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Abstract

Quantification of stereological parameters such as area and volume on stained
tissue sections is useful for a wide variety of biological studies. Here we pro-
pose a novel segmentation framework using an active contour Model to auto-
mate area and volume estimation using unbiased stereology. This approach
is demonstrated for groups of 3 month-old Fischer 344 rats with experimental
Parkinsonism or vehicle-treated controls. Brains were perfused in-vivo with 4%
paraformaldehyde and sectioned by frozen microtomy at an instrument setting
of 30 um. For each rat brain a total of 12 sections were sampled in a systematic-
random manner through the entire substantia nigra (SN). Sampled sections were
processed to reveal tyrosine hydroxylase (TH)-immunopositive neurons within
the SN. The novel framework applied a balloon active contour model with non-
constant balloon force to segment TH-positive neuronal cell bodies followed by
size estimation by volume fraction. Several contours were initialized inside the
image and based on the contour fit after 200 iterations classified as TH-positive
(signal) or background contours in a sequential manner. Cell contours were
determined in four steps based on several criteria, e.g., area of contour, disper-
sion measure, and degree of overlap. The image was automatically segmented
according to the final contours. A point grid was automatically placed over the

image and points automatically counted within the segmented areas. The final
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values from the automatic framework were correlated with findings for ground
truth (manual stereology). The results from this study show a strong correlation
between data collected by the automatic framework method and ground truth
(R? > 0.95). There was a high gain in efficiency (10 fold) for the automatic
approach using the proposed model as compared to manual (non-automatic)
stereology. These findings give strongly support for future applications of pat-
tern recognition to assess biological objects stained with high signal: noise.
Keywords: stereology, substantia nigra, neuron, segmentation, parkinson,
active contour
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1. Introduction

Quantitative analysis of microscopic images using unbiased stereology is a
powerful tool for assessing the morphological changes in biological tissues during
normal development, aging, and a wide range of diseases. The point counting
method provides a simple and straightforward approach to estimate total vol-
ume of neurons and nuclei within an anatomically defined region of interest
(ROI). A current limitation is that manual data collection using all computer-
ized stereology systems can be costly, time-consuming and prone to subjective
human error. The point counting method is carried out on 12 sections sampled
in a systematic manner through the ROI and stained to highlight the cells of in-
terest. After the ROI boundary is manually outlined at low power (4x), images
are automatically captured at high power (100x objective) across each section.
The software overlays a 10 x 10 point grid in a random orientation over each
captured image and the user highlights (clicks) the grid points falling on cells
of interest. This process repeats for all images and the software computes the
total cell volume [1, 2]. Analysis of one case (e.g., ROI in one rat brain) requires
between 1-2 hours or more depending on the user’s training and quality of the
tissue staining.

We have modified the software for a computerized stereology system [Stere-
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ologer, Stereology Resource Center, Inc. (SRC), Tampa, FL] to demonstrate a
segmentation approach that fully automates the time-consuming data collection
step in the point counting method. The approach involves segmentation of high
power images followed by feature extraction and determination of points hitting
neuronal nuclei. The details of the proposed segmentation method and frame-
work are described in Section 3. The experiments and results are presented in

Section 4, and conclusions are in Section 6.

2. Related Work

Data collection automation in the point counting method is rather unex-
plored. An earlier study used color information from a video signal and RGB
threshold values to automatically estimate volume of neuronal nuclei using point
counting stereology [3]. That approach, however, was limited to automatic anal-
ysis of high signal: noise (S: N) images. In another work [4], authors proposed
an adaptive region-based approach to segment neurons and subsequently count
the neuron in Neun images. It sets most of the parameters in the algorithm
adaptively and therefore, is expected to be invariant to minor to moderate in-
tensity or color changes. One of the major steps in this task, microscopic image
segmentation, is a well-studied topic. Image segmentation is the task of finding
objects within an image. A range of methods including active contour models
[5, 6, 7], watershed segmentation [8, 9] and level sets [10] have been proposed to
segment microscopic images for subsequent classification or tracking of biologi-
cal objects (e.g., cells). In [11], an active contour model and water segmentation
are combined in an interesting way to segment different kinds of microscopic im-
ages. Since microscopy images must be chemically stained to reveal cells and
subcellular components such as nuclei and cytoplasm, deconvolution methods
may be used to segment cells based on color information [12]. However, most
of these methods are specific to the images they are designed and tested for,
and cannot be used in every other microscopy image. Therefore, we propose a

model based on balloon snakes [13] as described in following Section.
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3. Methodology

Animal tissue for this study was taken from a previous study [14] in an AAV-
a-Syn expressing Fischer 344 rat model of Parkinson’s disease. Dopaminergic
neurons in the rat substantia nigra were immunostained with antibodies to alpha
synuclein. Images were captured at high magnification (100x, oil immersion, na
1.3). The goal of the present study was to automatically quantify neuronal
nuclei on these images using the active contour model outlined below. The
process of automatically segmenting an image and quantifying points falling
on cells within the segmented image is as follows. The image is converted to
grayscale and 100 active contours, each with 100 control points, are initialized
around the grid points of a 10x10 grid. The contours were stopped after 200
iterations. This process will over-detect cell locations and in the following steps
we removed some contours and kept the others as final cell contours: A contour
is removed if its area is too small or too large. Contours may also be rejected
based on their average intensity and intensity dispersion. Non-rejected contours
at this point are called cell contours. Since cell contours may overlap, an extra
process removes the overlapped contours and keeps the best ones based on their
intensity standard error of the mean (SEM). The remaining contours are called
final cell contours and image is segmented based on them. The grid points
that fall in the segmented area are counted in each image. Fig 1 shows the

segmentation process on an image.

3.1. The Proposed Active Contour Model

The generic balloon snake model fails to properly segment cells in the image:
with low balloon force, it cannot expand enough inside most of the cells and
with high balloon force, it fails to stop expanding at weaker cell boundaries.
Therefore, we propose a novel variation of the generic balloon snake as follows.

First, our model does not allow the contour to shrink at any points. This
ensures that whether we successfully initialize the contour inside a cell or not,

the contour can only expand. Contours allowed to shrink may be attracted to a
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Figure 1: (a) The image with manual point marking, (b) all 100 expanded contours, (c)
rejecting those which are too large or too small, (d) rejecting those which have average intensity
over a threshold, (e) removing those with higher intensity dispersion than a threshold, (f) final
result after handling overlapping contours - green marks are true positives, red marks are false

positives and black marks are false negatives.

nearby cell with stronger boundary, especially if the original cell has relatively
weak boundary. Another benefit is that the contour cannot rotate around small,
dark-stained areas such as nuclei. Second, the balloon force changes during the
balloon expansion. Starting with a relatively large balloon force we decrease
it linearly, as it enlarges more than a threshold, 7 (20% of the maximum size
in this study). The balloon force stops decreasing after the contour area gets
larger than a second threshold, 7 (80% of the maximum size). The values of
these parameters were chosen empirically on sample images of two cells. The
final results are insensitive to small changes in these parameters. Fig. 2 shows
the graph of how the balloon force changes as a function of the contour area.
In the following, the automation process based on the proposed model is

described in detail.
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Figure 2: The graph showing how the balloon force changes during the contour expansion.

3.2. Contour Initialization

In the manual process a 10x10 grid is put on the image and the experts
choose the cell points by clicking on each grid point. In an automated process,
we first put the 10x10 grid on the image and then initialize a contour with
100 points around a circle centered at each of the grid points. The contour
iteratively expands to fit to a boundary in 200 iterations.

Up to this point, we over-detect the cells inside the grid. Therefore, in the
next part of the process we reject some contours and keep final cell contours to

segment the image.

3.3. Contour Rejection

Contours are not necessarily initialized within cell boundaries. That is why
when a contour stops expanding, it still may contain some parts of the back-
ground. For this reason, after the contour stops expanding, it must be classified
as either cell contour, which only contains parts of a cell, or as background
contour, which contains some parts of the background. For each contour we
compute u. and o, which are the average and standard deviation of pixels be-
longing to the contour area. We then classify a contour as a background contour

if it has at least one of the following properties:

a. It has an area smaller than m,
b. It has an area greater than M,
c. Its area average intensity, pi., is higher than u,

d. Its corresponding dispersion measure, s, = .o, is greater than sy,
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where m and M are the thresholds for the minimum and maximum size of the
contour not to be classified as a background contour. These two parameters
are set based on the image size and are constant for all the images during an
experiment. However, p and s; are adaptive parameters and are computed
separately for each image as follows.

We apply a 2-class Otsu thresholding [15] on the grayscale image. The
darker class (with lower average pixel intensity) is marked as foreground (cell)
area and the other class will be the background area. The average intensity of
the foreground and background classes are denoted by 1 and p respectively.

Then we set
_ M +npuy (1)
n+1 "’

where n is a positive integer. The higher values of n give more weight to uy
than p, in computing 1 and hence making it close to py. Therefore, the value
of n can be tweaked to classify more or less contours as the cell contours.

Let o and oy be the standard deviation of foreground and background pixels

intensities respectively. Then we define s; as

sf = Hj <Z;> = noy, (2)
which is used as a measure of dispersion of the foreground pixels intensity. In
computation of sy, the coeflicient variation of pixel intensities in the foreground
is multiplied by ,ufc to encourage the area which is going to be classified as cell
area to be in a darker region as well as having a lower coefficient variation.

After this step, all contours are classified either as cell contour or as back-

ground contour. The cell contours usually overlap with each other and therefore,

in an extra step we handle overlapping contours.

8.4. QOwverlapping Contours

The slides used in this study are thick slides (> 15 um after all tissue pro-
cessing). This means that cells appear at different depths (in or out of focus)

when the image is acquired. This issue causes the active contours to miss some
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of the most shallow and out of focus cells and therefore increases the segmen-
tation error. Because of initial cell over-detection and classifying contours as
either cell or background contour, we frequently encounter cell contours that
overlap with each other. These cell contours are either segmenting the same
cell or two different overlapping cells.

To define overlapping contours, we set a threshold, 6, and say two contours,

c1 and cg, are overlapping if

A. Ac
max { A A, } >0, (3)

where 6 is the overlapping threshold, A, is the area of the overlapping surface of

contours ¢; and cg, and finally A., and A., are the areas of the surfaces covered
by contours ¢; and c3. We then form a graph, G, whose nodes represent the
contours, edges represent the overlapping relation. We compute standard error
of the mean for each node v in G as

oc
VA,

, where o, is the standard deviation of the intensities of pixels inside the contour

SEM, = (4)

c represented by v. This measure estimates the uniformness of pixels intensities
in the contour area. Iteratively, the contour represented by each node with the
minimum standard error of the mean is selected as final cell contour and all
nodes adjacent to it are removed from the graph. This process is continued
until all nodes are removed. The pseudo code of this algorithm can be found in
Algorithm 1.

We use the final cell contours to segment the image and mark the grid
points which fall within the segmented area as cell points and count them for
each image. The number of cell points from all images make up the number of

cell points for each section and subsequently for each rat brain tissue.

4. Experiments and Results

In this section, we present the experiments and results for applying the

automatic point counting approach to estimating the total volume of cells im-
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Algorithm 1 Handling overlapping contours

while G is not empty do
Select an arbitrary connected component, C', of G
for each node v, representing contour ¢, in C' do
Compute SEM, = o./v/Ae
end for
Let ¢ = argmin {SEM._}
Mark ¢’ as final cell contour
Remove v and all nodes adjacent to v from G

end while

munostained for tyrosine hydroxylase (TH) in the rat substantia nigra.

4.1. Dataset

The dataset consists of thick sections of four rat brains. Each rat brain con-
sists of 12 sections and tissues are stained with TH using standard immunos-
taining protocols. Two of the cases (rat brains) are in the control group and the
other four have experimental treatment. We denote the cases in control group
by A; through A4 and the cases in treated group by By and Bs.

A total of 2563 images at 100x zoom were acquired from all sections of cases
and cell points in each image were marked manually. The number of images
acquired from each case and the total number of manually marked cell points
for each case are summarized in Table 1. The process of acquiring these images
and the ground truth are discussed below.

To obtain the ground truth, each section of a rat brain was examined vi-
sually under a microscope at 2.5x zoom and analyzed using computer-assisted
stereology software (Stereologer). The substantia nigra was outlined manually
and under software control a point grid was placed at random across each image.
The points which hit the region and are close to cells are selected and for each
selected point an image centered at that point, at 100x zoom, is shown. A 10x10

grid is put on each of those images and points which fall within the boundaries



170

175

Table 1: Total number of images and manually marked cell points for each case.

Case | Images | Manually marked cell points
Ay 550 3425
Ay 520 2999
Control Group
As 405 2311
Ay 201 1313
By 327 2270
Treated Group
By 560 2341

of a cell are selected manually. Each of these images are saved to be processed
by the algorithm later. At the end of each process, software summarizes the
results for each section and the whole brain. Then the number of marked cell
points in each section is reported and also the total cell volume is estimated

(based on the provided thickness of each slide).

4.2. Experiments

The proposed algorithm automatically segments the images at 100x zoom,
which is then stored during the manual process and the number of grid point
which fall within a cell boundary counted.

Most of the parameters, such as p, i, 0,0, 0¢, 55 are computed adaptively
based on each specific image and contours during the process. M is chosen based
on image size and 71 and 72 in (2) are chosen empirically based on three test
images. The remaining three parameters, m, n in (1) and € in (3) are set based

on a leave-one-out process, from the possible values below:

m € {2000, 2500, 3000}, n € {1,2,3}, and
0 € {(65%, 75%, 85%).

We evaluate the performance based on two measures: Norm of residuals, N;q

and R?. Denote the manual count of cell points from 12 sections of a particular

10
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case by x1 through x12 and denote the corresponding automated counts by z}’s.

Norm of residuals is defined as

Moreover, R? for the case is also defined based on z;’s and x}’s.

4.3. Results

The N,.s, R?, automated count and selected set of parameters based on the
leave-one-out process is presented in Table 2. At each phase of the leave-one-out
processing, the set of parameters which gives the least average norm of residuals

on training cases is used for the algorithm to run on the test case.

Table 2: The total count of cell grid points, R? and norm of residuals for the testing cases

with parameters selected in a leave-one-out process

Case | Man. Count | Auto. Count | R? Nyes m,n, 0
Ay 3425 3653 0.95 | 136.48 | 2000, 3,85%
Ay 2999 2783 0.98 | 99.75 | 2500, 3,85%
As 2311 2429 0.97 | 103.88 | 2500, 3,85%
Ay 1313 1202 0.97 | 87.82 | 3000,2,85%
B 2270 2166 0.97 | 101.67 | 2500,2,75%
By 2341 2254 0.96 | 103.23 | 2500, 3,85%

Fig. 3 shows two more final segmentation and point counting results of
sample images.

The code was implemented in Matlab and the average processing time of
an image is around 24 seconds on a PC with 3.80 GHz processor and 8 GB of
RAM.

11
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Figure 3: Two more final results on sample images.

5. Discussion

Although we obtain a cell segmentation inside each image, the ultimate
purpose of the proposed framework is to automate the manual process of point
counting for stereology studies. The process of point counting is usually used
to compare the average cell volume for cases in control group as compared to a
treatment group. For validation purposes, the automated method should return
a final total count close to that obtained from a manual count. Our results
show that although parameters were tuned based on the norm of residuals, the
algorithm total count is very close to the manual count. Except for A3, where
the final automated count is barely larger than 105% of the manual count, the
differences between automated and manual counts for all other cases is less than
5% of the manual count. Also an R? higher than 0.95 shows a high correlation
between the manual counts of each section to the corresponded automated count.
This difference in the two final manual and automated counts was also present in
training cases and can be considered negligible. A number of cells are observed
during the manual point counting which had a weak boundaries and/or high
staining intensity. The decision of the expert to include each of these cells when
encountered can change the final total point count by several percent. As an
example, four images including such cells can be seen in Fig. 4. In these images
there are cells that are not well enough in focus to be included or excluded

decisively.

12
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Figure 4: Samples of images from the case Az containing very shallow cells.

Other than those cells, the count inaccuracy in different images may occur
because of the segmentation error. The two main sources of errors in segmen-
tation are accuracy of the active contour model and the contour classification
process. The contour may not fit to cells or the classification may classify some
contours incorrectly. Visual examination showed that the active contour model’s
accuracy is larger source of errors. The accuracy is affected mostly because of
the image quality.

Three main sources of errors are listed below. The first two affect model

accuracy and the last causes classification inaccuracy.

1. Images are slightly to moderately out of focus. Slides are obtained from
thick sections and therefore cells appear in different depths and focusing
on a cell can make other cells to go out of focus. If focus for some cells is
poor, real boundaries cannot even be determined by an expert. Therefore,
in practice, it is impossible to have an ideal focus and subsequently many
cells will appear out of focus and/or with low intensity. False positive
error will increase as cells are not segmented. Where possible, thinner
slides will avoid this source of error. Cells in acquired images from thin
slides will have sharper boundaries and images will have fewer out of focus
cells.

2. We smooth the image to weaken noises such as noisy edges. Smoothing
less will increase the strength of noisy edges and thus the contour will be
attracted to incorrect edges. Smoothing more will make it difficult for
the contour to find the edges as they are the main force for overcoming

the balloon force and stopping the contour from expanding beyond the

13
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cell boundaries. Therefore the contour may stop at an approximate cell
boundary location. This will make the contour unable to segment the
whole cell area and therefore some manually marked cell points will not
be marked in segmented images. This contributes to false negative errors.
3. The staining process, in this case TH immunostaining, may also stain
axons. Based on the strength and thickness of axons in images, they may
be segmented as part of the cell body (soma). This can be a difficult source
of error to avoid. However, this kind of error is rare because axons are
usually less intense and not as thick as cell bodies. In practice, segmented

axons may be removed as a source of error using a min blob size check.

Overall, one of the easiest ways to properly increase the quality of images is
to use thin slides. Cells in acquired images from thin slides will have sharper
boundaries and images will have fewer out of focus cells. This especially helps

with more dense and populated images.

6. Conclusions

A framework based on a variation of the balloon snake is proposed to au-
tomate the manual process of area and volume estimation of stained biological
objects on tissue sections. The framework basically over-detects cells inside each
image and then in a selection process reject some contours and keeps the others
to segment and detect grid points which fall inside cell boundaries. Contours
are initialized around each of the grid points. The main difference between the
proposed model and the original balloon snake are the inability of the contour
to shrink and the variable balloon force. Three free parameters are set based
on a leave-one-out process to run the algorithm on each case. The algorithm
segmented a total of 2563 images at 100x zoom from all cases and the results
were compared to the ground truth data. The results show a high correlation
with the ground truth data and the difference of the final total count of cell
points to the manual total count is around 10% of the total manual count.

Based on these findings, it can be concluded that the algorithm is providing an

14
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efficient and reliable approach for automating the point counting approach for

stereology.
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