The neural representational geometry of social perception

Jonathan B. Freeman, Ryan M. Stolier, Jeffrey A. Brooks, and Benjamin A. Stillerman

New York University

Corresponding author:

Jonathan B. Freeman
Department of Psychology
New York University

6 Washington Place

New York, NY 10003

Email: jon.freeman@nyu.edu



mailto:jon.freeman@nyu.edu

Abstract

An emerging focus on the geometry of representational structures is advancing a variety
of areas in social perception, including social categorization, emotion perception, and trait
impressions. Here, we review recent studies adopting a representational geometry approach, and
argue that important advances in social perception can be gained by triangulating on the structure
of representations via three levels of analysis: neuroimaging, real-time behavior (computer
mouse-tracking), and neural-network modeling. This approach permits broad and comprehensive
tests of how bottom-up facial features and visual processes as well as top-down social cognitive
factors and conceptual processes shape perceptions of social categories, emotion, and personality
traits. Although such work is only in its infancy, a focus on corroborating representational
geometry across modalities is allowing researchers to use multiple levels of analysis to constrain
theoretical models in social perception. This approach holds promise to further our

understanding of the multiply determined nature of social perception and its neural basis.



THE NEURAL REPRESENTATIONAL GEOMETRY OF SOCIAL PERCEPTION

When we encounter other people, we instantly perceive the social categories to which
they belong (e.g., gender, race), their current emotional state (e.g., sad), and even their
personality traits (e.g., trustworthy, intelligent). Across all these instances of social perception lie
underlying representations — of social categories, stereotypes, emotions, traits — that in turn drive
perceptual judgments and behavior. Understanding social perception, surely, requires
understanding these representations. Here, we propose that important advances in social
perception can be gained by triangulating on the structure of such representations by relating
three levels of analysis: neuroimaging, real-time behavior, and neural-network modeling. We
will show how an emerging focus on the geometry of representational structures is advancing a
variety of areas in social perception, including social categorization, emotion perception, and

trait impressions.

Social perception as movement through multidimensional space

Neural-network models of social perception [ 1-4] assume that any given representation
(e.g., male) is reflected by a unique pattern distributed over a population of nodes. It is the
distributed pattern, dynamically re-instantiated in every new instance, that serves as the unique
‘code’ for a social category, stereotype, or trait. Such models are consistent with multi-cell
recordings, which have shown that the communal activity of a population of neurons — a specific
pattern of firing rates — provides the ‘code’ for various kinds of sensory and abstract cognitive
information [i.e., a 'population code'; 5].

We can conceive of representations in social perception (e.g., social categories,
stereotypes, emotions, or traits) as points in a multidimensional space. Such a space can be
measured using a variety of different modalities, such that the dimensions consist of neurons,
fMRI voxels, or nodes in a neural-network model. The specific representational structure can be
estimated through patterns of activation from these different modalities, as well as through
seemingly unrelated measures (e.g. spatial dimensions in mouse-tracking or other behavioral
data). Although these multidimensional spaces from different modalities may be radically
different in an absolute sense, it is valuable to estimate the extent to which a shared
representational geometry (i.e., the pairwise distances among representations) is preserved. This

analytic approach — representational similarity analysis [RSA; 6,7] — can inform our



understanding not only of how representational spaces underlying social perception manifest at
the neural level, but also help address fundamental psychological questions about how social
perception is shaped by both relevant social cognitive and visual processes.

In certain neural-network models and in the actual brain, neural-representational patterns
operate as ‘attractors’, such that a neural system is automatically attracted to complete those
patterns when presented with a stimulus, allowing the system to descend from a high-energy
state where the neuronal pattern is rapidly fluctuating to a lower-energy steady state in which the
representational pattern comes to stabilize, i.e., an attractor state [8]. If the neuronal system’s
state were imagined as a ball, the process of descending into an attractor state is analogous to a
ball’s compulsion to roll down a hill, reflecting the increasing completion of the neural-
representational pattern. Such attractors dynamics have long been observed in local populations
of neurons in actual cortex [e.g., 9] and serve as an intrinsic pattern-completion process allowing
neuronal patterns to serve as stored representations [e.g., 1,2].

Computational models. Imagine a system of 100 neurons, with two unique patterns of
activation for the race categories White and Black; each pattern is therefore a point in a 100-
dimensional space. The system, once presented with a person’s face, will move through 100-
dimensional space toward the White or Black attractor state. Thus, at any moment, the neuronal
population’s proximity to the White or Black attractor state in 100-dimensional space can be said
to reflect to what extent that category representation is activated. Just as a ball’s energy is higher
at the top of a hill relative to resting on the ground, each point in neural state space has an
associated energy level, which determines the trajectory of where the system will go [10]. The
system will gravitate toward energy minima, which are the stored representational patterns, i.e.,
attractor states [10]. If we were to project this 100-dimensional neural state space onto a more
intuitive two-dimensional space, visualizing the energy levels at various points in the space, we

can reveal these White and Black representations in the system (Fig. 1).



Figure 1. The link between modeling, mouse-tracking, and neuroimaging. An illustration of the link
between the three modalities is depicted using an example of race categorization based on [11]. White and
Black categories are each associated with a unique pattern across a neuronal population, with certain
neurons highly active during a ‘White’ state and other neurons highly active during a ‘Black’ state. These
states are low-energy attractors, into which the system is compelled to settle (similar to how a ball must roll
down a hill). These states would be associated with distinct multi-voxel patterns using neuroimaging.
Mouse-tracking can provide a real-time behavioral index of how the perceptual process settles over time
into one of the two categories. The computer screen during mouse-tracking may serve as a two-dimensional
proxy for higher dimensional neural state space. The mouse-tracking paradigm is depicted at the center,
overlaid onto a hypothetical energy landscape describing the energy at all states in the system. The two
energy minima (attractors) are shown, corresponding to the White and Black response locations and ‘White’
and ‘Black’ neural states (and corresponding multi-voxel patterns). At the beginning of the perceptual
process, the system is in an unstable, high-energy state. As the process evolves over hundreds of
milliseconds, the neuronal population gradually settles into a low-energy attractor state, i.e., White or Black
category, just as the hand settles into one of the response locations. For a White-atypical face (with some
Black-related features), during the perceptual process (e.g., mid-trajectory) the neuronal pattern would
approximate the Black pattern to a greater extent and the hand would be more attracted toward the Black
response. Because the multi-voxel pattern in response to such a face would reflect an average over this time
period (as neuroimaging is not temporally sensitive), it would exhibit a degree of greater pattern-similarity
to the Black category as well, as shown in previous neuroimaging work [11] (Box 1). This example shows
the link between the multidimensional space of a neuronal population/model, the two-dimensional space of
a computer screen with mouse-tracking, and the multidimensional space of multi-voxel response patterns.

Mouse-tracking. To measure these attractor dynamics during social perception,
researchers have recently leveraged response-directed hand movement using mouse-tracking

[12] At any given moment of time in a mouse-tracking task, the hand’s proximity to a given



response (e.g., a social category, emotion, or trait) on the two-dimensional space of the screen —
like the proximity of the system to a given attractor in high-dimensional neural state space — may
index the extent to which that social category, emotion, or trait representation is currently
activated. By examining how the hand settles into a response over time, and may be partially
pulled toward other potential responses, mouse-tracking has charted out the real-time dynamics
through which social categories, emotions, stereotypes, attitudes, and traits activate and resolve
over hundreds of milliseconds [12,13]. The distance the hand travels toward an unselected
response option (before arriving at the selected option) can be taken as a proxy — using the
physical distance in two-dimensional space — of the distance between those two representations
in higher-dimensional neural state space (Fig. 1).

Neuroimaging. Finally, computational models and mouse-tracking can be combined
with neuroimaging. Neuroimaging studies have increasingly focused on multi-voxel patterns of
activity within a functional region to understand representational structure [6,7]. Although a far
coarser measure than measuring activity of actual neurons, individual voxels may contain
different distributions of neurons selective for certain types of information, thereby allowing
voxel patterns to serve as potential proxies of underlying neuronal pattern [14,15]. Recent multi-
voxel pattern analyses have demonstrated reliable decoding of various kinds of representations in
social perception. For instance, studies have shown the fusiform gyrus (FG), a visual face-
processing region [16], is involved in representing faces’ gender [17], race [18,19], and emotion
[20]. Facial emotion categories have also been decoded from the superior temporal sulcus, a
region important for processing dynamic visual cues [16,21]. Consider a brain region with 100
voxels, with two unique multi-voxel patterns associated with the race categories White and
Black; each category representation is therefore a point in a 100-dimensional multi-voxel space.
Just like distances among representations in the multidimensional space of a neural network, or
in the two-dimensional space of a computer screen with mouse-tracking, distances in the
multidimensional space of a brain region’s response patterns can be used to understand the
structure of representations in social perception (Fig. 1).

Linking these levels of analysis — computational modeling, mouse-tracking, and
neuroimaging — by comparing their relative representational geometries has recently been used to

address theoretically important questions in social perception.



Social categorization

A glimpse of a face conveys a number of social categories, such as gender or race. Such
categorizations are consequential, as they tend to automatically activate related stereotypes and
attitudes and impact behavior in unintended ways [22,23]. A central challenge of social
categorization is to take the inherent diversity in facial features out in the social world to form a
coherent categorization. Current neural-network models predict that when facial features
occasionally conflict (e.g., a man’s face with feminine features), as with natural variation in the
population, multiple partially-active social categories will be activated (i.e., both male and
female) that simultaneously compete over time [2,25] — a process for which representational

geometry has recently been useful in understanding [11] (Box 1).
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Box 1. Co-activation of representations in social categorization. A recent study [11] synchronizing
neuroimaging and mouse-tracking found that, when categorizing gender- or race-atypical faces (e.g., a
feminine male face), participants’ hand trajectories exhibited a parallel attraction toward the opposite
gender or race category response before ultimately arriving at the correct response, showing that the
opposite category was co-activated in parallel. In the face-processing right FG, each participant’s distinct
multi-voxel pattern for the male, female, White, and Black category was assessed. The results showed that
the extent of parallel attraction toward the opposite category (e.g., toward ‘female’ for a male face) was
associated with a greater neural-pattern similarity to that opposite category’s multi-voxel pattern (or toward
‘Black’ for a White face with Black-related features, see Fig. 1). Such work suggests that common
ambiguities tend to activate alternate social categories before a categorization stabilizes, and this is reflected
in the similarity of that face’s multi-voxel pattern to the alternate social category’s pattern in the right FG
[11]. Thus, by examining the geometry of a given face’s neural response pattern to the patterns associated
with other social categories, novel insights may be made into the mechanisms of social categorization.




This category competition driving perception may also be affected by top-down factors as
well. For instance, merely being exposed to a face has long been known to spontaneously
activate relevant gender or racial stereotypes [22,24], but recent work has suggested a more
bidirectional relationship between face perception and stereotypes. Like other forms of
perception, top-down expectations may facilitate or inhibit certain perceptual interpretations
[25,26], which in social perception may include stereotype-based expectations [2,23]. Over the
years, stereotype effects have been documented on perceptual judgments [27-30], but it has
remained less clear how “deeply” such biases manifest.

In one set of neuroimaging studies [31], the structure (i.e., all pairwise similarities) of
gender, race, and emotion categories was assessed across several domains: multi-voxel response
patterns to faces (via neuroimaging), subjective perception of faces (via mouse-tracking),
stereotype knowledge (via a stereotype content task), and faces’ intrinsic visual properties (via
visual stimulus models). The results revealed a shared representational geometry across
modalities (stereotype knowledge, subjective perceptions, and multi-voxel response patterns in
the face-processing right FG). The similarity (i.e., distance) between any given pair of social
categories (e.g., Black and anger) in stereotype knowledge predicted a corresponding similarity
in how faces belonging to those categories were perceived (via mouse-tracking) as well as in
multi-voxel response patterns to those faces. For example, the more similarly the categories
‘Black’ and ‘anger’ were believed to be in terms of their social-conceptual knowledge (i.e.
stereotypes) predicted a greater tendency to perceive Black faces and angry faces more similarly
(e.g., a partial attraction to ‘angry’ even for a non-angry Black face). This greater perceptual
similarity was in turn reflected by an increased similarity in the multi-voxel representations of
Black faces and angry faces in the FG (Fig. 2a). Importantly, the relationship between stereotype
structure, perceptual structure, and neural-pattern structure held even when statistically
controlling for stimuli’s intrinsic physical structure, thereby ensuring the effects reflected
stereotypes rather than visual resemblances in the stimuli (e.g., between Black and angry faces).
That these stereotypical biases on perception manifest in a visual face-processing region’s
representational structure suggests that social cognitive processes can impact relatively low

levels of visual representation.
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Figure 2. Representational similarity analysis (RSA) in social perception. In RSA, representational
dissimilarity matrices (RDMs) comprise all pairwise similarities/dissimilarities and are estimated for each
modality. Unique values under the diagonal are vectorized, with each vector reflecting the geometry of the
representational space. Correspondence in geometry is then assessed through the vectors’ bivariate
relationships (e.g., correlation, regression). (A) Participants’ stereotype RDM (stereotype content task)
predicted their perceptual RDM (mouse-tracking), showing that a biased similarity between two social
categories in stereotype knowledge was associated with a bias to see faces belonging to those categories
more similarly, which in turn was reflected in FG pattern structure [31]. (B) Participants’ emotion-concept
RDM (emotion ratings task) predicted their perceptual RDM (mouse-tracking), showing that an increased
similarity between two emotion categories in emotion-concept knowledge was associated with a tendency
to perceive those facial expressions more similarly [32], which was also reflected in FG pattern structure
[33]. (C) Participants’ conceptual RDM (trait ratings task) predicted their perceptual RDM (reverse
correlation task), showing that an increased tendency to believe two traits are conceptually more similar is
associated with using more similar facial features to make inferences about those traits [34].

Extroverted

Neurotic

Emotion perception
As in social categorization, the notion that cognitive processes may exert top-down
impacts on perception has become increasingly important in understanding emotion perception,

particularly the role of emotion-concept knowledge [35,36]. Early basic-emotion approaches



emphasized six universal facial expressions of emotion — anger, joy, sadness, disgust, fear, and
surprise — that are associated with specific action units that may be read directly from a face.
Constructionist approaches and recent neural-network models suggest that not only do facial
features related to, fear, for example, drive categorizations, but so does conceptual knowledge
about what fear means. To examine this conceptual influence, previous research manipulated
particular emotion concepts or measured emotion perception in patients with semantic dementia,
who have reduced emotion-concept access [37,38], but a comprehensive test of how inter-
individual variability in conceptual knowledge may shape facial emotion perception across the
broad spectrum of emotion categories has been lacking.

In one set of studies [32], the structure (i.e., pairwise similarities) of the six basic emotion
categories was assessed at the level of conceptual knowledge (via a rating task), facial emotion
perception (via mouse-tracking) and faces’ intrinsic physical properties (via measuring facial
action units). A corresponding geometry was observed between conceptual knowledge and facial
emotion perception. When individuals believed two emotions (e.g., anger and disgust) to be
conceptually more similar, faces belonging to those categories were perceived with a
corresponding similarity (i.e., mouse trajectories were more attracted to both emotion responses
in parallel, although each face only depicted one emotion), even when controlling for any
possible physical similarity between the two kinds of faces (Fig. 2b). Such findings suggest that
subtle individual differences in the conceptual understanding of what different emotions mean
are reflected in how those emotions are perceived from a face. A neuroimaging study [33]
replicated this general finding but also showed that such a conceptually shaped representational
structure was reflected in the structure of FG multi-voxel patterns, thereby demonstrating its
impact on relatively low-level visual representation. Thus, believing anger and disgust are more
conceptually related is associated with an increased bias to perceive angry and disgusted faces
more similarly, as well as increased similarity in their multi-voxel response patterns in the FG.

Other recent work has used representational geometry to test competing models of
inferring the emotional experience of another person [39]. In response to emotional episodes, the
similarity structure of multi-voxel patterns in the temporoparietal junction and dorsomedial
prefrontal cortex, regions implicated in theory of mind, were compared to the similarity structure
of several candidate theoretical models. Among these was an appraisal model, relating episodes

by their similarity across 38 appraisal dimensions (i.e., abstract features of the causal contexts



that elicit emotions). The geometry of neural patterns in theory of mind regions corresponded
best with the geometry of this 38-dimensional appraisal model, suggesting that these regions
contain a high-dimensional model capturing the appraisal of others’ emotional experiences that
cannot be reduced merely to a two-dimensional circumplex model (valence and arousal) or six-

dimensional basic-emotion model.

Trait impressions

Perceiving personality traits from a face — warmth, intelligence — may seem ambiguous
and arbitrary relative to perceiving aspects like social categories or emotions. But much research
has demonstrated that arrangements of facial features reliably relate to specific trait perceptions
[40-42], a process requiring minimal visual exposure [43,44]. Popular models of face-based trait
impressions focus exclusively on the role of bottom-up facial features [40]. However, an
emerging literature has noted the considerable influence of top-down social cognitive processes
in face impressions [41,45]. Advancing these perspectives, recent work has used representational
geometry to examine how social cognitive processes or conceptual knowledge may shape the
structure of forming trait impressions from a face.

A recent set of studies [34] tested whether individual differences in a perceiver’s
conceptual trait associations shape how those traits are perceived from a face. The structure (i.e.,
all pairwise similarities) of traits was assessed at the level of conceptual knowledge (e.g., “if
someone is agreeable, are they also open-minded?”) and of face impressions. A reverse
correlation technique was used to estimate each perceiver’s visual prototypes for different traits.
Indeed, to the extent a perceiver believed any pair of traits to be more related (e.g., openness and
agreeableness), they perceived those traits in faces with a corresponding similarity (e.g., greater
resemblance in the visual prototypes for the two traits; Fig. 2c). This showed that face
impressions arise not just from bottom-up features but are also scaffolded by the conceptual
understanding of what those traits mean. This opens the door to inter-individual variability and
departs from prior models of face impressions that focus on a relatively fixed and universal
architecture.

Other recent research went so far as to quantify the role of conceptual trait knowledge in
social perception generally — across domains of face impressions, familiar person knowledge,

and group stereotypes [46]. Analyses demonstrated a strong correspondence in the geometry of



trait representations across these social perception models, suggesting that a perceiver’s
conceptual trait associations may provide a domain-general model for inferring about not only
faces but also familiar others and social groups. Finally, representational geometry has
additionally been used to understand inferences about others transient mental states, finding that
a three-dimensional model of rationality, social impact, and valence best predict the structure of

behavioral data and neural patterns associated with mental states [47].
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Box 2. Representational geometries. Besides testing correspondence between representational geometries
of different modalities using RSA (Fig. 2), their clustering and organization can also be informative.
Hypothetical geometries (from multi-voxel patterns, behavioral data, or model simulations) are provided in
a reduced, intuitive two-dimensional space. (A) When presented with White, Biracial, and Black faces,
one brain region’s multi-voxel patterns may have a two-category organization, placing Biracial faces into
either the White or Black cluster (left) whereas another region may have a three-category organization, such
that Biracial faces are placed into their own distinct cluster (right). (B) When presented with emotional
faces, certain perceivers may have a six-category organization in behavioral data or neural patterns, such
that each basic emotion has a distinct cluster (left), whereas other perceivers may have a more blended
organization, such that various emotion expressions do not fit into the six distinct emotion categories [e.g.,
48]. Thus, examining representational spaces in social perception may reveal important differences in the
perceptual organization of different brain regions or individual perceivers.

Conclusion
Across various domains of social perception, an emerging focus on representational
geometry is permitting broad and comprehensive tests of how both bottom-up facial features and
a variety of top-down social cognitive factors together shape perceptions of other people.

Linking across neural-network modeling, neuroimaging, and behavioral techniques such as



mouse-tracking is allowing researchers to use multiple levels of analysis to constrain theoretical
models. Although such work is in its early stages, it provides promise for furthering our

understanding of the multiply determined nature of social perception and its neural basis.
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