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Cu(l)-Mediated Bromoalkynylation and Hydroalkynylation

Reactions of Unsymmetrical Benzynes: Complementary Modes of

Addition

Xiao Xiao,® Tao Wang,? Feng Xu,” and Thomas R. Hoye

Abstract: Benzynes formed by heating a suitable triyne (or tetrayne)
substrate are shown to react with in situ-generated alkynyl copper
species. The latter are compatible with the polyyne substrates and
two types of chemistries have been achieved: (i) 1-bromo-1-alkynes
efficiently undergo net bromoalkynylation of the (unsymmetrical)
benzynes and (ii) in situ-generated alkynylcopper species give rise
to hydroalkynylation products. The regiochemical preferences of
these two modes of reaction are complementary to one another with
respect to the position of alkynyl substituent in the final products.

1,2-Haloalkynylation of arynes is a potentially valuable way to
install a considerable degree of complexity into the aryne family
of reactive intermediates. We are aware of only one report
describing such a transformation (Figure 1a). In 2010 Yoshida!"
and coworkers showed that (symmetrical) benzynes generated
by the Kobayashi protocol® from 2-trimethylsilylaryl triflates (1)
could engage bromoalkynes in the presence substoichiometric
amounts of CuBr.. The major products 2 arose from the
(presumably sequential) introduction of two molecules™
benzyne; these were sometimes accompanied by
amounts of the 1:1 adducts 3, depending upon reaction
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Figure 1. [a] Previous reports by Yoshida et al. [b] This work.

The scope of the bromoalkynylation reaction is quite broad
(Figure 2a). Aliphatic and aromatic bromoalkynes with a variety
of functionalities are tolerated (cf. 12a-12k). We have also
examined several polyyne substrates that incorporate different
tethers; these led to the bromoalkynylation products 13-17. It is
noteworthy that we have never observed a product indicating
premature reaction of the HDDA polyyne precursor with any of
the active organometallic species involved in this chemistry.”
Moreover, we observed no desired product formation in the
absence of the copper catalyst.!"”

We envision the reaction proceeding through a mechanism
such as that depicted in Figure 2b. The initial thermal
cycloisomerization is the rate-determining step in the overall
cycle, because the reaction rate is similar for triyne 10
regardless of the trapping agent used.'""! We propose that
benzyne 11 initially undergoes nucleophilic addition with CuBr to



produce the aryl copper(l) species 18, which then reacts with a
molecule of the bromoalkyne to generate the Cu(lll) adduct 19.
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Figure 3. Potential synthetic applications [see Supporting Information (SI) for
more experimental details].

Many alkyne cross-coupling reactions rely on the robustness
of copper acetylides.!" We envisioned that when formed in situ,
these could serve as nucleophiles to arynes and that a net
hydroalkynylation process could ensue. This had the potential to
be complementary to the bromoalkynylation reaction with
respect to the point of attachment of the alkyne in the product
arene. However, an organic amine is often required to promote
Cu-acetylide formation, but (even tertiary) amines are excellent
nucleophilic trapping agents for benzynes."® Cu-acetylides can
be formed and trapped in situ by the action of a fluoride base
under conditions where arynes are being co-produced.”! We
were pleased to see that in the absence of any added base,
copper chloride alone (5 mol%), in acetonitrile solution, induces



the addition of terminal alkynes (e.g., 6a) to HDDA benzyne
intermediates (e.g., 11 from 10) to give net hydroalkynylation
products (e.g., 25a; see Sl for the reaction optimization studies
leading to the choice of conditions shown in the top of Figure 4a).
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Figure 5. Proposed initiation event(s) and catalytic cycle for the

hydroalkynylation reaction.

Orthogonal chemoselectivity can be achieved simply by
performing the reaction in the presence or absence of the Cu
catalyst. For example (Figure 4b), the hydroxy group in alkynol
6n traps benzyne 11 (from 10) to give the ether 31 when no
CuCl is used."” In contrast, under the copper catalysis
conditions described here, the complementary alkyne 251 was

formed highly selectively, indicating that the copper acetylide



trapping event of benzynes is much faster than that by OH. In  [3]
neither reaction was any of the product of the alternative
constitution observed by NMR analysis of the crude product
mixture. Additional selectivity was seen when natural product
derivatives were used as trapping agents.'? Namely, the
hydroalkynylation products 25m and 25n were efficiently
produced in the presence of CuCl when terminal alkynes derived
from estradiol and cinchonidine (see Sl for details) were used as
the trapping agents. This is especially notable because these
molecules contain additional potentially competing reactive [
moieties that include phenol,® alcohol,!"® tertiary amine,!"®
ether,” alkene,?" cyclic alkane,”?® and quinoline sites®.?*!
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A mechanistic proposal for the hydroalkynylation reaction is
shown in Figure 5. At the top are possible ways by which an
initial copy of the requisite Cu-acetylide (34) could be formed.
Sacrificial reaction of one benzyne with CuCl would give the
arylcopper species 32, which could then engage in proton
exchange with the terminal alkyne 6.; indeed, we have detected
low levels of the benzyne + HCI adduct 33 by GCMS analysis of  [g]
a crude reaction mixture. Alternatively, acetonitrile could function
as a base to deprotonate a CuCl+6 complex, leading to the HCI  [€]
adduct 35 or its iminium hydrochloride salt 35°HC1.?®! Indeed,
we have observed that the choice of acetonitrile as solvent is
critical for success of the hydroalkynylation reaction. Once
produced, 34 could then enter the cycle highlighted by the gray
box. Alkynyl-cupration of benzyne 11 would give 36 and protgn
exchange with 6 would lead to 25 and close the cycle.

(6l
(71

In conclusion, we have developed an efficient copper-
catalyzed protocol for installation of an alkynyl substitue

bromoalkynylation in which the bromide has
engaged the more electrophilic carbon of the
unsymmetrical benzyne (Figure 2a). The h
reaction of terminal alkynes occurs in comple
namely, the alkyne carbon is now attached to
electrophilic carbon (Figure 4). Catalytic cycles for each o
two reaction processes are proposed (Figures 2b and 5).
potential utility of the ortho-alkynylbromobenzene product
substrates in further transformatio of interest is
demonstrated (Figure 3).
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