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Abstract—Lack of enough labeled data is a major problem
in building machine learning based models when the manual
annotation (labeling) is error-prone, expensive, and tedious. In
this paper, we introduce an iterative deep learning based method
to improve segmentation and counting of cells based on unbiased
stereology on regions of interest of extended depth of field (EDF)
images. This method uses an existing machine learning algorithm
called adaptive segmentation algorithm (ASA) to generate masks
(verified by a user) for extended depth of field (EDF) images
to train deep learning models. Then an iterative deep learning
approach is used to feed newly predicted and accepted deep
learning masks/images (verified by a user) to the training set of
the deep learning model. The error rate in unbiased stereology
count of cells on an unseen test set reduced from about 5 %
to 1.58 % after 5 iterations of the deep learning based active
learning stereology process.

Index Terms—Unbiased Stereology, Active learning, Deep
learning.

I. INTRODUCTION

Unbiased stereology is a set of theoretical and practical

methods for making accurate counts of stained cells by

carefully avoiding all known sources of methodological bias

[1] [2]. Examples of common stereology parameters include

counts of total cell number and cell density; region and

mean cell volumes; surface area and surface density; and

total length and length density [3] [1]. However, current

computer-assisted stereology systems available to bioscientists

and medical scientists are based on a technology developed

more than two decades ago. Therefore, a simple study

requires tedious counting of hundreds of cells per sample

by a well-trained technician [4]. In other words, a simple

count of immunostained cells in a defined region of interest

(ROI) requires about 2-3 hours for a well-trained technician

to achieve a reliable result. Though based on theoretically

unbiased principles, this approach is prone to data errors and

low reproducibility due to user subjectivity, variable expertise,

and fatigue. The Adaptive Segmentation Algorithm (ASA)

[2] makes stereology counts of total numbers of brain cells

(Neu-N immunostained neurons) by automatic segmentation

and cell counting on Extended Depth of Field (EDF) images

[5] [6]. In Section IV we present ASA details.

A critical aspect of building successful machine learning

models is the availability of labeled data. However, labeled

data is hard to obtain because the process is time-consuming,

labor-intensive, and tedious. Additionally, data labeling in a

medical field is mostly restricted to experts in the field and

generally cannot be prepared by a crowdsourcing approach

for reasons such as the quality of annotation and subject

privacy. To overcome stereology images labeling difficulties

(i.e., creating pixel-wise labels), we propose an iterative deep

learning method to generate segmentation masks of cells

on stained NeuN tissue images; then a human-in-the-loop

approach was taken to verify each predicted mask and feed

correct images-masks pairs to the training set.

Deep neural networks have generated considerable

interest in the medical imaging field because they have shown

performance advantages over conventional engineered image

analysis algorithms. Although the idea of neural-networks

has been around for a long time, the recent deep neural

networks revolution is partly due to the development of

convolution neural network (CNN), optimization algorithms

[7] [8] [9] [10], and powerful, efficient computation

resources. Deep learning refers to learning methods that

often start from raw data get to a more abstract level

[11]. Convolutional Neural Networks (CNNs) have shown



significant success in challenging tasks in image classification

and recognition [12] [13]. In this paper, we use a CNN based

architecture for medical image segmentation known as Unet

[14]. This architecture is a simple, fast, and end-to-end fully

convolutional network that contains contraction and expansion

paths to capture context and learn precise localization.

In this paper, we propose a method that iteratively

utilizes deep learning with human-in-the-loop and an existing

unsupervised algorithm (ASA) which eliminates human data

labeling entirely (creating masks) of NeuN stained images

to quantify the number of cells ROI. This approach uses

the state-of-art deep learning architecture in which the ASA

verified results on EDF images are used to train a convolution

neural network (CNN) model to segment and make automatic

neuron counts on test images. Meanwhile, a set of deep

learning predicted masks are verified by a human-in-the-loop

and fed back to the train set. The main innovation is: i)

elimination of human labeling effort (creating masks) using

an existing unsupervised algorithm (ASA) to generate masks

to train a CNN, ii) using deep learning iterative process also

to reduce human effort in data labeling, where user only

verifies the correctness of segmentation, and iii) improving

deep learning stereology cell counting by adding correctly

labeled images (EDF images and their corresponding masks)

to the training set for next iteration.

II. UNBAISED STEREOLOGY

Unbiased stereology approach is the state-of-the-art for

biological objects quantification in tissue sections [15]. An

essential component of this approach is unbiased sampling

(i.e., systematic-random) that avoids all source of biased

assumption such as shape, size, and orientation [15] [3].

Unbiased stereology uses virtual disector box to quantify the

number of cells in a region-of-interest (ROI). Counting cells

is based on their location within an ROI and disector box. For

instance, cells touching disector inclusion-line (i.e., disector

upper and right line) or inside the disector box are counted.

However, cells that touch exclusion line (i.e., disector lower

and left line) are not counted. Example of the disector box

counting procedure is shown in Fig. 1a , where the green

line represents inclusion line, and the red line represents the

exclusion line. Counted cells are marked with green dots.

III. DATA SET

The data set used in this work was sampled from the

neocortex brain region of Tg4510 mice. As described by

Mouton et al. in [2], animals and the process usedin this study

and process were approved by the University of South Florida

(USF) Institutional Animal Care and Use Committee which

follows NIH guidelines. The data set includes both genetically

modified mice and control mice. Mice neurons change while

expressing mutant tau. These neuron changes include neuron

degeneration and neuroglia cells activation [2] [16] [17]. Mice

samples were stained with NeuN staining from which counting

was performed manually using an optical fractionator [4].

Disector stacks were captured and saved using the Stereologer

system [2]. Table I shows the number of sections from which

multiple stacks were obtained and converted into extended

depth of field (EDF) images. The total number of EDF image

we have is 496 with their corresponding ASA masks.

TABLE I
DATA SET MICE IDS, NUMBER OF SECTIONS PER MOUSE AND TOTAL

NUMBER OF STACKS PER MOUSE

Mouse ID (LU) Number of sections Number of stacks

1 (LU2) 8 212
2 (LU3) 4 73
3 (LU14) 8 75
4 (LU17) 7 49
5 (LU29) 8 87

IV. ADAPTIVE SEGMENTATION ALGORITHM

As shown in [2], the adaptive segmentation algorithm (ASA)

consists of multiple steps optimized to segment cells at high

magnification (63 to 100x oil immersion) microscopy. The

ASA includes a Gaussian Mixture (GMM), morphological

operations, Voronoi diagrams, and watershed segmentation. It

starts with EDF images to segment NeuN stained cells within

a region of interest (ROI) using GMM; where GMM uses pixel

intensity for the Expectation Maximization algorithm (EM) to

estimate its components followed by thresholding and mor-

phological operations to get separate cells. A processed EDF

image using opening then closing by reconstruction is used in

the watershed foreground and background markers extraction.

These foreground and background markers used in applying

the watershed segmentation are followed by segmentation

approximation using Voronoi diagrams. ASA uses smoothing

process to enhance cell boundaries using a Savitzky-Golay

filter [18]. The reason to use ASA is that manual annotation

does not provide mask information, but instead, it provides

a mark of what cell is being counted based on unbiased

stereology approach. An example of manual annotation is

shown in Fig. 1a.

V. METHOD

In unbiased stereology, where labeling cells is tedious,

time-consuming, and subject to errors, iterative deep learning

approach can leverage the data labeling process and generate

correctly labeled examples that could help in building a more

robust model. The EDF algorithm was applied to each stack

of images to produce a single in-focus image as shown in

Fig. 1b. Using EDF images, initial labels (masks) for our

data set have been created using the ASA algorithm as shown

in Fig. 1c, followed by a manual verification step to identify

ASA accepted masks/images (i.e., ASA masks which match

manual annotation) from ASA rejected masks/images (i.e.,

ASA masks do not match manual annotation) as illustrated in

Fig. 2a. An example of manual annotation marks is shown

in Fig. 1a, where green dots correspond to counted cells.

For instance, the image shown in Fig. 1c was accepted by

a user because of every cell mask (white blobs) inside or







The evidence from this study suggests that the iterative

deep learning based unbiased stereology method presented

herein is much faster than the state-of-the-art stereology since

human involvement was mainly reduced. The state-of-the-

art stereology takes about 2-3 hours per ROI; however, the

proposed method herein estimated time was approximately 20-

30 minutes per ROI (including preparing masks using ASA,

human verification, training deep learning for a single itera-

tion, predicting on the test set, post-processing, and counting).

Human involvement reduction was as follows:

1) Instead of creating initial labels manually (creating

masks), an unsupervised algorithm (ASA) was utilized

to create initial masks, then a user verification step to

merely accept or reject image/mask based on the match

to manual annotation.

2) Instead of relabeling active set images/masks predicted

by deep learning in each iteration of the iterative deep

learning process, the human-in-the-loop was only verify-

ing the correctness of predicting masks, that is accepting

or rejecting based on the match to the manual annotation

as described earlier.

The generalisability of this study is subject to certain

limitations. For instance, lack of enough data to best train

deep learning models. Another limitation is user subjectivity

in verifying predicted masks by deep learning in the active set.

Notwithstanding the relatively limited data and user subjectiv-

ity constraints, this work offers valuable insights into using

an existing unsupervised algorithms (ASA) to generate masks

(labels) instead of human labeling (creating masks), then

improving the model performance by iterative deep learning

based unbiased stereology with a human-in-the-loop.

VII. CONCLUSION

This paper presents an iterative deep learning based

unbiased stereology strategy that uses an existing unsupervised

algorithm (ASA) masks as initial labels for training a deep

convolutional neural network to segment and count cells

on ROIs of NeuN stained images. The proposed method

herein was able to achieve good results compared to the

ASA cell counting, although ASA generated the initial labels

(segmentation masks). Moreover, the proposed algorithm

eliminates human effort in data labeling, where human work

was merely to verify masks based on the corresponding

manual annotation. Our approach has some drawbacks such

as human-in-the-loop and user subjectivity which could be

an obstacle with massive sets of images for verification.

Iterative deep learning based unbiased stereology techniques

in conjunction with initial labels (masks) from an existing

algorithm showed encouraging results comparing to the

current stereology counting method which is laborious, slow,

and time-consuming to obtain for a significant amount of data.
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