and functional aspects of UAV control systems.

Early simulators, e.g., [23], only simulated human-controlled flight,

and, autonomous flight and autopilot features were implemented

in later tools. Among open source autopilot simulators, Ardupilot

and PX4 are most widely used, with the former having a wider

range of supported platforms and hardware, including Pixhawk [16],

NAVIO [4], and Erle-Brain [21]. Ardupilot is also used by some

commercial vehicles, such as 3DR Solo [20].

Several UAV simulators build on top of Ardupilot to extend its

capabilities. For instance, Gazebo [10] extends the range of simu-

lated devices to include land rovers, planes, and small robots using

the Robot Operating System (ROS) [18]. However, Gazebo is a very

heavy-weight software, which may be difficult to run on a single

machine when simulating a large number of vehicles. Moreover,

ROS is not synchronized with real-time operations and communi-

cations of connected applications. XPlane-10, RealFlight and few

other commercial simulators are also based onArdupilot, but mostly

focus on motion and navigation. To develop FlyNetSim, we choose

Software In The Loop (SITL) [3, 24], one of the simplest simulators

based on Ardupilot supporting autopilot navigation.

Network Simulators - Many simulators are available which offer

simulation of the full network stack or a portion of it. Most simula-

tors are discrete event-driven, meaning that they form a timeline

of events that is sequentially processed, without a strict correspon-

dence between real and simulated time. One of the earliest discrete

event-driven simulator is TOSSIM [11] which was used to model

communications between wireless sensors. Given our objectives,

we are primarily interested in network simulators that can sup-

port WiFi and 4G/5G cellular communications. Also, the simulator

should support a wide range of protocols and options at different

layers of the network.

OPNET [6] is a commercial simulator providing detailed simu-

lation of wireless networks and supports a wide spectrum of pro-

tocols and technologies. Among open source network simulators

OMNET++ [27] and NS-3 [19] are the most used by the research

community. Both simulators are discrete-event driven. Thanks to a

wide support from the community, NS-3 can simulate many tech-

nologies and embeds a variety of statistical models for channel gain,

mobility and traffic generation, and provides a detailed modeling

of physical layer operations. Additionally, NS-3 can efficiently in-

terface with external systems, applications and libraries. For the

reasons above, we choose NS-3 as the network component of Fly-

NetSim.

Joint UAV/Network Simulators - Recent work [14] integrates

OMNET++ and X-Plane to build a joint UAV-Network simulator ś

the Flying AdHocNetwork Simulator (AVENS). Themain limitation

of AVENS is that the UAV and network simulator communicate via a

XML file, which only updates the number and position of the UAVs.

This communication model does not support data-paths from and

to the UAVs to transfer control, telemetry and sensor data. Also, the

UAV and network simulators are not synchronized, thus impairing

the ability of AVENS to model and evaluate real-time services and

operations. Finally, X-Plane is not an open-source software, thus

making the use of AVENS challenging in academic research.

The joint UAV-network simulator CUSCUS [32] has been devel-

oped based on FL-AIR [12] in combination with NS-3 using tap

bridges [2] and containers. CUSCUS establishes NS-3 communi-

cation links through Linux containers using real-time scheduling,

thus successfully creating network devices corresponding to the

UAVs in FL-AIR. However, the current NS-3 implementation has

limited support to interfaces through tap bridges. For instance, this

approach prevents the inclusion of important technologies such

as LTE and D2D. Also, tunneling through the tap interfaces does
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Figure 1: Average total ZMQ delay as a function of the

number of nodes using a single or multiple ZMQ pub-

lisher/subscriber pairs.

not facilitate multi-hop routing through intermediate nodes in the

network simulator. These aspects impair the ability of CUSCUS to

simulate important multi-technology environments and systems

such as the urban IoT. Additionally, in the CUSCUS architecture the

UAV control loop with the Ground Control Station (GCS) is discor-

porated from the network simulation. So, the simulator cannot be

used to evaluate the effect of the network environment dynamics

on the operations of the UAVs. Finally, the use of containers to run

the UAVs imposes a larger computational complexity compared to

other options. This aspect is particularly relevant, because if NS-3

event processing is delayed compared to the UAV simulator clock

due to a large number of network events, then synchronization will

break. Therefore, an approach based on containers severely limits

the complexity of the simulated environment.

3 GENERAL FRAMEWORK

As indicated in the previous section, we choose NS-3 and ArduPilot

as the twomain blocks of FlyNetSym. However, interconnecting the

two simulators is non-trivial. One of the key desiderata is to build

a lightweight simulator capable to include a large number of UAVs

and other devices, and a complex communication infrastructure.

In the following, we discuss some of the available options and the

chosen approach.

Virtual Machines - A possible approach is to run each UAV in an

individual Virtual Machine (VM) and connect the VMs via the net-

work simulator running on the native host. However, this approach

results in a considerable resource usage, which impairs scalability.

Moreover, communication through the upper layer of the protocol

stack of the host to the VMs introduces some delay and necessi-

tates additional memory usage. Finally, due to the isolation of the

environment embedding each UAV, their synchronization would

require the implementation of a complex algorithm.

Containers - The second option is to use lighter-weight contain-

ers instead of VMs, thus mitigating the scalability issue. Note that

containers are used in CUSCUS. However, containers share the syn-

chronization issue with the VMs. Moreover, the containers would

need to be connected to NS-3 via tap bridges (see the approach

in CUSCUS [32]) associated with a łghost node" in NS-3. How-

ever, in the current implementation of NS-3, this communication

model does not support several key technologies, thus limiting the

range of possible simulation environments. Additionally, the use of

containers would prevent łon-boardž simulations, as the autopilot

hardware would need to run within a container.

Multi-threading - The option we select for the development of

FlyNetSim is multi-threading, where each UAV simulator module

corresponds to a thread. This model provides improved scalability

and seamless synchronization between the UAVs and the network

simulator. Additionally, on-board simulation will be possible, as the

network simulator and the UAV run on the same host.

We remark that in this model we can directly create a unique

node in NS-3 corresponding to each UAV and the GCS, without

the need to have tap interfaces. Also, each UAV (NS-3 node) can be

equipped with multiple network interfaces for multi-technology

communication.

The main challenge we face is the establishment of an effective

communication between each UAV simulation module. A commu-

nication model based on files or shared memory makes the con-

struction of individual and end-to-end data paths difficult due to

the need for sophisticated mapping. This especially applies to a

case where heavy-weight data streams need to be transported ś

such as video or data streams ś a case in which file or memory shar-

ing approach would grant inferior efficiency and performance. We

overcome this issue by incorporating Zero Message Queue (ZMQ)

in the framework ś a fully open source library based on a publish

and subscribe communication model.

ZMQ-based communication model: ZMQ is a lightweight, extremely

fast messaging library written in C/C++ with binding support in

various languages. This flexibility makes it a widely accepted tool

to support cross-platform IoT applications. The sockets in ZMQ

are created by the publishers and subscribers of the messages in

the message queue of a broker. Thus, the publisher to subscriber

connections are non-blocking and fully asynchronous. ZMQ also

supports message filtering at the subscriber.

Importantly, ZMQ supports many-to-many communication be-

tween end-points. This allows the establishment of sensor- and

control-specific streams of traffic between the UAVs. However, it

may result into an increased delay due to interleaving of packets

in the queue, which in turn would result in an increased total end-

to-end delay of the ZMQ communication. In order to assess this

aspect, we perform an evaluation of the end-to-end delay of ZMQ

defined as:

Dze2e = Dpub + Dq + Dsub (1)

where,Dze2e is the delay between a ZMQ sender and receiver,Dpub

is the publishing (sender to the ZMQ), Dsub is the reception delay

(ZMQ to the receiver) and Dq is the queueing delay in the ZMQ.

We measure the total delay in two scenarios: (Single P/S) the

streams are sent over a single ZMQ publisher and subscriber pair

or (Parallel P/S) each data stream is matched with a ZMQ publisher

and subscriber pair. Fig. 1 shows the end-to-end delay as a function

of number of data streams N . As expected, the total delay increases

with N . The single and parallel strategy have comparable delay,
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Figure 2: Architecture of FlyNetSim.

and in both cases the end-to-end packet delay is less than 10 mil-

liseconds even for large values of N (100 streams) and data packet

size (1000 bytes). Thus, both options have sufficiently small delay

to support the simulation environment. However, a disadvantage

of the parallel strategy is that each data stream has an individual

socket pair, and a corresponding file descriptors for each of ZMQ

end. In our preliminary study, we could create up to 80 parallel

ZMQ publisher/subscriber pairs. Note that there is default limit of

a single machine that restricts the number of file descriptors. The

default value can be increased at the cost of an increased memory

usage. Herein, we use a single ZMQ publisher/subscriber pair per

communication direction for multiple data streams. This choice can

support hundreds of concurrent data streamswith lower complexity

in implementation.

4 ARCHITECTURE

The architecture of FlyNetSim as depicted in Fig. 2, consists of the

following major components: the FlySim component that initiates

the UAVs, GCS, and the visualization tools; the NetSim component

simulates the end-to-end network infrastructure and environment

(including non-UAV nodes); the Autogen component creates a map

between the UAV components (including sensors) and the corre-

sponding network nodes, and the interfaces and other infrastructure

needed by the NetSim; and a Middleware component supporting

ZMQ-based bidirectional communications through the network. In

the following, we describe in detail these components.

1) FlySim: FlySim is the top layer of the architecture, and contains

the UAV and GCS node(s) running on the native host machine. The

module instantiates the number of UAVs defined in the user input.

Each instantiated UAV corresponds to a simulated vehicle in the

SITL simulator based on Ardupilot. Thus, each vehicle is accompa-

nied by a vector state indicating variables such as position, battery

state, telemetry and sensor information. The GCS side contains a

custom graphical user interface (GUI) to configure and control the

UAVs to be created, and track their positions and other information

from the telemetry.

2) NetSim: The NetSim component creates an interface with NS-3,

integrated with ZMQ and other necessary libraries based on the

configuration of communications in the simulated environment.

The interface creates nodes such that there is one-to-one corre-

spondence between each UAV in Flysim and a node in NetSim.

Moreover, it enables the UAVs to be equipped with multiple wire-

less interfaces, e.g., WiFi and LTE, D2D. NetSim also configures

the network environment in terms of congestion and interference

from nodes outside of FlySim based on user input. The user can

define the number of interfering nodes, their position, traffic rate,

data statistics and technology. The module allows the use of any

wireless protocol or strategy supported by NS-3, including ad-hoc

point-to-point communications between the UAVs or infrastructure

based communications over technologies such as LTE or WiFi. Fi-

nally, the NetSim module also handles mobility within the wireless

network based on the actual mobility of the UAVs retrieved from

the FlySim.

3) Autogen: The Autogen component is responsible for automatic

code generation in the FlySim and NetSim based on the input de-

fined by the user in the graphic interface within the GCS. The

module creates an XML file based on the input, which is passed to

the NetSim as its arguments to create the nodes.

4) Middleware: The middleware interconnects the FlySim and Net-

Sim via communication over ZMQ, creating the end-to-end data

path for individual data streams from the GCS to the UAVs and

vice versa. As both the GCS and the UAV application softwares

are located outside the NetSim, the middleware needs to be used

at both ends of the NetSim. We name the parts of the middleware

as north-bound and south-bound middleware. The north-bound
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part connects the NetSim to the UAVs, whereas the south-bound

connects the GCS to the NetSim. As described in the previous sec-

tion, we use one ZMQ publisher/subscriber pair for communication

in each direction for each of north-bound and south-bound mid-

dleware. The middleware is also responsible for synchronization

between the FlySim and NetSim block as described in the following.

4.1 Synchronization

NS-3 is a discrete event-driven simulator, whose scheduler typically

executes the events sequentially without synchronizing with an

external clock. On the other hand, ArduPilot is a real-time operator,

where the temporal evolution of the UAVs’ state follows the external

clock. To solve this disparity, we use the real-time scheduler in NS-3,

which aligns the processing of scheduled events with their actual

time. However, we remark that in dense simulations the scheduler

may actually be łlatež with respect to the clock. In this case, either

synchronization is lost (łBesteffort") or late events are discarded

(łHardlimit").

We embed in FlyNetSim middleware’s additional steps to ensure

synchronization between the two simulators by timestamping each

packets flowing through NS-3. Fig. 3 shows the message flow across

the different layers of the simulators to preserve synchronization

between the network and UAV operations. Let t0 be state of the sys-

tem clock at the time when a packet enters the NS-3 environment,

and ∆ the difference between the submission and reception time,

that is, the network propagation time. When the packet exits NS-3,

we acquire the system time t1. If (t1 − t0) is smaller than ∆, i.e., the

network event processing is faster than real-time, the middleware

waits an additional (∆ + t0 − t1) interval to release the packet to

ArduPilot.

In the case in which the NS-3 scheduler falls behind real-time,

we propose to łfreezež the UAV simulator to match the elapsed time

with the current clock time. Note that this is critical to preserve

an accurate reconstruction of flight dynamics and inner state (e.g.,

residual battery charge) evolution with respect to network events.

The idea is to take a snapshot of the vehicle state after the com-

pletion of last command and recreate the simulation at the correct

time. This will avoid the simulator performing actions for a longer

time than prescribed.

4.2 Mobility

FlyNetSim matches the actual dynamics of the UAV in the FlySim

with the position of the corresponding wireless nodes in NS-3. This

is realized by intercepting the variables indicating the position,

speed and direction in the telemetry flow at its creation, thus avoid-

ing the, possibly large, time needed to receive the actual telemetry

packets through the network. Note that telemetry is not created

in response to commands, but, instead, in response to any update

in the state of the vehicles. This ensures an accurate matching

between the two simulators, where the network counterpart has

the same granularity of representation of UAV dynamics as the

UAV simulator. Note that non-UAV nodes in NS-3 can use available

mobility models, such as constant position, constant speed, random

walk, etc.

Figure 3: Message flow across the FlyNetSim architecture

4.3 Implementation

The implementation of FlyNetSim is based on C/C++ and Python.

Specifically, we integrate the łlibzmq" Python library with the UAV

simulator and the łlibczmq" library bindings with NS-3. The net-

work simulator is realized with two parallel threads which contin-

uously listen for messages from the GCS and UAVs, respectively.

The module within the NS-3 code that sets the position of the UAVs

based on the telemetry data received from the external ZMQ in the

listening thread, is based on the Haversine formula [28].

On the application side, each UAV is instantiated using a thread

running the UAV simulator based on ArduPilot. We use Dronekit [1]

to operate the UAVs following theMicro Air Vehicle Link (MAVLink)

protocol [15] that includes pitch, roll, and yaw movements. The

custom GCS is created along with a GUI written in Python that can

be easily integrated with łpymavlink" libraries as well as receiving

telemetry informations using MAVLink.

5 CASE STUDIES AND NUMERICAL
EVALUATION

We provide a series of case-study scenarios to illustrate the capabil-

ities of FlyNetSim to capture fine-grain interdependencies between

communication/networking and UAV operations, as well as to sim-

ulate a wide range of rich network and IoT environments.

5.1 Case Study I: Single UAV over WiFi

In this first case study scenario, we consider a single UAV commu-

nicating with the GCS over WiFi. This simple scenario has been

modeled using other integrated UAV/network simulators to evalu-

ate the effect of mobility on bidirectional communications. However,

FlyNetSim allows the inclusion of other nodes injecting traffic into

the network, thus creating congestion.

First, we assume the UAV hovers to maintain a constant position

at a fixed distance from the WiFi Access Point (AP). The simulation

accurately models the control messages sent from the GCS to a

single instance of UAV through the GUI panel as depicted in Fig. 4.

The figure also shows the control and telemetry logs on the GUI. In
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Figure 4: GUI Panel for Controls and Telemetry logs

Figure 5: Temporal trace of network delay in response to

variations in channel quality and availability due to con-

tention.

the absence of other traffic, the average packet propagation delay

through the network is approximately 0.24 ms.

We measure the delay in the presence of nodes contending for

the channel resource in the WiFi network, where each node has a

traffic arrival rate of 10 Mbps and each packet is 1000 bytes long.

Fig. 5 shows a temporal trace of the network delay of control packets

generated at the GCS and propagating through the network to the

UAV. We use adaptive data rate for the WiFi channel in NS-3. In the

absence of interference, the total delay is below 1 ms. When the

number of contending nodes is set to 5 and 10 the delay increases

to an average of approximately 4.20 ms and 7.06 ms, respectively.

Note that the delay presents significant variations over time due to

channel contention and adaptive data rate, where the delay variance

increases with the number of contending nodes. This effect may

create undesirable jitter in the reception of control packets. Fig. 6

depicts the average delay of control packets reception as a function

of the number of nodes contending for channel access.
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In the same setup, we test the feature of FlyNetSim matching

the position of the UAV in NS-3 to that in the UAV simulator. For

this experiment, we use random movements of the UAV from the

GUI panel, and receive updated latitude and longitude values from

the telemetry. The NetSim component of FlyNetSim converts the

position in distance from the other nodes. We measure the received

signal strength (RSS) of the UAV node from the AP. The blue line in

the Fig. 7 shows the trajectory of the UAV over time in the XY plane

and the dotted red line shows the corresponding decrease in the

RSS value. The fine-granularity correspondence of the RSS in the

simulator to the position of the UAV determined by its operations

enables the development and testing of physical and link layer

protocols.

5.2 Case Study II: Multi-Network Environment

FlyNetSim seamlessly supports heterogeneous wireless network

environments, as well as multiple wireless interfaces at each UAV.

To the best of our knowledge, FlyNetSim is the only integrated

simulator including this feature.

To illustrate this capability, we implemented a multi-network

environment including WiFi and LTE networks, where each UAV

has a WiFi and an LTE interface and the corresponding protocol

stack. In this use case, the GCS can be placed at the network edge,

Session: Network Simulators MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

42



Figure 8: Network delay of control messages (WiFi) and

telemetry (LTE).

i.e., connected to the WiFi AP and the LTE eNodeB. Herein, we

characterize the GCS as a remote host connected to the Evolved

Packet Core (EPC) gateway of the LTE network to support long-

range communication. The autogen module of the simulator creates

the multiple wireless interfaces as defined by the input.

We focus on a scenario where the WiFi network is used to trans-

port control messages from the GCS to the UAVs, and the LTE

network is used to transport telemetry and high volume sensor

data traffic from the UAV to the GCS. Note that case-studies where

the network is dynamically selected based on Quality of Service

(QoS) requirements can be implemented.

In the shown experiments, the WiFi nodes use adaptive data

rate with maximum rate of 54 Mbps. The LTE network is created

using different uplink and downlink frequency bands of 20 MHz

each, and the LTE Frequency Division Duplex (LTE-FDD) mode is

used for transmission. Nakagami channel model is used to model

LTE signal propagation [31]. Specifically, we adopt the trace-based

Extended Pedestrian A (EPA) fading model as indicated in the 3GPP

standard [13]. The LTE network determines the Channel Quality

Index (CQI) and assigns the corresponding Modulation and Cod-

ing Scheme (MCS) for transmission. Fig. 8 depicts the end-to-end

delay of the control data (transmitted over WiFi) and telemetry

data (transmitted over LTE), which average at approximately at

0.24 ms (control packets) and 15 ms (telemetry). We remark that

telemetry information is extracted before its transmission and im-

mediately used to update the position of the UAV, which determines

the channel gain of both LTE and WiFi channels.

5.3 Case Study III: Multi-UAV

This case-study scenario focuses on the simulation of UAV swarms.

First, we compare the scalability of the proposed approach with

that of the approach adopted by AVENS and CUSCUS. Note that

the number of UAVs in AVENS is limited to 20 due to restrictions

in X-Plane, whereas CUSCUS does not have any strict limit, and

was used to simulate up to 30 UAVs.

We tested the scalability of FlyNetSim by instantiating multi-

ple UAVs with basic functionalities, including the transmission of

control messages from the GCS to each UAV and telemetry on the

reverse path. We run the simulator on a laptop with 16 GB of RAM
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Figure 9: Percentage of system resource usage as a function

of the number of UAVs instantiated in the simulator.

and an Intel Core-i7-6700HQ processor. We could instantiate up

to 70 UAVs communicating using a WiFi network. The maximum

number of UAVs is 40 when LTE network is used, due to limita-

tions imposed in NS-3 in connection with the 40 ms periodicity of

transmissions. However, the value can be increased up to 380 based

on the standard. Our architecture does not impose any restriction

on the number of UAVs, and is only constrained by the available

system resources. Therefore, more than 70 UAVs can be instantiated

with a more powerful computer.

We measure the system resource consumption in terms of mem-

ory and CPU usage as a function of number of UAVs instantiated.

Fig.9 shows that both the CPU usage and memory usage increase

linearly with the number of UAVs. A direct comparison with AVENS

simulator is not possible. However, we compare FlyNetSim resource

usage to that of CUSCUS, which is built on network containers: Fly-

NetSim almost halves CPU usage and substantially reduces memory

usage.

We further demonstrate the capabilities of FlyNetSim by instan-

tiating a use-case where the UAV swarm collaboratively transports

packets to extend network coverage. The UAVs use D2D communi-

cations to form an ad-hoc network and relay messages from and

to the GCS. In the experiment we created 4 UAVs positioned in

a line topology where the UAVs are 50 m apart from each other.

We then measure the network delay as a function of the distance

between the WiFi AP and the closest UAV. Fig. 10 shows that if

packets are directly transmitted to the UAVs the average packet

delay considerably increases as the UAVs approach the border of

network coverage. Intra-swarm D2D communications considerably

extend coverage. Note that a similar scenario was shown in CUS-

CUS, where the UAVs broadcast the messages to the swarm, instead

of forming an ad hoc network based on D2D communications.

5.4 Case Study IV: IoT Applications

Unlike existing integrated network/UAV simulators, FlyNetSim

not only aims at network measurements and UAV control, but

also provides a comprehensive framework for the evaluation of

IoT applications on UAVs. The end-to-end data-path enables the

network simulator to receive and analyze sensor data from the
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Figure 10: Network delay as a function of the distance be-

tween the closest UAV in the line topology and the WiFi ac-

cess point.
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Figure 11: PSNR as a function of the number of nodes con-

tending the channel in the WiFi network.

UAVs and measure the QoS granted by different network scenarios

and technologies. We observe that FlyNetSim can also integrate

real-time processing of data, thus enabling the exploration of edge-

assisted IoT architectures.

We implement and test a scenario where FlyNetSim is used to

support streaming of real-world encoded videos over the network

simulator, where packet loss creates artifacts and impair the per-

formance of processing algorithms. To the best of our knowledge,

all available integrated UAV simulators do not support end-to-end

encoded data transmission, especially over an articulated network

infrastructure and a wide range of scenarios. In the experiments

we used a H.264 AVC [29] encoded video of 624 frames with a

resolution of 480 pixels and frame rate of 30 frames per second.

We used the MPEG Transport Stream (TS) container for the trans-

mission of the video. We set the network so that in the absence

of contending nodes packet loss has very low probability and the

video is delivered with perfect quality. Fig. 11 illustrates the degra-

dation of the Peak Signal-to-Noise Ratio (PSNR) at additional nodes

contending for the channel resource are introduced in the network.

With 10 additional nodes, the video stream incurs a PSNR degra-

dation of more than 13 dBs. Fig. 12 shows the inter-frame time
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Figure 12: Inter frame time of video frames at the decoder

as a function of varying number of nodes contending the
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Figure 13: Emulation mode where FlyNetSim is run on-

board a 3DR Solo UAV.

defined as the time lapse between consecutive frames. As the video

in the experiment has a frame rate of 30 frames per second, the

expected average inter-frame time is 0.033 ms. As the number of

nodes contending the channel resource increases, the inter-frame

time increases compared to the expected value.

6 EMULATION MODE

FlyNetSim supports an łemulation modež, where a real UAV can

communicate with external or simulated resources through the

network simulator. This mode still uses all the components of the

simulator, including the GCS and GUI panel, the middleware and

NetSim, but the simulated UAV vehicle is replaced by a real-world

UAV. We demonstrate the emulation mode by connecting a UAV

3DR Solo via USB serial to the laptop running the FlyNetSim as

shown in Fig. 13. A similar configuration would enable on-board

simulations during flight, for instance using a compact platform

such as a Raspberry PI instead of the laptop. Fig. 14 shows the GUI

panel as telemetry regarding battery status, GPS location, etc., is

received through the simulated network. The network simulator

panel shows the log of the packet flow across the simulator from

the UAV to the GCS. Note that the experiment was conducted
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Figure 14: Emulation telemetry output from 3DR Solo UAV

indoor, where the GPS signal is not available, and thus the latitude,

longitude values are shown as zero.

7 CONCLUSIONS

The primary contribution of this paper is a fully open source, inte-

grated UAV-network simulator capable to support a wide range of

network scenarios and use-cases while accurately modeling UAV

operations. The architecture uses a lightweight custom built mid-

dleware to effectively simulate the UAV network with closed loop,

synchronized, end-to-end data-paths, considerably reducing system

resources usage compared to other available integrated simulators.

Additionally, the support for emulation mode enables experimental

research using real-world UAVs and sensor devices over simulated

complex environments such as the urban IoT. We demonstrated the

capabilities of the proposed simulator through a series of case study

scenarios, including multi-technology networking, intra-swarm

D2D communications and IoT data streaming.
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