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This paper presents a measurement of jet fragmentation functions in 0.49 nb~! of Pb+Pb collisions and 25 pb~!
of pp collisions at \/syy = 5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements
provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultrarelativistic
collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the
measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function
of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems,
the jet fragmentation functions are measured for jets with transverse momentum between 126 and 398 GeV and
with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the
jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields
of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these
two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of
the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is

observed.
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I. INTRODUCTION

Ultrarelativistic nuclear collisions at the Large Hadron Col-
lider (LHC) produce hot dense matter called the quark-gluon
plasma (QGP); recent reviews can be found in Refs. [1,2].
Hard-scattering processes occurring in these collisions pro-
duce jets which traverse and interact with the QGP. The study of
modifications of jet rates and properties in heavy-ion collisions
compared to pp collisions provides information about the
properties of the QGP.

The rates of jet production are observed to be reduced
by approximately a factor of 2 in lead-lead (Pb+Pb) colli-
sions at LHC energies compared to expectations from the jet
production cross sections measured in pp interactions scaled
by the nuclear overlap function of Pb+Pb collisions [3-5].
Similarly, back-to-back dijet [6—8] and photon-jet pairs [9] are
observed to have unbalanced transverse momentum in Pb+-Pb
collisions compared to pp collisions. Related phenomena
were first observed at the Relativistic Heavy Ion Collider
where the measurements were made with hadrons rather than
reconstructed jets [ 10—12]. These observations imply that some
of the energy of the parton showering process is transferred
outside of the jet through its interaction with the QGP. This
has been termed “jet quenching.”
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The distribution of particles within the jet are affected by
this mechanism of energy loss. Several related observables
sensitive to the properties of the medium can be constructed.
Measurements of the jet shape [13] and the fragmentation
functions were made in 2.76 TeV Pb+Pb collisions [14—16].
In Ref. [16], jet fragmentation functions are measured as a
function of both the charged-particle transverse momentum
pr and the charged-particle longitudinal momentum fraction
relative to the jet,

z=prcos AR/ pjTCl. (1)
The fragmentation functions are defined as
1 dn
D(z)= — —<
Ivjet dz
and
1 dn
D(pr) = =,
Ivjet de

where pJTet is the transverse momentum of the jet, n¢y, is the
number of charged particles in the jet, Nje is the number of
jets under consideration, and AR = /(An)? + (A¢)? with
An and A¢ defined as the differences between the jet axis and
the charged-particle direction in pseudorapidity and azimuth,'

'ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the center of the detector and the z
axis along the beam pipe. The x axis points from the IP to the center of
the LHC ring, and the y axis points upward. Cylindrical coordinates
(r, ¢) are used in the transverse plane, ¢ being the azimuthal angle
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respectively. In order to quantify differences between Pb+-Pb
and pp collisions at the same collision energy, the ratios of the
fragmentation functions are measured:

R — D@eoey
D) = D(Z)pp ’
and
R _ D(pr)evpy
D(pr) = D(PT)pp :

Relative to jets in pp collisions, it was found in Ref. [16]
that jets in Pb+-Pb collisions have an excess of particles with
transverse momentum below 4 GeV and an excess of particles
carrying a large fraction of the jet transverse momentum. At
intermediate charged-particle pr, there is a suppression of
the charged-particle yield. At the same time, an excess of
low-pr particles is observed for particles in a wide region
around the jet cone [17,18]. These observations may indicate
that the energy lost by jets through the jet quenching process
is being transferred to soft particles within and around the
jet [19,20]; measurements of these soft particles have the
potential to constrain the models describing such processes. A
possible explanation for the enhancement of particles carrying
a large fraction of the jet momentum is that it is related
to the gluon-initiated jets losing more energy than quark-
initiated jets. This leads to a higher quark-jet fraction in Pb+Pb
collisions than in pp collisions. The change in flavor compo-
sition combined with the different shapes of the quark and
gluon fragmentation functions [21] then lead to the observed
excess.

Proton-nucleus collisions, which do not generate a large
amount of QGP, are used to differentiate between initial- and
final-state effects due to the QGP formed in Pb+Pb collisions.
Fragmentation functions in p+Pb collisions show no evidence
of modification when compared with those in pp collisions
[22]. Thus, any modifications observed in Pb+Pb collisions
can be attributed to the presence of the QGP rather than to
effects arising from the presence of the large nucleus.

The rapidity dependence of jet observables in Pb+Pb
collisions is of great interest, in part because at fixed pJTet the
fraction of quark jets increases with increasing |y!| (see, for
example, Refs. [21,23]). This makes the rapidity dependence of
jetobservables potentially sensitive to the different interactions
of quarks and gluons with the QGP. Previous measurements
of the rapidity dependence of jet fragmentation functions
at /syy = 2.76 TeV in Pb+Pb collisions found a rapidity
dependence of the fragmentation function modification with
limited significance [16].

In this paper, the fragmentation functions and the Rpz)
and Rp(,,) ratios are measured in Pb+Pb and pp collisions
at 5.02 TeV using 0.49 nb~! of Pb+Pb collisions and 25 pb~!
of pp collisions collected in 2015. Jets are measured over a

around the beam pipe. The pseudorapidity is defined in terms of the
polar angle 0 as n = —Intan(6/2). The rapidity is defined as y =
0.5In[(E + p;)/(E — p;)] where E and p, are the energy and the
component of the momentum along the beam direction.

rapidity range of || < 2.1 using the anti-k; reconstruction al-
gorithm [24] with radius parameter R = 0.4. The measurement
is presented in intervals of pJTe[, yie, and collision centrality.
These data extend the previous studies at ,/syy = 2.76 TeV in
two ways. First, an increase in the peak energy density of the
medium is expected. Second, the Pb+-Pb integrated luminosity
in the current dataset is 3.5 times the integrated luminosity
available at 2.76 TeV, and the increase in the collision energy
also increases the jet cross sections. These two factors allow a
measurement of the dependence of jet fragmentation functions
on the transverse momentum of the jet over a wider range than
was previously possible.

II. EXPERIMENTAL SETUP

The measurements presented in this paper were performed
using the ATLAS inner detector, calorimeter, trigger, and data
acquisition systems [25]. The calorimeter system consists of a
sampling liquid argon (LAr) electromagnetic (EM) calorime-
ter covering |n| < 3.2, a steel/scintillator sampling hadronic
calorimeter covering |n| < 1.7, LAr hadronic calorimeters
covering 1.5 < |n| < 3.2, and two LAr forward calorimeters
(FCal) covering 3.1 < |n| < 4.9 [25]. The EM calorimeters
are segmented longitudinally in shower depth into three layers
with an additional presampler layer. They have segmentation in
¢ and n that varies with layer and pseudorapidity. The hadronic
calorimeters have three sampling layers longitudinal in shower
depth.

The inner detector measures charged particles within the
pseudorapidity interval || < 2.5 using a combination of sil-
icon pixel detectors, silicon microstrip detectors (SCTs), and
a straw-tube transition radiation tracker (TRT), all immersed
in a 2 T axial magnetic field [25]. Each of the three de-
tectors is composed of a barrel and two symmetric endcap
sections. The pixel detector is composed of four layers: the
“insertable B layer” [26,27] and three layers with a pixel size of
50 um x 400 pum. The SCT barrel section contains four layers
of modules with 80 um pitch sensors on both sides and each
endcap consists of nine layers of double-sided modules with
radial strips having a mean pitch of 80 um. The two sides of
each SCT layer in both the barrel and the endcaps have arelative
stereo angle of 40 mrad. The TRT contains up to 73 (160)
layers of staggered straws interleaved with fibers in the barrel
(endcap).

The zero-degree calorimeters (ZDCs) are located sym-
metrically at z = £140 m and cover |n| > 8.3. They are
constructed from tungsten absorber plates and Cerenkov light
is transmitted via quartz fibers. In Pb+Pb collisions the ZDCs
primarily measure “spectator’” neutrons, i.e., neutrons that do
not interact hadronically when the incident nuclei collide. A
ZDC coincidence trigger is implemented by requiring the pulse
height from each ZDC to be above a threshold set to accept the
single-neutron peak.

A two-level trigger system is used to select the Pb+Pb and
pp collisions. The first trigger level (1) is hardware-based
and implemented with custom electronics. The second level
is the software-based high-level trigger (HLT) and is used to
further reduce the accepted event rate. Minimum-bias Pb+Pb
events are recorded using a trigger defined by the logical OR
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of a L1 total energy trigger and the ZDC coincidence trigger.
The total energy trigger required the total transverse energy
measured in the calorimeter system to be greater than 50 GeV
in Pb+Pb collisions. Jet events are selected by the HLT, after
requiring the identification of a jet by the L1 jet trigger in
pp collisions or the total energy trigger with a threshold of
50 GeV in Pb+Pb collisions. The L1 jet trigger utilized in
pp collisions required a jet with transverse momentum greater
than 20 GeV. The HLT jet trigger used a jet reconstruction
algorithm similar to that used in the offline analysis (the offline
jet reconstruction is discussed in Sec. IV). It selected events
containing jets with transverse energy of at least 75 GeV in
Pb+Pb collisions and at least 85 GeV in pp collisions. In pp
collisions, the 85 GeV threshold jet trigger sampled the full
delivered luminosity. The 75 GeV threshold jet trigger used in
Pb+Pb collisions was prescaled? in a small part of the Pb+Pb
data-taking period; however, the trigger sampled more than
99% of the total integrated luminosity. The measurement is
performed in the jet transverse momentum region where the
triggers are fully efficient.

II1. DATA SETS AND EVENT SELECTION

The Pb+Pb and pp data used in this analysis were recorded
in2015. The data samples consist of 25 pb~! of \/s = 5.02 TeV
pp data and 0.49 nb~!' of \/syy =5.02 TeV Pb+Pb data.
In Pb+Pb and pp collisions, events are required to have a
reconstructed vertex within 150 mm of the nominal interaction
point along the beam axis. Only events taken during stable
beam conditions and satisfying detector and data-quality re-
quirements, which include the calorimeters and inner tracking
detectors being in nominal operation, are considered.

In Pb+4-Pb collisions, the event centrality reflects the overlap
area of the two colliding nuclei and is characterized by ¥ EXC¥,
the total transverse energy deposited in the FCal [28]. The
centrality intervals used in this analysis are defined according
to successive percentiles of the X EXC distribution obtained
from minimum-bias triggered Pb+Pb events ordered from the
most central (highest ¥ EX4) to the most peripheral collisions
(lowest X EXC): 0-10%, 10-20%, 20-30%, 30-40%, 40—
60%, 60-80%.

In addition to the jet-triggered sample, a separate Pb+Pb
data sample was recorded with the minimum-bias trigger and
two total transverse-energy triggers requiring 1.5 and 6.5 TeV
to enhance the rate of more central Pb+Pb events. This data
sample is used to produce a Pb+Pb Monte Carlo (MC) events
with conditions that match those registered while the data were
recorded.

The performance of the detector and of the analysis
procedure in Pb+Pb collisions is evaluated using 1.8 x 107
5.02 TeV MC events. These were produced from minimum-
bias Pb+Pb data events overlaid with hard-scattering dijet
pp events generated with POWHEG+PYTHIAS [29,30] using
a set of tuned parameters called the Al4 tune [31] and the

>The prescale indicates which fraction of events that passed the
trigger selection was selected for recording by the data acquisition
system.

NNPDF23LO parton distribution function (PDF) set [32]. The
detector response was simulated using GEANT4 [33,34] and
the simulated hits were combined with those from the data
event. A weight is assigned to each MC event such that the
event sample obtained from the minimum-bias trigger has the
same centrality distribution as the sample collected by the jet
trigger. A separate sample of 1.8 x 107 simulated 5.02 TeV
PYTHIAS pp hard-scattering events, generated with the same
tune and PDFs as for the Pb+-Pb MC sample, is used to evaluate
the performance for measuring fragmentation functions in the
pp data. The contribution from additional collisions in the
same bunch crossing is not included in the MC simulation. A
sample of Pb+-Pb events generated with HIJING version 1.38b
[35] is also used to evaluate the performance of the track
reconstruction.

IV. JET AND TRACK SELECTION

The jet reconstruction, underlying event (UE) determina-
tion, and subtraction procedures closely follow those used by
ATLAS for jet measurements in pp and Pb+Pb collisions at
sy = 2.76 TeV [4]. The anti-k, algorithm is first run in four-
momentum recombination mode, on An x A¢ = 0.1 x 0.1
calorimeter towers with the anti-k, radius parameter R = 0.2
and R = 0.4. The energies in the towers are obtained by sum-
ming the energies of calorimeter cells at the electromagnetic
energy scale within the tower boundaries. Then, an iterative
procedure is used to estimate the n-dependent UE transverse
energy density on an event-by-event basis using the energy
measurements in all calorimeter towers in the event while
excluding the regions populated by jets. The resulting UE
transverse energy density is modulated taking into account the
presence of the azimuthal anisotropy of particle production
[36]. The modulation includes contributions of the second-,
third-, and fourth-order azimuthal anisotropy harmonics.
Higher-order harmonics introduce negligible variation of the
reconstructed jet energy. The UE transverse energy is sub-
tracted from each calorimeter cell within the towers included
in the reconstructed jet, and the four-momentum of the jet is
updated accordingly. Then, a jet n- and pr-dependent correc-
tion factor to the p)' derived from the simulation samples is
applied to correct for the calorimeter energy response [37]. An
additional correction based on in situ studies of jets recoiling
against photons, Z bosons, and jets in other regions of the
calorimeter is applied [38,39]. The same jet reconstruction
procedure without the azimuthal modulation of the UE is also
applied to pp collisions.

Jets are required to have a rapidity within |y’°'| < 2.1 so that
all R = 0.4 jet cones are contained within the inner detector’s
acceptance. To prevent neighboring jets from distorting the
measurement of the fragmentation functions, jets are rejected if
there is another jet with higher py * anywhere within a distance
AR < 1.0. A correction is applied to reduce the effects of
the broadening of the jet direction measurement for R = 0.4
jets due to the UE. The correction uses jets reconstructed
with a smaller distance parameter R = 0.2 since their angular
resolution evaluated in MC studies is found to be less affected
by the UE fluctuations than that of larger-R jets. The jet
direction is redefined as that of the closest R = 0.2 jet with
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jet-pr intervals (left) and in Pb+-Pb collisions (right) in two different jet- pr intervals and for 0-10% and 60-80% centrality intervals. In both

plots the efficiency is evaluated for tracks within jets with |y*'| < 0.3.

pJTet > 35 GeV and matching the original jet direction within
AR = 0.3 of the R = 0.4 jet, when such a matching jet is
found. If no matching R = 0.2 jet is found the axis remains
unchanged.

Charged-particle tracks are reconstructed from hits in the
inner detector using the track reconstruction algorithm with
settings optimized for the high hit density in heavy-ion colli-
sions [40]. Tracks used in this analysis are required to have a
total of at least 9 (11) hits in the silicon pixel and microstrip
detectors for charged particles with pseudorapidity || <
1.65(|n"| > 1.65). Atleast one hit is required in one of the two
innermost pixel layers. If the track trajectory passed through
an active module in the innermost layer, then a hit in this layer
is required. Furthermore, a track must have no more than two
holes in the Pixel and SCT detectors together, where a hole is
defined by the absence of a hit predicted by the track trajectory.
All charged-particle tracks used in this analysis are required
to have reconstructed transverse momentum p§' > 1 GeV. In
order to suppress the contribution from secondary particles, the
distance of closest approach of the track to the primary vertex
in the transverse plane is required to be less than a value which
varies from 0.45 mm at p$" = 4 GeV to 0.2 mm at p$! = 20
GeV, and at that point the track must be less than 1.0 mm from

the primary vertex in the longitudinal direction.

The efficiency, e(pih, pjTet, yiet), for reconstructing

charged particles within jets in Pb+Pb and pp collisions
is evaluated from the matching of reconstructed tracks to
generator-level primary particles® using MC samples described
above. The matching is based on contributions of generator-
level particles to the hits in the detector layers. A reconstructed
track is matched to a generator-level particle if it contains
hits produced primarily by this particle [34]. The efficiency
is evaluated separately in four | yi°| intervals and each interval
of reconstructed pJTet used in the measurement. Furthermore,
the efficiency is evaluated separately for each centrality in-
terval in the case of Pb+Pb collisions. The charged-particle

3Primary particles are defined as particles with a mean lifetime
T > 0.3 x 1070 s either directly produced in pp interactions or
from subsequent decays of particles with a shorter lifetime. All other
particles are considered to be secondary.

reconstruction efficiencies as a function of the generator-level
primary particle transverse momentum, p®", are shown in
Fig. 1 for jets with |y’®*| < 0.3 in pp and Pb+Pb collisions. In
order to remove fluctuations in the efficiency due to the limited
MC sample size, the ptT““h dependence of the efficiencies is
parametrized and smoothed using a third-order polynomial in
In(pith) that gives a good description of the efficiency in the

full range of p‘T““h. The efficiencies shown in Fig. | exhibit

only a modest variation with ptT”"h, centrality, and pjTe ' A small

almost continuous increase of the efficiency with the increasing
piuth js observed. The efficiency over the 20-100 GeV pih

range is smaller for high pJTet compared to low pJTet by about
2% and 5% in pp and Pb+Pb collisions, respectively. This
behavior is attributed to the higher probability to lose tracks in
the dense core of high- pr jets than to lose tracks that are more
isolated [41]. The efficiency is lower in more central Pb+Pb
collisions due to the higher hit density. The efficiency exhibits
only a small variation with y* in the region |y'| < 1.2, and
it decreases by approximately 10% in the most forward y/t
interval.

The contribution of reconstructed tracks which are not be
matched to a generated primary particle in the MC samples
of pp collision events produced without data overlay, along
with the residual contribution of tracks matched to secondary
particles, are together considered “fake” tracks. The fraction
of fake tracks is less than 2% over the full kinematic range
of this measurement. A possible degradation of the tracking
performance at high occupancy is checked in the sample of
Pb+Pb collision events simulated with the HIING MC. No
significant dependence of the rate of fake tracks on centrality is
observed. The correction for the fake contribution is discussed
in Sec. V.

V. ANALYSIS PROCEDURE

The analysis procedure closely follows the one used in the
measurement of jet fragmentation at /syy = 2.76 TeV [16].
Reconstructed tracks are associated with a reconstructed jet if
they fall within AR = 0.4 of the jet axis and for each of these
particles the longitudinal momentum fraction z is calculated.

The measured track yields, dn}*/dz or dn3*™/d psh, are
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constructed as
3 jet
dnrcrklleas B ANch(Z, yJel’ Py )
dz Az

and
dnrcrﬁeas B ANch(p%hv yjel’ pjTet)
dpf Aps

’

where the quantities AN, (z) and ANch(p%h) represent the
number of associated tracks within the given z or p%h range,
respectively corrected for the track reconstruction efficiency.
The efficiency correction is applied as a 1/e(pS, pJTe[, ylet
weight on a track-by-track basis, assuming p$" = p'h. While
that assumption is not strictly valid, the efficiency varies
sufficiently slowly with p‘T“’th that the error introduced by this
assumption is less than 1%.
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Tracks which are not correlated with the jet need to be
subtracted from the measured distributions; these tracks come
from both fake tracks and the UE. In Pb+Pb collisions,
contributions to the fragmentation functions from the charged
particles originating from the UE in Pb+Pb collisions are
subtracted. This contribution is evaluated as a function of
charge particle z or p%h, yiet, pJTet, and the collision centrality.
Additionally, the measured track yields in pp and Pb+Pb
collisions are corrected for the presence of fake tracks.

The UE contribution is determined for each measured jet
using a grid of R = 0.4 cones spanning the full coverage of
the inner detector and following the method introduced in
Ref. [14]. The method is applied to events containing jets
included in the analysis. The cones have a fixed distance
between their centers chosen such that the inner detector
acceptance is uniformly covered while avoiding overlaps.
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Any cone having a charged particle with ps" > 10 GeV or
overlapping with a reconstructed jet with pJTet > 90 GeV is
assumed to be associated with a hard process and is excluded
from the UE estimation to avoid biasing it. The parameters
defining the exclusion regions are evaluated in MC studies
and are subjected to variations as part of the estimation of
systematic uncertainties. The resulting UE charged particle

yields, dnSF /dz or dnlF /d psh, are evaluated over 1 < p%h <
10 GeV accordmg to
dnF 1 I ANS™(. Py

= h ch '
dz Ncone 8([7% P TIC ) Az z=ps" cos AR/pJel
=p§

dnf 1 1 AN (psh, i, yie)
dps  Neone £(pst, n) Apsh

Here Neope is the number of background cones used in the UE
determination of a given jet, ANG" represents the number of
charged particles summed over all background cones, and AR
represents the distance between the center of a cone and the
direction of a given charged particle. The term &( p%h nM)is the
efficiency for reconstructing charged particles, estimated as a
function of p$" and nM without requiring track-to-jet matching.

The estimated contribution from the UE in each cone is
corrected for the difference in the average yield of UE charged
particles at a given p$" between the 1 position of the cone and
n position of the jet. This correction is based on the centrality-,
p%h-, and n-dependent distribution of charged-particle yields
in minimum-bias data events. An additional correction is

applied to the charged-particle UE estimate to account for the
difference in the azimuthal particle density, due to elliptic flow,
between the ¢ angle of the cone and the ¢ angle of the jet. This
utilizes a centrality- and py h_dependent parametrization of the
measured elliptic flow coefficients [36].

The UE contribution is further corrected for the correlation
between the actual UE charged particle yield underneath the
jet and the jet energy resolution [14]; in regions where the
UE has an upward fluctuation, the jet energy resolution is
worse. The smearing due to jet energy resolution leads to a

net migration of jets from lower pT to higher th values.
The effect of the migration causes the actual UE contribution
underneath the jet to be larger than that estimated from the
procedure described above. This effect is corrected for by
applying multiplicative correction factors, depending on p$! or

Z, yje‘, pJTe t, and collision centrality. The correction is estimated
as a ratio of the UE charged particle yield evaluated by two
different methods using the Pb4+Pb MC samples. The first
estimate uses the cone method discussed above. The second
method calculates the UE contribution in the data overlay
MC samples from tracks, within the area of a jet, that do not
have an associated generated primary particle. The size of the
correction is less than 2% at low z or p$! where the UE has the

largest impact, and has only a small dependence on pJTet.

The contribution from fake tracks to the fragmentation
functions is estimated from the MC samples without minimum-
bias interactions overlaid. The fraction of these tracks is found
to be below 2% of the tracks that pass the selection in all track
and jet kinematic regions in this analysis.
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The UE distributions corrected for the additive contribution
of fake tracks, dialFt™/dpsh and dil' ;"¢ /dz, are then
subtracted from the measured dlstrlbutlons, and the subtracted
charged-particle yields and fragmentation functions are evalu-
ated:

dnsub dnmeas dnUEJrfake
dz dz dz
b
DSUb(Z) 1 dn(s:lkll
- Nmeas ’
Jet
and
dnsub - dnrcrllleas d~UE+fake
dp  dpf dps*
1 dnsub
DSUb(p"th) meas g ch’
jet Pr

where N is the total number of measured jets in a given pT

interval. The signal-to-background ratio, nS“b /nCh , strongly
depends on the collision centrality and p$". Figure 2 shows
the distributions prior to the UE and fake-track subtraction,

anmes . . an®®
Chh ,divided by the distributions after the subtraction, Chh s
dp5 dp5

as a function of p5 " for three centrality selections. In 0-10%
central collisions, the distributions prior to subtraction are over
ten times larger than the subtracted distributions for the most
extreme case of 1 GeV charged particles. This ratio is reduced
to approximately 2 in peripheral collisions at the same charged
particle pr. The fake-track contribution to the fragmentation
functions is subtracted from the measured fragmentation func-
tions in both the pp and Pb+-Pb collisions; the UE subtraction
is performed only for the Pb+Pb measurement as the UE
contribution is negligible in the pp collisions (less than 2%
over the entire kinematic range measured).

To remove the effects of bin migration due to the jet energy
and track mornentum resolution, the subtracted dnsub /dz
and dn3®/d ps" distributions are corrected by using a two-
dlmensmnal Bayesian unfolding procedure [42] in z or pr
and pJ ' as implemented in the RooUnfold package [43].
Two-dimensional unfolding is used because the calorimetric jet
energy response depends on the fragmentation pattern of the jet

[44]. Using MC samples, four-dimensional response matrices
are created using the generator-level and reconstructed pJTet,
and the generator-level and reconstructed charged-particle z
or pr. Separate unfolding matrices are constructed for pp data
and each centrality interval in Pb+Pb collisions. A separate
one-dimensional Bayesian unfolding is used to correct the
measured py spectra which are used to normalize the unfolded
unnormalized fragmentation functions, dn2d/dpy and
dn?olded /g7 To achieve better agreement with the data, the
MC jet spectra and fragmentation functions are reweighted to
match the shapes in the reconstructed data. The Bayesian pro-
cedure requires a choice in the number of iterations. Additional
iterations reduce the sensitivity to the choice of prior, but may
amplify statistical fluctuations in the distributions. After four
iterations for both the one-dimensional and two-dimensional
unfoldings the fragmentation functions are stable for both
the Pb+Pb and pp data. The final, particle-level corrected
distributions are defined as

1 d nunfolded

D(z) = |

unfolded
N dz

unfolded
1 dng

D(pr) =
([7 ) le;lfolded d DT

where l\fjﬁé‘t‘f"]ded is the unfolded number of jets in a given pJTet

interval.

The performance of the analysis procedure is tested by
dividing the MC events in half and using one half to generate
response matrices with which the other halfis unfolded and the
ratio of unfolded to generator-level fragmentation functions® is
evaluated. This procedure tests all the analysis corrections and
the unfolding procedure. Good recovery of the generator-level
(truth) MC distributions is observed for the unfolded events.
The deviations from the exact recovery of the generator-
level MC distributions, the nonclosure, are included in the
systematic uncertainties. The ratios of D®(z) and D**®(p$h)
distributions to the unfolded D(z) and D(pr) distributions are

4The generator-level fragmentation functions are constructed using
generator-level jets and primary charged particles.
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FIG. 6. Fragmentation functions, D(z) (left) and D(pr) (right), in pp collisions measured in five pjTel ranges from 126 to 398 GeV. The
vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties. In most cases, the

statistical uncertainties are smaller than the marker size.

shown in Fig. 3 for pp collisions and 0-10% central Pb+Pb
collisions. The magnitude of the unfolding effect varies as a
function of p)', pS", and centrality. The effect of the unfolding
is similar in pp and Pb+Pb collisions at low z and pr, but
for higher-momentum particles within the jet, the effect of the
unfolding in pp and Pb+Pb collisions differs by up to 25%
between the two collision systems for 126 < pJTet < 158 GeV.
This difference is due to UE fluctuations, which lead to poorer
jetenergy resolution in Pb+Pb collisions than in pp collisions.

With increasing pjTel, the effect of UE fluctuations decreases;

for251 < pr' < 316 GeV the effect of the unfolding is similar
in Pb+Pb and pp collisions at all value of z and pr. The effect
of the unfolding is larger at high z and pr due to the steepness
of the fragmentation function near z = 1. The shaded boxes
in Fig. 3 show the size of systematic uncertainties associated
with the unfolding which originate from the sensitivity of the
unfolding to the shape of input MC distributions, as described
in the next section.
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VI. SYSTEMATIC UNCERTAINTIES

The following sources of systematic uncertainty are con-
sidered: the jet energy scale (JES), the jet energy resolution
(JER), the sensitivity of the unfolding to the prior, the residual
nonclosure of the analysis procedure, UE contribution, and
tracking-related uncertainties. For each variation accounting
for a source of systematic uncertainty, the fragmentation
functions and ratios of D(z) and D( pr) distributions in Pb+Pb
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and pp collisions are re-evaluated. The difference between the
varied and nominal distributions is used as an estimate of the
resulting uncertainty.

The systematic uncertainty due to the JES in Pb4-Pb
collisions is composed of two parts: a centrality-independent
baseline component and a centrality-dependent component.
Only the centrality-independent baseline component is used
in pp collisions; it is determined from in situ studies of the
calorimeter response [37,45,46], and studies of the relative
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FIG. 9. Fragmentation functions, D(z) (left) and D(pr) (right), in Pb+Pb collisions measured in six different centrality classes for pjTel of
200 to 251 GeV. The vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties.
In most cases, the statistical uncertainties are smaller than the marker size.
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251 to 316 GeV. The vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties.
In most cases, the statistical uncertainties are smaller than the marker size.

energy scale difference between the jet reconstruction pro-
cedure in heavy-ion collisions [45] and the procedure in pp
collisions [37]. The centrality-dependent uncertainty reflects a
modification of parton showers by the Pb+Pb environment.
It is evaluated by comparing calorimeter pJTEt and the sum
of pr of tracks within the jet in data and MC simulation.
The size of the centrality-dependent uncertainty in the JES
reaches 0.5% in the most central collisions. Each component
that contributes to the JES uncertainty is varied separately by
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+1 standard deviation for each interval in pJTe *, and the response
matrix is recomputed accordingly. The data are unfolded with
these matrices. The resulting uncertainty on the fragmentation
functions increases with increasing z and particle pr at fixed
pr' and decreases with increasing pl'.

The uncertainty in the fragmentation functions due to the
JER is evaluated by repeating the unfolding procedure with
modified response matrices, where an additional cqntribution
is added to the resolution of the reconstructed p’' using a
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FIG. 11. Fragmentation functions, D(z) (left) and D(pr) (right), in Pb+Pb collisions measured in six different centrality classes for pjTel of
316 to 398 GeV. The vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties.
In most cases, the statistical uncertainties are smaller than the marker size.
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Centrality decreases from top to bottom panels and pjTet

Gaussian smearing procedure. The smearing factor is evaluated
using an in situ technique in 13 TeV pp data involving studies
of dijet energy balance [47,48]. An additional uncertainty is
included to account for differences between the heavy-ion-
style jet reconstruction and that used in analyses of 13 TeV pp
data. The size of the resulting uncertainty on the fragmentation
functions due to the JER typically reaches 10% for the highest
charged-particle z and pr bins and decreases with decreasing
charged-particle z and pr at fixed pJTet. The positive and
negative uncertainties from the JER are symmetrized.

increases from left to right panels.

The unfolding uncertainty is estimated by generating the
response matrices from the MC distributions without reweight-
ing in pY', D(z), and D(pr). An additional uncertainty is
assigned for the nonclosure of the unfolded distributions in
simulations, as described in Sec. V. The magnitude of the
uncertainty due to the unfolding and the nonclosure is typically
below 2% and 5%, respectively.

The systematic uncertainty associated with the estimation
of the UE contribution on the fragmentation functions has two
components. First, the parameter that excludes random cones
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FIG. 13. Ratios of D(pr) distributions in six centrality intervals of Pb+Pb collisions to pp collisions evaluated for five pjTet ranges for jets
with |y/®| < 2.1. The vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties.

Centrality decreases from top to bottom panels and pjTet increases from left to right panels.

from the estimate is varied. Random cones are assumed to be alternatively evaluated using an efficiency-corrected differ-
associated with a hard process and excluded if the centroid  ential yield of charged particles d*ne/dnd¢™d pStd AW,
of the cone is AR < 0.8 from a reconstructed jet with pr > where AW is the difference in azimuth of the charged particle
90 GeV. The exclusion requirement is changed to AR < 1.2 from the second-order event plane, evaluated in minimum-bias
to estimate the sensitivity of the UE contributions. The size =~ Pb+-Pb events. To each event considered, a weight is assigned
of the resulting uncertainty on the fragmentation function is such that the event sample obtained from the minimum-bias
everywhere smaller than 3% and it decreases in higher charged- trigger has the same centrality distribution as the sample
particle z or py. The second component of the UE uncertainty collected by the jet trigger. The resulting uncertainty on the
arises from a difference when the UE from the cone method fragmentation functions is smaller than 10% at low z or pt and
is compared with an alternative UE estimation. The UE is it rapidly decreases in higher charged-particle z or pt bins.
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The uncertainties related to the track reconstruction and
selection originate from several sources. Uncertainties related
to the fake rate, the material description in simulation, and
the track transverse momentum are obtained from studies in
data and simulation described in Ref. [49]. The systematic
uncertainty on the fake-track rate is 30% in both collision
systems [49]. The contamination of fake tracks is less than 2%,
and the resulting uncertainty on the fragmentation functions
is at most 0.5%. The sensitivity of the tracking efficiency to
the description of the inactive material in the MC samples is

evaluated by varying the material description. This resulting
uncertainty in the track reconstruction efficiency is between
0.5% and 2% over the track pr range used in the analysis. An
additional uncertainty takes into account a possible residual
misalignment of the tracking detectors in pp and Pb+Pb data-
taking. The alignment in these data sets is checked in situ using
Z — uwtu~ events, and a track-pr dependent uncertainty
arises from the finite size of this sample. The resulting uncer-
tainties on the fragmentation functions are typically smaller
than 1%, except at large z, where they are as large as 4%.
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FIG. 15. Ratios of D(z) distributions in six centrality intervals of Pb+-Pb collisions to pp collisions evaluated in four p7 ranges for jets with
1.2 < |y®| < 2.1. The vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties.
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An additional uncertainty on the tracking efficiency due to the
high local track density in the core of jets is 0.4% [41] for all
pJTel ranges in this analysis. The uncertainty due to the track
selection is evaluated by repeating the analysis with an addi-
tional requirement on the significance of the distance of closest
approach of the track to the primary vertex. This uncertainty
affects the track reconstruction efficiencies, track momentum
resolution, and rate of fake tracks. The resulting uncertainty
typically varies from 1% at low track pr to 5% at high track pr.
Finally, the track-to-particle matching requirements are varied.

This variation affects the track reconstruction efficiency, track
momentum resolution, and rate of fake tracks. The resulting
systematic uncertainty in the fragmentation functions is less
than 0.5%.

Example systematic uncertainties on the D(z) and D(pr)
distributions for jets in the 126-158 GeV pJTEt range measured
in the two collision systems are presented in Fig. 4. All
track-related systematic uncertainties are added in quadrature
and presented as a total tracking uncertainty. The systematic
uncertainties from each source are assumed to be uncorrelated,
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so they are combined in quadrature to obtain the total system-
atic uncertainty.

The correlations between the various systematic compo-
nents are considered in evaluating the ratios of Pb+Pb to pp
fragmentation functions. The unfolding and the MC nonclo-
sure are each taken to be uncorrelated between the two collision
systems. All other uncertainties are taken to be correlated.
For the correlated uncertainties, the ratios are re-evaluated by
applying the variation to both collision systems; the resulting

variations of the ratios from their central values are used as the
correlated systematic uncertainty. The uncorrelated uncertain-
ties are added in quadrature. Each systematic uncertainty is as-
sumed to be fully correlated with itself between different rapid-
ity bins. The systematic uncertainty from each source, except
the nonclosure of the unfolded distributions and the residual
misalignment of the tracking detectors, is bin-to-bin correlated.
The total systematic uncertainties of the Rp¢) and Rp(p)

distributions are shown in Fig. 5 for one selected pJTe ‘ range.
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VII. RESULTS

In this section, results are presented of the measurement
of the D(z) and D(pr) distributions for jet pr between 126
and 398 GeV and six centrality intervals in Pb+4-Pb collisions;
the same distributions are presented in pp collisions for the

same pjTe[ ranges. In order to study the effects of hot dense
matter on the jet fragmentation process, ratios of Pb+Pb
fragmentation functions to pp fragmentation functions are

evaluated.

The D(z) and D(pr) distributions in pp collisions are
shown in Fig. 6. The corresponding distributions in Pb+Pb
collisions are shown in Figs. 7-11.

In order to quantify the difference in the fragmentation
functions between Pb+Pb and pp collisions, the ratios of D(z)
and D(pr) distributions measured in Pb+Pb collisions to those
measured in pp collisions, Rpz) and Rpp,), are shown in
Figs. 12 and 13, respectively. In each figure, the shaded boxes
indicate systematic uncertainties and the vertical bars show the
statistical uncertainties.
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The shapes of the Rp ;) and Rp(pr) distributions are similar
for all centralities: inside the jets; the yields of particles with
low pr or z are enhanced; there is a reduction for particles
with intermediate pr or z; and the yields of particles with
high pr or z are enhanced. This is qualitatively consistent
with previous measurements of jet fragmentation at /syy =
2.76 TeV [14-16]; a quantitative comparison is provided in
Sec. VIII. The magnitudes of the deviations of the ratios from
unity decrease with decreasing collision centrality. In the most
central collisions, the size of the enhancement is as large as
70% at low pr or z and 30% at high pr or z. The depletion of
charged-particle yields at intermediate pr and z is as large as
20%. In some centrality and p ‘ ranges there is a decrease of the
fragmentation functions at the highest z values. In this region
the statistical and systematic uncertainties are the largest; more
precise measurements are needed to determine if a significant
decrease exists.
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Figures 14 and 15 show the Rp(;) distributions for jets in
the most central and most forward rapidity intervals, 0.0-0.3
and 1.2-2.1, respectively, for the six centrality intervals used
in this analysis and for four pJTet intervals: 126-158, 158-
200, 200-251, and 251-316 GeV. Figures 16 and 17 show
Rp(py) distributions for the same jet rapidity, centrality, and
pr' ranges. In all rapidity ranges, the Rp., and Rp(p
distributions have the same qualitative shape and centrality
dependence as the rapidity-inclusive results presented above.

VIII. DISCUSSION

In this section, the results from the previous section are
further discussed and compared to theoretical models.

In order to make a direct comparison with measurements at
2.76 TeV, Fig. 18 overlays the Rp(;) and Rpp, distributions
measured in 2.76 TeV collisions [16] on those obtained in this

25 L T T
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—
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Q
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FIG. 19. Rp, (left) and Ry, (right) ratios for three pjTEI ranges: 126—158 GeV (circles), 200-251 GeV (diamonds), and 316-398 GeV
(crosses). The statistical uncertainties are shown as bars and the systematic uncertainties as outlined boxes.
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calculations from Ref. [51] (hybrid model) for R..; = 0 (dot-dashed
curve), R.s = 3 (dashed curve), and to calculations from Ref. [21]
(EQ model).

analysis at5.02 TeV. The two measurements at the two collision
energies quantitatively agree over the entire z and charged-
particle pr range of the measurement; no significant collision
energy dependence is observed [the lowest point in the D(pr)
ratios differs by less than two standard deviations when the
statistical and systematic uncertainties are combined].

In order to determine how the fragmentation functions
depend on pJTC[, the fragmentation functions from three pJTet
intervals are compared in Fig. 19. The D(pr) and D(z)
distributions are closely related to each other, differing, pri-
marily, in the normalization by pJTet in the definition of z [see
Eq. (1)]. Therefore, a comparison of the modifications of the
fragmentation functions as a function of p}" can show whether
the size of modifications scales with charged-particle z or with
pr. The former would be expected for fragmentation effects,
and the latter might indicate some scale in the QGP. The
large pJT'el range available in this measurement allows these
two scenarios to be distinguished. Figure 19 shows that the
excess of soft particles observed in central Pb+Pb collisions
exhibits a much smaller pJ ' dependence for the D(pr) ratios
than for the D(z) ratios; the transition from enhancement to
suppression for soft fragments occurs at pr around 4 GeV for all
pJTe " values investigated in this analysis. The same comparison
can be made for the hard particles. In this case, Fig. 19 shows
that the enhancement of hard fragments with z = 0.3 is nearly
independent of py; .

The fragmentation functions have been calculated within
a hybrid model of jet quenching, which uses perturbative
techniques for the high-Q? processes in jet evolution and
strong coupling for the low momentum scales associated with
the QGP [50,51]. Within this model, there is a length scale
L.swhich can be interpreted as the minimum distance required
to resolve a parton as separate from the others in the showering
process when it occurs in the QGP medium. The scale L.
can be expressed in terms of the temperature of QGP, T,
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FIG. 21. Rp,y) ratios for three pjTel ranges: 126-158 GeV (cir-
cles), 200-251 GeV (diamonds), and 316-398 GeV (crosses) com-
pared with calculations from the hybrid model [51] with R.s = 3.

as Lies = Ries/mT where R, is a parameter of the model.
The fragmentation functions measured here are compared with
calculations from this model in Fig. 20 for two values of R.
The calculations with R, = 3 are qualitatively consistent with
the measurement at high z and pr. Atlow z and pr, the results
of the calculations are below the data, in agreement with prior
observations in comparisons to related observables [52]. Also
shown in Fig. 20 is a calculation from Ref. [21] which is a
phenomenological model, the effective quenching (EQ) model,
incorporating energy-loss effects through two downward shifts

in the pJTet spectrum: one for quark-initiated jets and a larger
one for gluon-initiated jets. In this case, the jets fragment as
in vacuum, but R ;) differs from unity due to an increase in
the fraction of quark jets in Pb+Pb collisions relative to pp
collisions at a fixed pJTet. Since quark jets are more likely to
produce high-z particles than gluon jets [53,54] this causes
Rp) > 1 at high z in the model predictions. The EQ model
does not have a description of the soft processes from soft
gluon radiation or the response of the hot QCD matter to the
jet passing through it, so the comparison with data is only
appropriate at z > 0.1.

Figure 21 shows a comparison between measured Rp,,)

and the hybrid model calculation with R, = 3 for three pJTe “in-

tervals. The magnitude of the enhancement of high- pr particles
in the calculation agrees with the observations for py' in the
ranges 126-158 and 200-251 GeV. The Rp(;) values are also
compared in Fig. 22 with a third model which uses calculations
based on soft collinear effective theory (SCET) [55,56]. This
model well describes Rp(;) in the low and intermediate z
regions, but does not reproduce the enhancement in the high-z
region observed in the data.

In order to quantify the magnitude of the low-pr enhance-
ment in the D(pr) distributions in Pb+Pb collisions compared
to pp collisions, the difference between the two distributions

is evaluated for the pjTet and centrality intervals used in this
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calculations from the SCET model [55,56].

analysis:

h pT,max
N¢ lcent = / [D(p1)lcent — D(pT)'pp]de,
pT,min

where “cent” represents one of the six centrality intervals,
and the values of prpnin and prmax are boundaries of the
low pr enhancement region, chosen to be 1.0 and 4.2 GeV,
respectively. In addition, the pp-weighted difference between
the same quantities is also computed:

PT,max
P = / [D(p1)lcent — D(pr)lpplprd pr.
P

T, min
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The PTCh |cent Tepresents the total transverse momentum carried
by particles in the low pr enhancement region. The dependence
of N"|cent and PEM|cen on pi' and centrality is presented
in Fig. 23. Overall, both quantities are found to increase
as a function of pJTCl and collision centrality. In the most
central collisions, N °h increases from approximately 1.5 to 2.0
particles over the p * range of this measurement. The amount
of transverse momentum carried by these particles increases
from approximately 2.5 to 4 GeV over the same pJTe ‘ range. In
peripheral collisions, the number of particles contributing to
the enhancement is much smaller, approximately 0.2 particles
carrying less than 0.5 GeV of transverse momentum in the
lowest pJTet range. These results are in qualitative agreement
with measurements of the same quantities in /syy = 2.76

TeV Pb+Pb collisions [16]; however, the pJTa ranges are not

the same as used in this analysis and the pJTe ‘ dependence is not
reported in that measurement.

In order to quantify the rapidity dependence, the ratio of
Rp(z) in the rapidity intervals 0.3-0.8, 0.8-1.2, and 1.2-2.1 to
the Rp(.) in [y| < 0.3 is shown in Fig. 24 for p}' intervals
of 126-158, 158-200, and 200-251 GeV and for 0-10%,
10-20%, and 20-30% central collisions. A similar quantity
was reported in Ref. [16] for 100-398 GeV jets at 2.76 TeV.
In that measurement, a small rapidity dependence for Rp.) is
observed at high z for jets with | | < 0.8; however, no strong
conclusion could be drawn due to the size of the uncertainties.
The py "intervals used in the measurement presented here are
selected to be similar to those used in the measurement of frag-
mentation functions at 2.76 TeV. Furthermore, jets populating
the 200-251 GeV pX" interval in collisions at 5.02 TeV have
similar fractions of quark- and gluon-initiated jets as jets hav-
ing pr between 126 and 158 GeV in 2.76 TeV collisions. The
ratios of R p(;) evaluated in various rapidity intervals to the most

central rapidity Rp(;) in different pJTet intervals suggest with a
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FIG. 23. Difference between Pb + Pb collisions and pp collisions in the total yield of charged particles N 0| ene (Ieft), and difference in the
total transverse momentum carried by charged particles Pg|ceq (right) for particles with pr from 1 < pr < 4.2 GeV evaluated as a function

jet
of pr
uncertainties.

for six centrality intervals. The vertical bars on the data points indicate statistical uncertainties while the boxes indicate systematic
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FIG. 25. Comparison of the measured ratio of the rapidity-selected Rp., distributions to the Rp. distributions measured in |y*| < 0.3
and the same quantity evaluated in the hybrid model [51] for R, = 3 and in the EQ model [21]. The comparison with the hybrid model is done
for three pJTEt ranges in 0—10% central collisions. The comparison with the EQ model is shown for 126-158 GeV pJTel interval. The vertical bars
on the data points indicate statistical uncertainties while the shaded bars indicate systematic uncertainties. The band represents the statistical
uncertainty of the calculations.
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low significance a small enhancement of yields of fragments
with low and intermediate z and reduction of yields of high-z
fragments for more forward jets in the most central Pb + Pb
collisions. However, the observation for high-z fragments is
of limited significance due to the limited size of the available
data sample. Figure 25 shows the same ratios for the 0-10%
centrality interval compared with calculations from the hybrid
model [51] and the effective quenching model [21]. Both cal-
culations are consistent with the data for jets with [y®| < 1.2
with larger deviations in rapidity interval 1.2 < |yi®'| < 2.1.

IX. SUMMARY

This paper presents an analysis of 0.49 nb~! of Pb+Pb
and 25 pb~! of pp collisions at /syy = 5.02 TeV using
data collected with the ATLAS detector at the LHC in 2015.
The analysis measures the fragmentation functions of jets
into charged particles and the distributions of charged-particle
transverse momenta within R = 0.4 anti-k; jets with | yiet <
2.1 and with p}' from 126 to 398 GeV. The studies are
performed as a function of the event centrality, jet rapidity, and
jet transverse momentum for charged particles with transverse
momentum greater than 1 GeV.

Centrality-dependent modifications to these fragmentation
functions in Pb+-Pb collisions are observed when compared
with those measured in pp collisions. The magnitude of these
modifications increases with increasing collision centrality.
The ratios of fragmentation functions evaluated in Pb+-Pb
collisions to those in pp collisions exhibit enhancements both
for transverse momentum less than 4 GeV and for z = 0.3.
Between these two enhancements there is a suppression of
the fragmentation functions in Pb+Pb collisions compared to
pp collisions. The enhancement of yields of low and high
transverse momentum fragments is as large as 70% and 30%),
respectively, in central collisions. The depletion of fragment
yields with intermediate pr and z is as large as 20%. The
difference in charged-particle multiplicity and total transverse
momentum in Pb+Pb compared to pp collisions for 1.0 <
pr < 4.2 GeV range increases with increasing centrality and
jet transverse momentum. No significant dependence of the
high-z enhancement on the transverse momentum of the jet
is observed. The SCET model describes the low pr excess
and the EQ and hybrid models describe the high-z excess,
but none of the models describes the modification of the full
fragmentation functions. A small increase in the modification
of yields of fragments with low and intermediate z is observed
in forward jets compared to those at central rapidity. These
measurements provide new information about the jet transverse

momentum and rapidity dependence of the modifications to jet
fragmentation in Pb+Pb collisions and, together with other jet
measurements in heavy-ion collisions, will constrain models
of jet quenching in the QGP created in heavy-ion collisions.
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