Iterative Deep Learning Based Unbiased Stereology
With Human-in-the-Loop
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Abstract—Lack of enough labeled data is a major problem
in building machine learning based models when the manual
annotation (labeling) is error-prone, expensive, and tedious. In
this paper, we introduce an iterative deep learning based method
to improve segmentation and counting of cells based on unbiased
stereology on regions of interest of extended depth of field (EDF)
images. This method uses an existing machine learning algorithm
called adaptive segmentation algorithm (ASA) to generate masks
(verified by a user) for extended depth of field (EDF) images
to train deep learning models. Then an iterative deep learning
approach is used to feed newly predicted and accepted deep
learning masks/images (verified by a user) to the training set of
the deep learning model. The error rate in unbiased stereology
count of cells on an unseen test set reduced from about 5 %
to 1.58 Y% after 5 iterations of the deep learning based active
learning stereology process.

Index Terms—Unbiased Stereology, Active learning, Deep
learning.

I. INTRODUCTION

Unbiased stereology is a set of theoretical and practical
methods for making accurate counts of stained cells by
carefully avoiding all known sources of methodological bias
[1] [2]. Examples of common stereology parameters include
counts of total cell number and cell density; region and
mean cell volumes; surface area and surface density; and
total length and length density [3] [1]. However, current
computer-assisted stereology systems available to bioscientists
and medical scientists are based on a technology developed
more than two decades ago. Therefore, a simple study
requires tedious counting of hundreds of cells per sample
by a well-trained technician [4]. In other words, a simple
count of immunostained cells in a defined region of interest
(ROI) requires about 2-3 hours for a well-trained technician
to achieve a reliable result. Though based on theoretically
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unbiased principles, this approach is prone to data errors and
low reproducibility due to user subjectivity, variable expertise,
and fatigue. The Adaptive Segmentation Algorithm (ASA)
[2] makes stereology counts of total numbers of brain cells
(Neu-N immunostained neurons) by automatic segmentation
and cell counting on Extended Depth of Field (EDF) images
[5] [6]. In Section IV we present ASA details.

A critical aspect of building successful machine learning
models is the availability of labeled data. However, labeled
data is hard to obtain because the process is time-consuming,
labor-intensive, and tedious. Additionally, data labeling in a
medical field is mostly restricted to experts in the field and
generally cannot be prepared by a crowdsourcing approach
for reasons such as the quality of annotation and subject
privacy. To overcome stereology images labeling difficulties
(i.e., creating pixel-wise labels), we propose an iterative deep
learning method to generate segmentation masks of cells
on stained NeuN tissue images; then a human-in-the-loop
approach was taken to verify each predicted mask and feed
correct images-masks pairs to the training set.

Deep neural networks have generated considerable
interest in the medical imaging field because they have shown
performance advantages over conventional engineered image
analysis algorithms. Although the idea of neural-networks
has been around for a long time, the recent deep neural
networks revolution is partly due to the development of
convolution neural network (CNN), optimization algorithms
[71 [8] [9] [10], and powerful, efficient computation
resources. Deep learning refers to learning methods that
often start from raw data get to a more abstract level
[11]. Convolutional Neural Networks (CNNs) have shown



significant success in challenging tasks in image classification
and recognition [12] [13]. In this paper, we use a CNN based
architecture for medical image segmentation known as Unet
[14]. This architecture is a simple, fast, and end-to-end fully
convolutional network that contains contraction and expansion
paths to capture context and learn precise localization.

In this paper, we propose a method that iteratively
utilizes deep learning with human-in-the-loop and an existing
unsupervised algorithm (ASA) which eliminates human data
labeling entirely (creating masks) of NeuN stained images
to quantify the number of cells ROI. This approach uses
the state-of-art deep learning architecture in which the ASA
verified results on EDF images are used to train a convolution
neural network (CNN) model to segment and make automatic
neuron counts on test images. Meanwhile, a set of deep
learning predicted masks are verified by a human-in-the-loop
and fed back to the train set. The main innovation is: i)
elimination of human labeling effort (creating masks) using
an existing unsupervised algorithm (ASA) to generate masks
to train a CNN, ii) using deep learning iterative process also
to reduce human effort in data labeling, where user only
verifies the correctness of segmentation, and iii) improving
deep learning stereology cell counting by adding correctly
labeled images (EDF images and their corresponding masks)
to the training set for next iteration.

II. UNBAISED STEREOLOGY

Unbiased stereology approach is the state-of-the-art for
biological objects quantification in tissue sections [15]. An
essential component of this approach is unbiased sampling
(i.e., systematic-random) that avoids all source of biased
assumption such as shape, size, and orientation [15] [3].
Unbiased stereology uses virtual disector box to quantify the
number of cells in a region-of-interest (ROI). Counting cells
is based on their location within an ROI and disector box. For
instance, cells touching disector inclusion-line (i.e., disector
upper and right line) or inside the disector box are counted.
However, cells that touch exclusion line (i.e., disector lower
and left line) are not counted. Example of the disector box
counting procedure is shown in Fig. la , where the green
line represents inclusion line, and the red line represents the
exclusion line. Counted cells are marked with green dots.

III. DATA SET

The data set used in this work was sampled from the
neocortex brain region of Tg4510 mice. As described by
Mouton et al. in [2], animals and the process usedin this study
and process were approved by the University of South Florida
(USF) Institutional Animal Care and Use Committee which
follows NIH guidelines. The data set includes both genetically
modified mice and control mice. Mice neurons change while
expressing mutant tau. These neuron changes include neuron
degeneration and neuroglia cells activation [2] [16] [17]. Mice
samples were stained with NeuN staining from which counting
was performed manually using an optical fractionator [4].

Disector stacks were captured and saved using the Stereologer
system [2]. Table I shows the number of sections from which
multiple stacks were obtained and converted into extended
depth of field (EDF) images. The total number of EDF image
we have is 496 with their corresponding ASA masks.

TABLE 1
DATA SET MICE IDS, NUMBER OF SECTIONS PER MOUSE AND TOTAL
NUMBER OF STACKS PER MOUSE

Mouse ID (LU) ‘ Number of sections | Number of stacks

1 (LU2) 8 212
2 (LU3) 4 73
3 (LU14) 8 75
4 (LU17) 7 49
5 (LU29) 8 87

IV. ADAPTIVE SEGMENTATION ALGORITHM

As shown in [2], the adaptive segmentation algorithm (ASA)
consists of multiple steps optimized to segment cells at high
magnification (63 to 100x oil immersion) microscopy. The
ASA includes a Gaussian Mixture (GMM), morphological
operations, Voronoi diagrams, and watershed segmentation. It
starts with EDF images to segment NeuN stained cells within
a region of interest (ROI) using GMM; where GMM uses pixel
intensity for the Expectation Maximization algorithm (EM) to
estimate its components followed by thresholding and mor-
phological operations to get separate cells. A processed EDF
image using opening then closing by reconstruction is used in
the watershed foreground and background markers extraction.
These foreground and background markers used in applying
the watershed segmentation are followed by segmentation
approximation using Voronoi diagrams. ASA uses smoothing
process to enhance cell boundaries using a Savitzky-Golay
filter [18]. The reason to use ASA is that manual annotation
does not provide mask information, but instead, it provides
a mark of what cell is being counted based on unbiased
stereology approach. An example of manual annotation is
shown in Fig. la.

V. METHOD

In unbiased stereology, where labeling cells is tedious,
time-consuming, and subject to errors, iterative deep learning
approach can leverage the data labeling process and generate
correctly labeled examples that could help in building a more
robust model. The EDF algorithm was applied to each stack
of images to produce a single in-focus image as shown in
Fig. 1b. Using EDF images, initial labels (masks) for our
data set have been created using the ASA algorithm as shown
in Fig. lc, followed by a manual verification step to identify
ASA accepted masks/images (i.e., ASA masks which match
manual annotation) from ASA rejected masks/images (i.e.,
ASA masks do not match manual annotation) as illustrated in
Fig. 2a. An example of manual annotation marks is shown
in Fig. 1la, where green dots correspond to counted cells.
For instance, the image shown in Fig. 1c was accepted by
a user because of every cell mask (white blobs) inside or
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(a) Manual annotation

(b) EDF image

(c) ASA mask

Fig. 1. example from our data set, where a) is the manual annotation (counted
neurons have green dots), b) is the EDF image, and c) is the ASA mask for
the EDF image shown in (b)

touching inclusion line (i.e., upper and right green line shown
in Fig. 1la) correspond to a green dot (counted cells) in the
manual annotation shown in Fig. la. This user verification
step exempt cells that touch the exclusion line (disector left
and lower line) are ignored for the purpose of training deep
learning model.

In this section, we describe our iterative deep learning
approach which can be described in five steps: 1) we train
a deep learning model (Unet) on EDF images, and their
corresponding ASA accepted masks that match manual
annotation images. 2) A prediction was made on EDF images
of ASA rejected masks that do not match manual annotation,
and we refer to this set of images as the “active set”. 3)
Another set that does not overlap with either the training nor
the active set is the “test set” which contains EDF images of
different sections of a unique mouse (LU17 mouse). 4) The
results of testing on the active set were verified by the user to
compare the predicted mask and manual annotation similarity
(as described in the previous paragraph). If an image matches
the manual annotation image (i.e., cells marked for counting
on a manual annotation image were segmented correctly
using deep learning), then that image is moved to the training
set for deep learning. Meanwhile, it gets removed from the
active set. On the other hand, if an image does not match with
its corresponding manual annotation image, then it remains
in the active set. 5) the iterative process was performed until
the number of images accepted is small (< 5). Fig. 2b
demonstrates the proposed method. It is important to note that
human-in-the-loop involvement means accepting or rejecting
a mask based on its corresponding manual annotation as
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(a) Initial masks created using ASA followed by human verification

Deep learning
(Unet)
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(b) Iterative human-in-the-loop verification of deep learning predicted masks

Fig. 2. Proposed method in two folds: a) creating EDF images, and applying
ASA, then human verification, and then b) iterative process using accepted
ASA masks/images for training, and ASA masks/images as an active set.
Human verification (i.e., accept or reject) on every predicted mask. Test set
is LU17 mouse images

shown in Fig. la. Therefore, no relabeling was made by the
human-in-the-loop.

For each iteration of our method, we trained a deep
learning architecture (Unet) for 100 epochs using Keras and
Tensorflow backend [19] [20]. The Adam optimizer was used
where the learning rate was set to le™*, while exponential
decay rates for the moment estimates hyperparameters (51
(first moment) and 82 (second moment) were set to 0.9 and
0.999 respectively [21].

Based on the unbiased stereology method, cells counted in
an ROI are those stained cells that are located inside the ROI
or touching the inclusion line (i.e., top and right green line)
but not touching the exclusion line (i.e., bottom and left red
lines) as shown in Fig. la. For training purposes, we have
kept all cells ignoring the unbiased stereology constraint.
However, prior to reporting the results on the test set (LU17
mouse images), a preprocessing step was applied to remove
small noise on the predicted mask, separate touching cells,
and to impose unbiased stereology criteria of counting by



removing cells that touch the exclusion disector line.

VI. EXPERIMENTS AND RESULTS

Our data set has 496 stacks from 5 different mice. The
EDF algorithm was used to create EDF images for each
stack to get an in-focus image. The number of images in the
initial train set (no augmentation) is 124 images, the number
of images in the initial active set is 323 images, and the
number of images in the test set (LU17 mouse images) is
49 images. Data augmentation used in this experiment was
rotation 15° of elastic augmentation [22]. For example, for an
image M, we apply an elastic algorithm with two different
random seeds, which yields two elastic images M1, Ms. Then
for each of M; and M, we apply rotation augmentation
of 15°. The total number of images generated by applying
elastic then rotation augmentation of a single image is 49
images (including original image). This elastic and rotation
augmentation is applied to the whole slide EDF image, and
then we cropped images 20 pixels around the disector line as
shown in Fig. 1b. We have used error rate to report results
on the test set as shown in Equation 1, where y_true is the
number of counted cells on ground truth (manual annotation),
and y_pred is the number of counted cells on a predicted
deep learning mask. For iteration 1, training on ASA accepted
only images, and testing on LU17 mouse images (i.e., test
set) resulted in 4.97 % error rate, and the user accepted 51
images from the active set. Increasing training images helped
to reduce the error rate on the second iteration to 2.71 %;
furthermore, 27 images were accepted by the user and moved
to the training set. The lowest error rate on the test set was
1.58 % with the highest number of training images.

t — d
Error_rate = ly_true — y_pred| * 1

00 (1)

y_true

TABLE 1T
RESULTS OF THE PROPOSED METHOD THAT SHOWS THE NUMBER OF
ACCEPTED IMAGES FROM ACTIVE SET EVERY ITERARTION, AND THE
ERROR RATE (%) ON A DIFFERENT MOUSE (LU-17)

Iteration number | Number of accepted images | Error rate on LU-17 (%)
1 51 4.97
2 27 2.71
3 18 6.56
4 9 3.16
5 5 1.58

In Table II, complete results of the iterative deep learning
based unbiased stereology approach of five iterations are
provided. Fig. 3 shows an example from our data set to
compare ASA mask, and the iterative deep learning predicted
mask. Fig. 3b shows an improved segmentation of cells on
EDF image which was accepted on the fifth iteration. One
unanticipated finding was that on the third iteration, the error
rate increased to about 6.5 % on the test set. This could
be caused by the rotation augmentation artifacts and user

A-M“ 4 b
(b) deep learning

f Jro T b o
(a) ASA

Fig. 3. Example from our data set, where a) the ASA masks contour overlaid
on manual annotation image (counted neurons have green dots), b) the active
learning based deep learning predicted masks contour (accepted the fifth
iteration of our iterative deep learning based unbiased stereology) overlaid
on manual annotation image
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Fig. 4. LU-17 mouse cells count using manual, ASA, and Unet (deep learning)

TABLE III
LU-17 MOUSE CELLS COUNT USING MANUAL METHOD, UNET (DEEP
LEARNING), AND ASA.

LU17 sections | Manual cells count | Unet cells count | ASA cells count

Section 1 98 91 111
Section 2 6 9 12
Section 3 39 32 45
Section 4 51 44 61
Section 5 131 112 163
Section 6 28 42 45
Section 7 89 119 167

subjectivity on accepting new images/masks from the active
set. In Fig. 4, we show a visual comparison between the final
active learning iteration (iteration 5) results, ASA, and manual
counting. Where manual cell count, ASA based cell count, and
deep learning (Unet) based cell count are reported for the test
set (LU-17 mouse images). The ASA error rate on the test set
(LU-17 mouse images) was 36.56 %. Additionally, cells count
of the LU17 mouse in different sections is shown in Table III.



The evidence from this study suggests that the iterative
deep learning based unbiased stereology method presented
herein is much faster than the state-of-the-art stereology since
human involvement was mainly reduced. The state-of-the-
art stereology takes about 2-3 hours per ROI; however, the
proposed method herein estimated time was approximately 20-
30 minutes per ROI (including preparing masks using ASA,
human verification, training deep learning for a single itera-
tion, predicting on the test set, post-processing, and counting).
Human involvement reduction was as follows:

1) Instead of creating initial labels manually (creating
masks), an unsupervised algorithm (ASA) was utilized
to create initial masks, then a user verification step to
merely accept or reject image/mask based on the match
to manual annotation.

2) Instead of relabeling active set images/masks predicted
by deep learning in each iteration of the iterative deep
learning process, the human-in-the-loop was only verify-
ing the correctness of predicting masks, that is accepting
or rejecting based on the match to the manual annotation
as described earlier.

The generalisability of this study is subject to certain
limitations. For instance, lack of enough data to best train
deep learning models. Another limitation is user subjectivity
in verifying predicted masks by deep learning in the active set.
Notwithstanding the relatively limited data and user subjectiv-
ity constraints, this work offers valuable insights into using
an existing unsupervised algorithms (ASA) to generate masks
(labels) instead of human labeling (creating masks), then
improving the model performance by iterative deep learning
based unbiased stereology with a human-in-the-loop.

VII. CONCLUSION

This paper presents an iterative deep learning based
unbiased stereology strategy that uses an existing unsupervised
algorithm (ASA) masks as initial labels for training a deep
convolutional neural network to segment and count cells
on ROIs of NeuN stained images. The proposed method
herein was able to achieve good results compared to the
ASA cell counting, although ASA generated the initial labels
(segmentation masks). Moreover, the proposed algorithm
eliminates human effort in data labeling, where human work
was merely to verify masks based on the corresponding
manual annotation. Our approach has some drawbacks such
as human-in-the-loop and user subjectivity which could be
an obstacle with massive sets of images for verification.
Iterative deep learning based unbiased stereology techniques
in conjunction with initial labels (masks) from an existing
algorithm showed encouraging results comparing to the
current stereology counting method which is laborious, slow,
and time-consuming to obtain for a significant amount of data.
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