Session: Network Simulators

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

FlyNetSim: An Open Source Synchronized UAV Network
Simulator based on ns-3 and Ardupilot

Sabur Baidya, Zoheb Shaikh and Marco Levorato
Donald Bren School of Information and Computer Sciences, UC Irvine, CA, USA
[sbaidya,zsshaikh,levorato] @uci.edu

ABSTRACT

Unmanned Aerial Vehicle (UAV) systems are being increasingly
used in a broad range of applications requiring extensive com-
munications, either to interconnect the UAVs with each other or
with ground resources. Focusing either on the modeling of UAV
operations or communication and network dynamics, available sim-
ulation tools fail to capture the complex interdependencies between
these two aspects of the problem. The main contribution of this
paper is a flexible and scalable open source simulator — FlyNetSim
- bridging the two domains. The overall objective is to enable simu-
lation and evaluation of UAV swarms operating within articulated
multi-layered technological ecosystems, such as the Urban Internet
of Things (IoT). To this aim, FlyNetSim interfaces two open source
tools, ArduPilot and ns-3, creating individual data paths between
the devices operating in the system using a publish and subscribe-
based middleware. The capabilities of FlyNetSim are illustrated
through several case-study scenarios including UAVs interconnect-
ing with a multi-technology communication infrastructure and
intra-swarm ad-hoc communications.

CCS CONCEPTS

« Networks — Network simulations; Cyber-physical networks;
Sensor networks; Mobile networks; Hardware — Simulation and
emulation; - Computer systems organization — Robotic con-
trol;

KEYWORDS

Unmanned Aerial Vehicles; NS-3; ArduPilot; Urban Internet of
Things

ACM Reference Format:

Sabur Baidya, Zoheb Shaikh and Marco Levorato. 2018. FlyNetSim: An
Open Source Synchronized UAV Network, Simulator based on ns-3 and
Ardupilot. In 21st ACM International Conference on Modelling, Analysis
and Simulation of Wireless and Mobile Systems (MSWIM °18), October 28-
November 2, 2018, Montreal, QC, Canada. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3242102.3242118

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSWIM ’18, October 28-November 2, 2018, Montreal, QC, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5960-3/18/10...$15.00
https://doi.org/10.1145/3242102.3242118

37

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are attracting a considerable atten-
tion from the research community. Traditional applications range
from surveillance to precision agriculture, environmental monitor-
ing and disaster management [7, 25]. Recent use cases emphasize
the role of communications and networking in the overall picture,
either to enable intra-swarm coordination or to interconnect the
UAVs to ground resources [17, 30]. A new line of contributions
deeply integrates UAVs into the communication infrastructure to
extend wireless coverage [22].

Clearly, deploying real-world UAV systems poses several chal-
lenges, especially in urban or densely populated environments.
Thus, simulation is an important option to reduce the overhead of
testing new solutions and architectures. However, there has been a
limited amount of effort in developing simulation tools capable to
accurately model the fine-grain operations and characteristics of
both UAV and networking/Internet of Things (IoT) systems. Mature
and popular tools focus on either one of these aspects, often over-
simplifying the other. Recent contributions such as AVENS [14] and
CUSCUS [32] make a first effort in this direction, interlacing UAV
and networking simulation tools. This paper builds on these first
steps to create a comprehensive simulator — FlyNetSim — capturing
the intricate interdependencies between the communication and
network environment and UAV operations, such as sensing and
navigation, and inner state dynamics (e.g., battery state). We pose
a particular emphasis on urban IoT systems, where the UAVs are
immersed in a multi-scale technological ecosystem conglomerating
several wireless access technologies and communication strategies —
e.g., Wi-Fi, Long Term Evolution (LTE) and Device-to-Device (D2D)
- as well as backhaul wired networks and computation resources
such as edge and cloud servers [5]. Our main objectives are:

o Accurately model UAV operations and dynamics using a software-
in-the-loop approach, where the data structures and control pipeline
of UAV software are fully preserved.

o Accurately model a multi-scale multi-technology IoT communi-
cation environment and its interactions with the UAVs.

o Establish a one-to-one correspondence between UAVs and wire-
less nodes in NS-3, where the UAVs implement a full network stack
supporting multiple network interfaces.

e Preserve individual data paths from and to UAV sensors and
controllers.

e Provide a graphical user interface to visualize the status of the
system and automatically generate UAV/network scenarios.

o Support emulation, where real-world UAVs can perform on-board
simulations of a surrounding network environment while flying.

Session: Network Simulators

e Support computation and real-time data processing in-the-loop,
for instance to implement and test edge computing architectures.

To accomplish these objectives, we take as starting point two
open source simulators — Network Simulator (NS-3) and ArduPilot -
and build a fully open source simulation environment for academic
research. NS-3 [9] is an extremely popular tool, with a wide com-
munity contributing to extend its capabilities. ArduPilot [26] is a
widely used software and hardware-in-the-loop simulator, capable
of modeling a broad range of unmanned vehicles characteristics in
terms of navigation, control and mission planning.

FlyNetSim includes a middleware layer to interconnect the two
simulators, providing temporal synchronization between network
and UAV operations, and a publish and subscribe based frame-
work [8] to create end-to-end data-paths across the simulators. The
middleware architecture we propose is lightweight, and enables
FlyNetSim to simulate a large number of UAVs and support a wide
range of IoT infrastructures and applications. We illustrate the
capabilities of FlyNetSim through several case-study scenarios:

o UAV control over Wi-Fi: We use FlyNetSim to evaluate the effect of
mobility, delay, and congestion on the operations of a UAV remotely
controlled by a Ground Control Station (GCS).

o Multi-network communications: We create and test a case-study
scenario in which a UAV uses multiple network technologies for
uplink and downlink communications.

o D2D Communications for UAV swarms: We evaluate through Fly-
NetSim the ability of D2D communications to extend network cov-
erage through intra-swarm communications.

® [oT and Data Streaming: FlyNetSim supports real-time data stream-
ing from the UAVs. We showcase this ability by testing real-time
telemetry and video streaming.

Finally, we also showcase the ability of FlyNetSim to support the
“emulation mode”, where the simulator runs on a real-world UAV.

The rest of the paper is organized as follows. Section 2 reviews
state-of-the-art simulation tools. In Section 3 and 4, we discuss
challenges and design criteria and present the architecture of Fly-
NetSim. In Section 5 we describe the use case scenarios used to
illustrate the capabilities of the proposed simulator and provide
extensive numerical evaluations. Section 6 describes the on-board
emulation capabilities of FlyNetSim. Section 7 concludes the paper.

2 STATE OF THE ART

In this section, we provide an overview of UAV and network simu-
lators, and discuss the recently proposed AVENS and CUSCUS.

UAV Simulators - The primary scope of UAV simulators is to
model aerodynamics and functional aspects of UAV control systems.
Early simulators, e.g., [23], only simulated human-controlled flight,
and, autonomous flight and autopilot features were implemented
in later tools. Among open source autopilot simulators, Ardupilot
and PX4 are most widely used, with the former having a wider
range of supported platforms and hardware, including Pixhawk [16],
NAVIO [4], and Erle-Brain [21]. Ardupilot is also used by some
commercial vehicles, such as 3DR Solo [20].

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

38

Several UAV simulators build on top of Ardupilot to extend its
capabilities. For instance, Gazebo [10] extends the range of simu-
lated devices to include land rovers, planes, and small robots using
the Robot Operating System (ROS) [18]. However, Gazebo is a very
heavy-weight software, which may be difficult to run on a single
machine when simulating a large number of vehicles. Moreover,
ROS is not synchronized with real-time operations and communi-
cations of connected applications. XPlane-10, RealFlight and few
other commercial simulators are also based on Ardupilot, but mostly
focus on motion and navigation. To develop FlyNetSim, we choose
Software In The Loop (SITL) [3, 24], one of the simplest simulators
based on Ardupilot supporting autopilot navigation.

Network Simulators - Many simulators are available which offer
simulation of the full network stack or a portion of it. Most simula-
tors are discrete event-driven, meaning that they form a timeline
of events that is sequentially processed, without a strict correspon-
dence between real and simulated time. One of the earliest discrete
event-driven simulator is TOSSIM [11] which was used to model
communications between wireless sensors. Given our objectives,
we are primarily interested in network simulators that can sup-
port WiFi and 4G/5G cellular communications. Also, the simulator
should support a wide range of protocols and options at different
layers of the network.

OPNET [6] is a commercial simulator providing detailed simu-
lation of wireless networks and supports a wide spectrum of pro-
tocols and technologies. Among open source network simulators
OMNET++ [27] and NS-3 [19] are the most used by the research
community. Both simulators are discrete-event driven. Thanks to a
wide support from the community, NS-3 can simulate many tech-
nologies and embeds a variety of statistical models for channel gain,
mobility and traffic generation, and provides a detailed modeling
of physical layer operations. Additionally, NS-3 can efficiently in-
terface with external systems, applications and libraries. For the
reasons above, we choose NS-3 as the network component of Fly-
NetSim.

Joint UAV/Network Simulators - Recent work [14] integrates
OMNET++ and X-Plane to build a joint UAV-Network simulator —
the Flying Ad Hoc Network Simulator (AVENS). The main limitation
of AVENS is that the UAV and network simulator communicate via a
XML file, which only updates the number and position of the UAVs.
This communication model does not support data-paths from and
to the UAVs to transfer control, telemetry and sensor data. Also, the
UAV and network simulators are not synchronized, thus impairing
the ability of AVENS to model and evaluate real-time services and
operations. Finally, X-Plane is not an open-source software, thus
making the use of AVENS challenging in academic research.

The joint UAV-network simulator CUSCUS [32] has been devel-
oped based on FL-AIR [12] in combination with NS-3 using tap
bridges [2] and containers. CUSCUS establishes NS-3 communi-
cation links through Linux containers using real-time scheduling,
thus successfully creating network devices corresponding to the
UAVs in FL-AIR. However, the current NS-3 implementation has
limited support to interfaces through tap bridges. For instance, this
approach prevents the inclusion of important technologies such
as LTE and D2D. Also, tunneling through the tap interfaces does

Session: Network Simulators

o

T T T
Single ZMQ , Packet Size: 250 Bytes
Single ZMQ , Packet Size: 500 Bytes
Single ZMQ , Packet Size: 1000 Bytes
Parallel ZMQ , packet Size: 250 Bytes
Parallel ZMQ , Packet Size: 500 Bytes
Parallel ZMQ , packet Size: 1000 Bytes

o]

enoddd

(2]

o
T

IN
T

w
T

n
T

Avg. Packet Delay per Stream (mSec)

o -

10 20 30 40 50 60 70 80 90
Number of Data Streams

100

Figure 1: Average total ZMQ delay as a function of the
number of nodes using a single or multiple ZMQ pub-
lisher/subscriber pairs.

not facilitate multi-hop routing through intermediate nodes in the
network simulator. These aspects impair the ability of CUSCUS to
simulate important multi-technology environments and systems
such as the urban IoT. Additionally, in the CUSCUS architecture the
UAV control loop with the Ground Control Station (GCS) is discor-
porated from the network simulation. So, the simulator cannot be
used to evaluate the effect of the network environment dynamics
on the operations of the UAVs. Finally, the use of containers to run
the UAVs imposes a larger computational complexity compared to
other options. This aspect is particularly relevant, because if NS-3
event processing is delayed compared to the UAV simulator clock
due to a large number of network events, then synchronization will
break. Therefore, an approach based on containers severely limits
the complexity of the simulated environment.

3 GENERAL FRAMEWORK

As indicated in the previous section, we choose NS-3 and ArduPilot
as the two main blocks of FlyNetSym. However, interconnecting the
two simulators is non-trivial. One of the key desiderata is to build
a lightweight simulator capable to include a large number of UAVs
and other devices, and a complex communication infrastructure.
In the following, we discuss some of the available options and the
chosen approach.

Virtual Machines - A possible approach is to run each UAV in an
individual Virtual Machine (VM) and connect the VMs via the net-
work simulator running on the native host. However, this approach
results in a considerable resource usage, which impairs scalability.
Moreover, communication through the upper layer of the protocol
stack of the host to the VMs introduces some delay and necessi-
tates additional memory usage. Finally, due to the isolation of the
environment embedding each UAV, their synchronization would
require the implementation of a complex algorithm.

Containers - The second option is to use lighter-weight contain-
ers instead of VMs, thus mitigating the scalability issue. Note that
containers are used in CUSCUS. However, containers share the syn-
chronization issue with the VMs. Moreover, the containers would

39

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

need to be connected to NS-3 via tap bridges (see the approach
in CUSCUS [32]) associated with a “ghost node" in NS-3. How-
ever, in the current implementation of NS-3, this communication
model does not support several key technologies, thus limiting the
range of possible simulation environments. Additionally, the use of
containers would prevent “on-board” simulations, as the autopilot
hardware would need to run within a container.

Multi-threading - The option we select for the development of
FlyNetSim is multi-threading, where each UAV simulator module
corresponds to a thread. This model provides improved scalability
and seamless synchronization between the UAVs and the network
simulator. Additionally, on-board simulation will be possible, as the
network simulator and the UAV run on the same host.

We remark that in this model we can directly create a unique
node in NS-3 corresponding to each UAV and the GCS, without
the need to have tap interfaces. Also, each UAV (NS-3 node) can be
equipped with multiple network interfaces for multi-technology
communication.

The main challenge we face is the establishment of an effective
communication between each UAV simulation module. A commu-
nication model based on files or shared memory makes the con-
struction of individual and end-to-end data paths difficult due to
the need for sophisticated mapping. This especially applies to a
case where heavy-weight data streams need to be transported —
such as video or data streams — a case in which file or memory shar-
ing approach would grant inferior efficiency and performance. We
overcome this issue by incorporating Zero Message Queue (ZMQ)
in the framework - a fully open source library based on a publish
and subscribe communication model.

ZMQ-based communication model: ZMQ is a light weight, extremely
fast messaging library written in C/C++ with binding support in
various languages. This flexibility makes it a widely accepted tool
to support cross-platform IoT applications. The sockets in ZMQ
are created by the publishers and subscribers of the messages in
the message queue of a broker. Thus, the publisher to subscriber
connections are non-blocking and fully asynchronous. ZMQ also
supports message filtering at the subscriber.

Importantly, ZMQ supports many-to-many communication be-
tween end-points. This allows the establishment of sensor- and
control-specific streams of traffic between the UAVs. However, it
may result into an increased delay due to interleaving of packets
in the queue, which in turn would result in an increased total end-
to-end delay of the ZMQ communication. In order to assess this
aspect, we perform an evaluation of the end-to-end delay of ZMQ
defined as:

1)

where, D¢z is the delay between a ZMQ sender and receiver, Dy,
is the publishing (sender to the ZMQ), Dy,,}, is the reception delay
(ZMQ to the receiver) and Dy is the queueing delay in the ZMQ.
We measure the total delay in two scenarios: (Single P/S) the
streams are sent over a single ZMQ publisher and subscriber pair
or (Parallel P/S) each data stream is matched with a ZMQ publisher
and subscriber pair. Fig. 1 shows the end-to-end delay as a function
of number of data streams N. As expected, the total delay increases
with N. The single and parallel strategy have comparable delay,

Djeoe = Dpub + Dq + Dsub

Session: Network Simulators

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

Graphical User Interfacel

DECISTON MANAGER

Sensors
Data

Telemetry
Receiver

Control
Generator

Autogen

XML Config

<simulator>

[}
[}
[}
i
<instance>...<instance> 1 [[Port:6600 Port:6601] |
<network>...<network> :
<traffic>...</traffic> |
<rate>...</rate> :
<uav>...</uav> I

FlySim
(Linux Host)

MUX/DEMUX

Telemetry

Control
Generator

Receiver

Sensors
Data

Middleware
(ZMQ-Pub/Sub)

[[Port:6500 Port:6501] |

<uav>...</uav>

< /simulator>

"""""""""""""""" oNodeB 77
EPC | RRC
P | aw |

PDCP

MAC
PHY

GCS node

RLC
MAC
PHY
Congesting/interfering

nodes- 1 UAVI node-n

nodes
* e e

1P
NetSim MAC
(NS-3) PHY
AP node

Figure 2: Architecture of FlyNetSim.

and in both cases the end-to-end packet delay is less than 10 mil-
liseconds even for large values of N (100 streams) and data packet
size (1000 bytes). Thus, both options have sufficiently small delay
to support the simulation environment. However, a disadvantage
of the parallel strategy is that each data stream has an individual
socket pair, and a corresponding file descriptors for each of ZMQ
end. In our preliminary study, we could create up to 80 parallel
ZMQ publisher/subscriber pairs. Note that there is default limit of
a single machine that restricts the number of file descriptors. The
default value can be increased at the cost of an increased memory
usage. Herein, we use a single ZMQ publisher/subscriber pair per
communication direction for multiple data streams. This choice can
support hundreds of concurrent data streams with lower complexity
in implementation.

4 ARCHITECTURE

The architecture of FlyNetSim as depicted in Fig. 2, consists of the
following major components: the FlySim component that initiates
the UAVs, GCS, and the visualization tools; the NetSim component
simulates the end-to-end network infrastructure and environment
(including non-UAV nodes); the Autogen component creates a map
between the UAV components (including sensors) and the corre-
sponding network nodes, and the interfaces and other infrastructure
needed by the NetSim; and a Middleware component supporting
ZMQ-based bidirectional communications through the network. In
the following, we describe in detail these components.

1) FlySim: FlySim is the top layer of the architecture, and contains
the UAV and GCS node(s) running on the native host machine. The
module instantiates the number of UAVs defined in the user input.
Each instantiated UAV corresponds to a simulated vehicle in the
SITL simulator based on Ardupilot. Thus, each vehicle is accompa-
nied by a vector state indicating variables such as position, battery
state, telemetry and sensor information. The GCS side contains a

40

custom graphical user interface (GUI) to configure and control the
UAVs to be created, and track their positions and other information
from the telemetry.

2) NetSim: The NetSim component creates an interface with NS-3,
integrated with ZMQ and other necessary libraries based on the
configuration of communications in the simulated environment.
The interface creates nodes such that there is one-to-one corre-
spondence between each UAV in Flysim and a node in NetSim.
Moreover, it enables the UAVs to be equipped with multiple wire-
less interfaces, e.g., WiFi and LTE, D2D. NetSim also configures
the network environment in terms of congestion and interference
from nodes outside of FlySim based on user input. The user can
define the number of interfering nodes, their position, traffic rate,
data statistics and technology. The module allows the use of any
wireless protocol or strategy supported by NS-3, including ad-hoc
point-to-point communications between the UAVs or infrastructure
based communications over technologies such as LTE or WiFi. Fi-
nally, the NetSim module also handles mobility within the wireless
network based on the actual mobility of the UAVs retrieved from
the FlySim.

3) Autogen: The Autogen component is responsible for automatic
code generation in the FlySim and NetSim based on the input de-
fined by the user in the graphic interface within the GCS. The
module creates an XML file based on the input, which is passed to
the NetSim as its arguments to create the nodes.

4) Middleware: The middleware interconnects the FlySim and Net-
Sim via communication over ZMQ, creating the end-to-end data
path for individual data streams from the GCS to the UAVs and
vice versa. As both the GCS and the UAV application softwares
are located outside the NetSim, the middleware needs to be used
at both ends of the NetSim. We name the parts of the middleware
as north-bound and south-bound middleware. The north-bound

Session: Network Simulators

part connects the NetSim to the UAVs, whereas the south-bound
connects the GCS to the NetSim. As described in the previous sec-
tion, we use one ZMQ publisher/subscriber pair for communication
in each direction for each of north-bound and south-bound mid-
dleware. The middleware is also responsible for synchronization
between the FlySim and NetSim block as described in the following.

4.1 Synchronization

NS-3 is a discrete event-driven simulator, whose scheduler typically
executes the events sequentially without synchronizing with an
external clock. On the other hand, ArduPilot is a real-time operator,
where the temporal evolution of the UAVs’ state follows the external
clock. To solve this disparity, we use the real-time scheduler in NS-3,
which aligns the processing of scheduled events with their actual
time. However, we remark that in dense simulations the scheduler
may actually be “late” with respect to the clock. In this case, either
synchronization is lost (“Besteffort") or late events are discarded
(“Hardlimit").

We embed in FlyNetSim middleware’s additional steps to ensure
synchronization between the two simulators by timestamping each
packets flowing through NS-3. Fig. 3 shows the message flow across
the different layers of the simulators to preserve synchronization
between the network and UAV operations. Let ty be state of the sys-
tem clock at the time when a packet enters the NS-3 environment,
and A the difference between the submission and reception time,
that is, the network propagation time. When the packet exits NS-3,
we acquire the system time #1. If (#; — #p) is smaller than A, i.e., the
network event processing is faster than real-time, the middleware
waits an additional (A + fo — t1) interval to release the packet to
ArduPilot.

In the case in which the NS-3 scheduler falls behind real-time,
we propose to “freeze” the UAV simulator to match the elapsed time
with the current clock time. Note that this is critical to preserve
an accurate reconstruction of flight dynamics and inner state (e.g.,
residual battery charge) evolution with respect to network events.
The idea is to take a snapshot of the vehicle state after the com-
pletion of last command and recreate the simulation at the correct
time. This will avoid the simulator performing actions for a longer
time than prescribed.

4.2 Mobility

FlyNetSim matches the actual dynamics of the UAV in the FlySim
with the position of the corresponding wireless nodes in NS-3. This
is realized by intercepting the variables indicating the position,
speed and direction in the telemetry flow at its creation, thus avoid-
ing the, possibly large, time needed to receive the actual telemetry
packets through the network. Note that telemetry is not created
in response to commands, but, instead, in response to any update
in the state of the vehicles. This ensures an accurate matching
between the two simulators, where the network counterpart has
the same granularity of representation of UAV dynamics as the
UAV simulator. Note that non-UAV nodes in NS-3 can use available
mobility models, such as constant position, constant speed, random
walk, etc.

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

Southbound NS3 AP/ Northbound
GCS APP NS3 GCS NS3 UAV UAV APP
‘ ZMQ eNodeB zZMQ
Polling Info about
Control Command The best network ‘Snapshot of last
status of the UAV
Control message >Remz os’«an
from ZMQ pub/sub Tessage, 0
Choose
‘appropriate
Network
Send packet to
base station/AP Network packet
‘Propagation Record End
time of
‘message, t1
Analyze | Control message
>ve'work to ZMQ pub/sub
dynamics Control ms:
Poliing Info about Gelvered to UAV
Snapshot of last The best network
status of the GCS Telemetry/Sensor
" Dawm

Record msg
start ume<
Choose
[appropriate,
Network
Update

mobility
information

Telemetry/Sensor
messages from
ZMQ pub/sub

Send packet to

Network packet base station/AP

Record msg
end time <
Telemetry/Sensor

messages to ZMQ
pub/sub

Synchronization

Telemetry/Sensor datal

delivered to GCS

Figure 3: Message flow across the FlyNetSim architecture

4.3 Implementation

The implementation of FlyNetSim is based on C/C++ and Python.
Specifically, we integrate the “libzmq" Python library with the UAV
simulator and the “libczmq" library bindings with NS-3. The net-
work simulator is realized with two parallel threads which contin-
uously listen for messages from the GCS and UAVs, respectively.
The module within the NS-3 code that sets the position of the UAVs
based on the telemetry data received from the external ZMQ in the
listening thread, is based on the Haversine formula [28].

On the application side, each UAV is instantiated using a thread
running the UAV simulator based on ArduPilot. We use Dronekit [1]
to operate the UAVs following the Micro Air Vehicle Link (MAVLink)
protocol [15] that includes pitch, roll, and yaw movements. The
custom GCS is created along with a GUI written in Python that can
be easily integrated with “pymavlink" libraries as well as receiving
telemetry informations using MAVLink.

5 CASE STUDIES AND NUMERICAL
EVALUATION

We provide a series of case-study scenarios to illustrate the capabil-
ities of FlyNetSim to capture fine-grain interdependencies between
communication/networking and UAV operations, as well as to sim-
ulate a wide range of rich network and IoT environments.

5.1 Case Study I: Single UAV over WiFi

In this first case study scenario, we consider a single UAV commu-
nicating with the GCS over WiFi. This simple scenario has been
modeled using other integrated UAV/network simulators to evalu-
ate the effect of mobility on bidirectional communications. However,
FlyNetSim allows the inclusion of other nodes injecting traffic into
the network, thus creating congestion.

First, we assume the UAV hovers to maintain a constant position
at a fixed distance from the WiFi Access Point (AP). The simulation
accurately models the control messages sent from the GCS to a
single instance of UAV through the GUI panel as depicted in Fig. 4.
The figure also shows the control and telemetry logs on the GUL In

41

Session: Network Simulators

Status : Takeoff Complete
GPS: lat=-35.3632612,lon=149.1652291,alt=:
Battery: voltage=12.242,current=25.34 level=88

Mode: | GuUIDED =

speed (m/s): [5

Goto (m): X- [o ¥- o Go
Py up
10 |2 < >
Land RTL v Down
Control Messages:
@@@G_000+*+132++*1526858404.26**COMMAND:HEARTBEA || | #lacation.alobal_frame] =
T_MESSAGE**+ LocationGlobal:lat——35.3632614,lon=149.165229,alt=503.98 #last
_heartbeat|0.313680269001#battery]
@@@G_000**+133+++1526858404.76* - *COMMAND: HEARTBEA Battenyvoltage=12.242,current=25.42 level=88#veloity|[-0.03,
T_MESSAGE*++ 0.05, -0.01[#attitude|
Attitude:pitch=0.00242 508528754 yaw="0.108435384929,r0l1-0.
@@@G_D00***134+++1526858405.264* *COMMAND: HEARTEEA 000352312257746#airspecd|0.0299999993204#groundzpeed]
T_MESSAGE**+ 0.029999959320 4heading| 353+ +55412+++O54 14+
@@EG 000+1+135+41526858405.76+4* COMMAND HEARTEEA @E@U_000++DISTANCE++0.0445277957204+4-0.1663752495
ESSAGE" 78-+*35412+*984 16~
E@E@G_000+*+136+++1526858406.26+* *COMMAND: HEARTEEA @@ @U_000+++583+++1526858407.41+**TELEMETRY #location.glo
T_MESSAGE*"* o relaEive.Framel.
LocationCloba Relative lat=-35.3632612, lon=145.1652291 alt=5.9
@@@G_000**+137++*1526858406.76* *COMMAND:HEARTBEA s#location.global_frame|
T_MESSAGE**" LocationGlobal:ai—35.3632612,lon=149.1652291,2lt=503.97#las
t_heartbeat]0.370425839#battery|
©@@@G_000**+138++*1526858407.26**COMMAND: HEARTBEA Battenyvoltage=12.242,current=25.34 level=88#velodity|[-0.02,
" MESSAGE*+ 0.04, 0.0] #attitude|
ALtifudeitch—0.00344022972972 ya--0.112110801041,r0ll-0
@@@G_D00**+139+++1526858407.76+* *COMMAND: HEARTBEA 06561185012 03959:
T_MESSAGE*++ 0055555951055 aeding] 353 <50436- ~-00A0:

Figure 4: GUI Panel for Controls and Telemetry logs

25

No Intérference
5 Interfering Nodes
10 Interfering Nodes ———

Network Propagation Delay (mSec)

50
Packet Sequence Number

60 70

Figure 5: Temporal trace of network delay in response to
variations in channel quality and availability due to con-
tention.

the absence of other traffic, the average packet propagation delay
through the network is approximately 0.24 ms.

We measure the delay in the presence of nodes contending for
the channel resource in the WiFi network, where each node has a
traffic arrival rate of 10 Mbps and each packet is 1000 bytes long.
Fig. 5 shows a temporal trace of the network delay of control packets
generated at the GCS and propagating through the network to the
UAV. We use adaptive data rate for the WiFi channel in NS-3. In the
absence of interference, the total delay is below 1 ms. When the
number of contending nodes is set to 5 and 10 the delay increases
to an average of approximately 4.20 ms and 7.06 ms, respectively.
Note that the delay presents significant variations over time due to
channel contention and adaptive data rate, where the delay variance
increases with the number of contending nodes. This effect may
create undesirable jitter in the reception of control packets. Fig. 6
depicts the average delay of control packets reception as a function
of the number of nodes contending for channel access.

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

42

40

@ Network Propagation Delay
-8 End-to-end packet delay

w
o
T

n
o

—_
o

o]

Average Packet Delay (mSec)

0 2 4 6 8 10 12
Number of interfering nodes

Figure 6: Network and end-to-end delay as a function of the
number of nodes contending for the channel (excluding the
UAV).

— UAV Trajectory
=== Received Signal Strength (RSS

<]
o
1

[o2]
o

n
o

100

Movement to North (m)
N
o

50
Movement
to East (m)

oo

Movement Sequence

Figure 7: Variation of received signal strength (WiFi) in re-
sponse to the motion of the UAV.

In the same setup, we test the feature of FlyNetSim matching
the position of the UAV in NS-3 to that in the UAV simulator. For
this experiment, we use random movements of the UAV from the
GUI panel, and receive updated latitude and longitude values from
the telemetry. The NetSim component of FlyNetSim converts the
position in distance from the other nodes. We measure the received
signal strength (RSS) of the UAV node from the AP. The blue line in
the Fig. 7 shows the trajectory of the UAV over time in the XY plane
and the dotted red line shows the corresponding decrease in the
RSS value. The fine-granularity correspondence of the RSS in the
simulator to the position of the UAV determined by its operations
enables the development and testing of physical and link layer
protocols.

5.2 Case Study II: Multi-Network Environment

FlyNetSim seamlessly supports heterogeneous wireless network
environments, as well as multiple wireless interfaces at each UAV.
To the best of our knowledge, FlyNetSim is the only integrated
simulator including this feature.

To illustrate this capability, we implemented a multi-network
environment including WiFi and LTE networks, where each UAV
has a WiFi and an LTE interface and the corresponding protocol
stack. In this use case, the GCS can be placed at the network edge,

Session: Network Simulators

20

Control'delay over WiFi ------ j
Telemetry Delay over LTE

|

]
Usage of system resources (%)

Network Propagation Delay (mSec)
(4]

30 0]
Packet Sequence Number

Figure 8: Network delay of control messages (WiFi) and
telemetry (LTE).

i.e., connected to the WiFi AP and the LTE eNodeB. Herein, we
characterize the GCS as a remote host connected to the Evolved
Packet Core (EPC) gateway of the LTE network to support long-
range communication. The autogen module of the simulator creates
the multiple wireless interfaces as defined by the input.

We focus on a scenario where the WiFi network is used to trans-
port control messages from the GCS to the UAVs, and the LTE
network is used to transport telemetry and high volume sensor
data traffic from the UAV to the GCS. Note that case-studies where
the network is dynamically selected based on Quality of Service
(QoS) requirements can be implemented.

In the shown experiments, the WiFi nodes use adaptive data
rate with maximum rate of 54 Mbps. The LTE network is created
using different uplink and downlink frequency bands of 20 MHz
each, and the LTE Frequency Division Duplex (LTE-FDD) mode is
used for transmission. Nakagami channel model is used to model
LTE signal propagation [31]. Specifically, we adopt the trace-based
Extended Pedestrian A (EPA) fading model as indicated in the 3GPP
standard [13]. The LTE network determines the Channel Quality
Index (CQI) and assigns the corresponding Modulation and Cod-
ing Scheme (MCS) for transmission. Fig. 8 depicts the end-to-end
delay of the control data (transmitted over WiFi) and telemetry
data (transmitted over LTE), which average at approximately at
0.24 ms (control packets) and 15 ms (telemetry). We remark that
telemetry information is extracted before its transmission and im-
mediately used to update the position of the UAV, which determines
the channel gain of both LTE and WiFi channels.

5.3 Case Study III: Multi-UAV

This case-study scenario focuses on the simulation of UAV swarms.
First, we compare the scalability of the proposed approach with
that of the approach adopted by AVENS and CUSCUS. Note that
the number of UAVs in AVENS is limited to 20 due to restrictions
in X-Plane, whereas CUSCUS does not have any strict limit, and
was used to simulate up to 30 UAVs.

We tested the scalability of FlyNetSim by instantiating multi-
ple UAVs with basic functionalities, including the transmission of
control messages from the GCS to each UAV and telemetry on the
reverse path. We run the simulator on a laptop with 16 GB of RAM

43

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

al
o

— CPU usage

N
O
T

Memory usage 1

N
o
T

w
(@]
T

w
o
T

15 20 25
Number of UAVs

40

Figure 9: Percentage of system resource usage as a function
of the number of UAVs instantiated in the simulator.

and an Intel Core-i7-6700HQ processor. We could instantiate up
to 70 UAVs communicating using a WiFi network. The maximum
number of UAVs is 40 when LTE network is used, due to limita-
tions imposed in NS-3 in connection with the 40 ms periodicity of
transmissions. However, the value can be increased up to 380 based
on the standard. Our architecture does not impose any restriction
on the number of UAVs, and is only constrained by the available
system resources. Therefore, more than 70 UAVs can be instantiated
with a more powerful computer.

We measure the system resource consumption in terms of mem-
ory and CPU usage as a function of number of UAVs instantiated.
Fig.9 shows that both the CPU usage and memory usage increase
linearly with the number of UAVs. A direct comparison with AVENS
simulator is not possible. However, we compare FlyNetSim resource
usage to that of CUSCUS, which is built on network containers: Fly-
NetSim almost halves CPU usage and substantially reduces memory
usage.

We further demonstrate the capabilities of FlyNetSim by instan-
tiating a use-case where the UAV swarm collaboratively transports
packets to extend network coverage. The UAVs use D2D communi-
cations to form an ad-hoc network and relay messages from and
to the GCS. In the experiment we created 4 UAVs positioned in
a line topology where the UAVs are 50 m apart from each other.
We then measure the network delay as a function of the distance
between the WiFi AP and the closest UAV. Fig. 10 shows that if
packets are directly transmitted to the UAVs the average packet
delay considerably increases as the UAVs approach the border of
network coverage. Intra-swarm D2D communications considerably
extend coverage. Note that a similar scenario was shown in CUS-
CUS, where the UAVs broadcast the messages to the swarm, instead
of forming an ad hoc network based on D2D communications.

5.4 Case Study IV: IoT Applications

Unlike existing integrated network/UAV simulators, FlyNetSim
not only aims at network measurements and UAV control, but
also provides a comprehensive framework for the evaluation of
IoT applications on UAVs. The end-to-end data-path enables the
network simulator to receive and analyze sensor data from the

Session: Network Simulators

N
(=}
T
|

. Infrastructure-based communication

. Device-to-device communication relay

-
(&)}
T
|

Average Packet Delay (ms)
o S

50 100
Distance from Access Point (m)

150

Figure 10: Network delay as a function of the distance be-
tween the closest UAV in the line topology and the WiFi ac-
cess point.

26(

-©- PSNR w.r.t. reference video (zero loss) |

'1 2 1 1 1 1 1
4 5 6 7 8 9

Number of interfering nodes (x 10 Mbps)

Figure 11: PSNR as a function of the number of nodes con-
tending the channel in the WiFi network.

UAVs and measure the QoS granted by different network scenarios
and technologies. We observe that FlyNetSim can also integrate
real-time processing of data, thus enabling the exploration of edge-
assisted IoT architectures.

We implement and test a scenario where FlyNetSim is used to
support streaming of real-world encoded videos over the network
simulator, where packet loss creates artifacts and impair the per-
formance of processing algorithms. To the best of our knowledge,
all available integrated UAV simulators do not support end-to-end
encoded data transmission, especially over an articulated network
infrastructure and a wide range of scenarios. In the experiments
we used a H.264 AVC [29] encoded video of 624 frames with a
resolution of 480 pixels and frame rate of 30 frames per second.
We used the MPEG Transport Stream (TS) container for the trans-
mission of the video. We set the network so that in the absence
of contending nodes packet loss has very low probability and the
video is delivered with perfect quality. Fig. 11 illustrates the degra-
dation of the Peak Signal-to-Noise Ratio (PSNR) at additional nodes
contending for the channel resource are introduced in the network.
With 10 additional nodes, the video stream incurs a PSNR degra-
dation of more than 13 dBs. Fig. 12 shows the inter-frame time

44

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

0.14

Inter frame time of video frames
>0.33 ms causes stall in streaming

o
e
N

o o

o o ©

d ® =
; ; ;

Inter frame time (ms)
S
=

0 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11

Number of interfering nodes (x 10Mbps)

Figure 12: Inter frame time of video frames at the decoder
as a function of varying number of nodes contending the
channel in the WiFi network.

Figure 13: Emulation mode where FlyNetSim is run on-
board a 3DR Solo UAV.

defined as the time lapse between consecutive frames. As the video
in the experiment has a frame rate of 30 frames per second, the
expected average inter-frame time is 0.033 ms. As the number of
nodes contending the channel resource increases, the inter-frame
time increases compared to the expected value.

6 EMULATION MODE

FlyNetSim supports an “emulation mode”, where a real UAV can
communicate with external or simulated resources through the
network simulator. This mode still uses all the components of the
simulator, including the GCS and GUI panel, the middleware and
NetSim, but the simulated UAV vehicle is replaced by a real-world
UAV. We demonstrate the emulation mode by connecting a UAV
3DR Solo via USB serial to the laptop running the FlyNetSim as
shown in Fig. 13. A similar configuration would enable on-board
simulations during flight, for instance using a compact platform
such as a Raspberry PI instead of the laptop. Fig. 14 shows the GUI
panel as telemetry regarding battery status, GPS location, etc., is
received through the simulated network. The network simulator
panel shows the log of the packet flow across the simulator from
the UAV to the GCS. Note that the experiment was conducted

Session: Network Simulators

ges Telemetry Messages:
G_000*++1#++1527019495.88 | me|
-COMMANDICONNECT*+ LocationGlobalat=0.0,lon=0.0,alt
=1.43#last_heartbeat|
0.676817973#battery|
Battery:voltage=15.065,current=0
53, level=207velocity|[0.02, 0.0,
0.0Jsattitude|
Attituderpitch=0.0007124971598
39,yaw=11.8316129446,r0ll=0.014
5708629861 #airspeed|
0.0#groundspeed|0.0heading|
255#%++55199+++55201 %+

[ZMQ] Publisher bound complete tcp://127.0.0.1:5600
[ZMQ] Subscriber connect started tcp://127.0.0.1:5601
[ZMQ] Subscrib connect complete tcp://127.0.0.1:5601 Prefix @e@G 000
.5.3 (05a123b0)
d48fa307

: QUAD
>>> PX4v2 00350031 32355103 34393433

Figure 14: Emulation telemetry output from 3DR Solo UAV

indoor, where the GPS signal is not available, and thus the latitude,
longitude values are shown as zero.

7 CONCLUSIONS

The primary contribution of this paper is a fully open source, inte-
grated UAV-network simulator capable to support a wide range of
network scenarios and use-cases while accurately modeling UAV
operations. The architecture uses a lightweight custom built mid-
dleware to effectively simulate the UAV network with closed loop,
synchronized, end-to-end data-paths, considerably reducing system
resources usage compared to other available integrated simulators.
Additionally, the support for emulation mode enables experimental
research using real-world UAVs and sensor devices over simulated
complex environments such as the urban IoT. We demonstrated the
capabilities of the proposed simulator through a series of case study
scenarios, including multi-technology networking, intra-swarm
D2D communications and IoT data streaming.

ACKNOWLEDGMENTS

The work is partially supported by the National Science Foundation
under Grant No.: IIS-1724331.

REFERENCES

[1] DroneKit-Python Documentation 3D Robotics. 2015. "http://python.dronekit.io"

[2] Alberto Alvarez, Rafael Orea, Sergio Cabrero, Xabiel G Pafieda, Roberto Garcia,

and David Melendi. 2010. Limitations of Network Emulation with Single-Machine

and Distributed ns-3. In Proceedings of the 3rd International ICST Conference on

Simulation Tools and Techniques. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 67.

ArduPilot. 2016. SITL Simulator (Software in the Loop).

NAVIO2 Autopilot. 2018. "https://emlid.com/navio/"

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog

Computing and its Role in the Internet of Things. In Proceedings of the first edition

of the MCC Workshop on Mobile Cloud Computing. ACM, 13-16.

[6] Xinjie Chang. 1999. Network Simulations with OPNET. In Proceedings of the
31st conference on Winter simulation: Simulation—a bridge to the future-Volume 1.
ACM, 307-314.

[7] Milan Erdelj, Enrico Natalizio, Kaushik R Chowdhury, and Ian F Akyildiz. 2017.
Help from the sky: Leveraging UAVs for Disaster Management. [EEE Pervasive
Computing 16, 1 (2017), 24-32.

COHENE)

—_

MSWiM’18, October 28-November 2, 2018, Montréal, Québec, Canada

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The many faces of publish/subscribe. ACM computing surveys (CSUR)
35, 2 (2003), 114-131.

Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph
Kopena. 2008. Network Simulations with the ns-3 Simulator. SIGCOMM demon-
stration 14, 14 (2008), 527.

Nathan Koenig and Andrew Howard. 2004. Design and Use Paradigms for Gazebo,
an Open-Source Multi-Robot Simulator. In Proceedings of IEEE/RSY International
Conference on Intelligent Robots and Systems, 2004.(IROS 2004), Vol. 3. IEEE, 2149-
2154.

Philip Levis, Nelson Lee, Matt Welsh, and David Culler. 2003. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In Proceedings of the 1st
international conference on Embedded networked sensor systems. ACM, 126-137.
Flair: Framework libre air. 2016. "https://develhds.utc.fr/software/flair"

ETSI Lte. 2009. Evolved universal terrestrial radio access (e-utra); base station
(bs) radio transmission and reception (3gpp ts 36.104 version 8.6. 0 release 8),
july 2009. ETSI TS 136, 104 (2009), V8.

Emerson Alberto Marconato, Mariana Rodrigues, Rayner de Melo Pires,
Daniel Fernando Pigatto, C Querino Luiz Filho, Alex Roschildt Pinto, and
Kalinka RLJC Branco. 2017. AVENS-A Novel Flying Ad Hoc Network Simulator
with Automatic Code Generation for Unmanned Aircraft System. In Proceedings
of the 50th Hawaii International Conference on System Sciences.

Lorenz Meier, J Camacho, B Godbolt, J Goppert, L Heng, M Lizarraga, et al.
2013. Mavlink: Micro Air Vehicle Communication Protocol. Online]. Tillgdnglig:
http://qgroundcontrol. org/mavlink/start.[Himtad 2014-05-22] (2013).

Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer,
and Marc Pollefeys. 2012. PIXHAWK: A Micro Aerial Vehicle Design for Au-
tonomous Flight using Onboard Computer Vision. Autonomous Robots, Springer
33,1-2 (2012), 21-39.

Enrico Natalizio, Dave Cavalcanti, Kaushik Chowdhury, and Mostafa El Said.
Elsevier 2018. Advances in Wireless Communication and Networking for Coop-
erating Autonomous Systems.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: An Open-Source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.
George F Riley and Thomas R Henderson. 2010. The ns-3 Network Simulator. In
Modeling and tools for network simulation. Springer, 15-34.

3D Robotics. 2015. "https://3dr.com/solo-drone/"

Erle Robotics. 2018. "https://www.erlerobotics.com"

Z. Shaikh, S. Baidya, and M. Levorato. 2018. Robust Multi-Path Communications
for UAVs in the Urban IoT. In 2018 IEEE International Conference on Sensing,
Communication and Networking (SECON Workshops). 1-5.

H-SIM Flight Simulator. 2016. "http://www.h-sim.com"

Ardupilot ~ SITL. 2016. "http://ardupilot.org/dev/docs/
sitl-simulator- software-in-the-loop.html"

Giovanna Sona, Daniele Passoni, Livio Pinto, Diana Pagliari, Daniele Masseroni,
Bianca Ortuani, and Arianna Facchi. 2016. UAV Multispectral Survey to map
soil and crop for Precision Farming Applications. The International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences 41 (2016), 1023.
Ardupilot Autopilot suite. 2016. "http://ardupilot.com/"

Andras Varga and Rudolf Hornig. 2008. An Overview of the OMNeT++ Simulation
Environment. In Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 60.

Chris Veness. 2011. Calculate Distance and Bearing between two Lati-
tude/Longitude Points using Haversine Formula in JavaScript. Movable Type
Scripts (2011).

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560-576.

Qingqing Wu, Yong Zeng, and Rui Zhang. 2018. Joint Trajectory and Communi-
cation Design for multi-UAV enabled wireless Networks. IEEE Transactions on
Wireless Communications 17, 3 (2018), 2109-2121.

Kun-Wah Yip and Tung-Sang Ng. 2000. A simulation model for Nakagami-
m fading channels, m< 1. IEEE Transactions on Communications 48, 2 (2000),
214-221.

Nicola Roberto Zema, Angelo Trotta, Guillaume Sanahuja, Enrico Natalizio,
Marco Di Felice, and Luciano Bononi. 2017. CUSCUS: An Integrated Simulation
Architecture for Distributed Networked Control Systems. In 14th IEEE Annual
Consumer Communications & Networking Conference (CCNC), 2017. IEEE, 287-
292.

