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Abstract

Quantification of stereological parameters such as area and volume on stained

tissue sections is useful for a wide variety of biological studies. Here we pro-

pose a novel segmentation framework using an active contour Model to auto-

mate area and volume estimation using unbiased stereology. This approach

is demonstrated for groups of 3 month-old Fischer 344 rats with experimental

Parkinsonism or vehicle-treated controls. Brains were perfused in-vivo with 4%

paraformaldehyde and sectioned by frozen microtomy at an instrument setting

of 30 um. For each rat brain a total of 12 sections were sampled in a systematic-

random manner through the entire substantia nigra (SN). Sampled sections were

processed to reveal tyrosine hydroxylase (TH)-immunopositive neurons within

the SN. The novel framework applied a balloon active contour model with non-

constant balloon force to segment TH-positive neuronal cell bodies followed by

size estimation by volume fraction. Several contours were initialized inside the

image and based on the contour fit after 200 iterations classified as TH-positive

(signal) or background contours in a sequential manner. Cell contours were

determined in four steps based on several criteria, e.g., area of contour, disper-

sion measure, and degree of overlap. The image was automatically segmented

according to the final contours. A point grid was automatically placed over the

image and points automatically counted within the segmented areas. The final
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values from the automatic framework were correlated with findings for ground

truth (manual stereology). The results from this study show a strong correlation

between data collected by the automatic framework method and ground truth

(R2 ≥ 0.95). There was a high gain in efficiency (10 fold) for the automatic

approach using the proposed model as compared to manual (non-automatic)

stereology. These findings give strongly support for future applications of pat-

tern recognition to assess biological objects stained with high signal: noise.

Keywords: stereology, substantia nigra, neuron, segmentation, parkinson,

active contour
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1. Introduction

Quantitative analysis of microscopic images using unbiased stereology is a

powerful tool for assessing the morphological changes in biological tissues during

normal development, aging, and a wide range of diseases. The point counting

method provides a simple and straightforward approach to estimate total vol-5

ume of neurons and nuclei within an anatomically defined region of interest

(ROI). A current limitation is that manual data collection using all computer-

ized stereology systems can be costly, time-consuming and prone to subjective

human error. The point counting method is carried out on 12 sections sampled

in a systematic manner through the ROI and stained to highlight the cells of in-10

terest. After the ROI boundary is manually outlined at low power (4x), images

are automatically captured at high power (100x objective) across each section.

The software overlays a 10 x 10 point grid in a random orientation over each

captured image and the user highlights (clicks) the grid points falling on cells

of interest. This process repeats for all images and the software computes the15

total cell volume [1, 2]. Analysis of one case (e.g., ROI in one rat brain) requires

between 1-2 hours or more depending on the user’s training and quality of the

tissue staining.

We have modified the software for a computerized stereology system [Stere-
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ologer, Stereology Resource Center, Inc. (SRC), Tampa, FL] to demonstrate a20

segmentation approach that fully automates the time-consuming data collection

step in the point counting method. The approach involves segmentation of high

power images followed by feature extraction and determination of points hitting

neuronal nuclei. The details of the proposed segmentation method and frame-

work are described in Section 3. The experiments and results are presented in25

Section 4, and conclusions are in Section 6.

2. Related Work

Data collection automation in the point counting method is rather unex-

plored. An earlier study used color information from a video signal and RGB

threshold values to automatically estimate volume of neuronal nuclei using point30

counting stereology [3]. That approach, however, was limited to automatic anal-

ysis of high signal: noise (S: N) images. In another work [4], authors proposed

an adaptive region-based approach to segment neurons and subsequently count

the neuron in Neun images. It sets most of the parameters in the algorithm

adaptively and therefore, is expected to be invariant to minor to moderate in-35

tensity or color changes. One of the major steps in this task, microscopic image

segmentation, is a well-studied topic. Image segmentation is the task of finding

objects within an image. A range of methods including active contour models

[5, 6, 7], watershed segmentation [8, 9] and level sets [10] have been proposed to

segment microscopic images for subsequent classification or tracking of biologi-40

cal objects (e.g., cells). In [11], an active contour model and water segmentation

are combined in an interesting way to segment different kinds of microscopic im-

ages. Since microscopy images must be chemically stained to reveal cells and

subcellular components such as nuclei and cytoplasm, deconvolution methods

may be used to segment cells based on color information [12]. However, most45

of these methods are specific to the images they are designed and tested for,

and cannot be used in every other microscopy image. Therefore, we propose a

model based on balloon snakes [13] as described in following Section.
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3. Methodology

Animal tissue for this study was taken from a previous study [14] in an AAV-50

α-Syn expressing Fischer 344 rat model of Parkinson’s disease. Dopaminergic

neurons in the rat substantia nigra were immunostained with antibodies to alpha

synuclein. Images were captured at high magnification (100x, oil immersion, na

1.3). The goal of the present study was to automatically quantify neuronal

nuclei on these images using the active contour model outlined below. The55

process of automatically segmenting an image and quantifying points falling

on cells within the segmented image is as follows. The image is converted to

grayscale and 100 active contours, each with 100 control points, are initialized

around the grid points of a 10x10 grid. The contours were stopped after 200

iterations. This process will over-detect cell locations and in the following steps60

we removed some contours and kept the others as final cell contours: A contour

is removed if its area is too small or too large. Contours may also be rejected

based on their average intensity and intensity dispersion. Non-rejected contours

at this point are called cell contours. Since cell contours may overlap, an extra

process removes the overlapped contours and keeps the best ones based on their65

intensity standard error of the mean (SEM). The remaining contours are called

final cell contours and image is segmented based on them. The grid points

that fall in the segmented area are counted in each image. Fig 1 shows the

segmentation process on an image.

3.1. The Proposed Active Contour Model70

The generic balloon snake model fails to properly segment cells in the image:

with low balloon force, it cannot expand enough inside most of the cells and

with high balloon force, it fails to stop expanding at weaker cell boundaries.

Therefore, we propose a novel variation of the generic balloon snake as follows.

First, our model does not allow the contour to shrink at any points. This75

ensures that whether we successfully initialize the contour inside a cell or not,

the contour can only expand. Contours allowed to shrink may be attracted to a
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) The image with manual point marking, (b) all 100 expanded contours, (c)

rejecting those which are too large or too small, (d) rejecting those which have average intensity

over a threshold, (e) removing those with higher intensity dispersion than a threshold, (f) final

result after handling overlapping contours - green marks are true positives, red marks are false

positives and black marks are false negatives.

nearby cell with stronger boundary, especially if the original cell has relatively

weak boundary. Another benefit is that the contour cannot rotate around small,

dark-stained areas such as nuclei. Second, the balloon force changes during the80

balloon expansion. Starting with a relatively large balloon force we decrease

it linearly, as it enlarges more than a threshold, τ1 (20% of the maximum size

in this study). The balloon force stops decreasing after the contour area gets

larger than a second threshold, τ2 (80% of the maximum size). The values of

these parameters were chosen empirically on sample images of two cells. The85

final results are insensitive to small changes in these parameters. Fig. 2 shows

the graph of how the balloon force changes as a function of the contour area.

In the following, the automation process based on the proposed model is

described in detail.
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where m and M are the thresholds for the minimum and maximum size of the

contour not to be classified as a background contour. These two parameters

are set based on the image size and are constant for all the images during an

experiment. However, µ and sf are adaptive parameters and are computed115

separately for each image as follows.

We apply a 2-class Otsu thresholding [15] on the grayscale image. The

darker class (with lower average pixel intensity) is marked as foreground (cell)

area and the other class will be the background area. The average intensity of

the foreground and background classes are denoted by µf and µb respectively.

Then we set

µ =
µb + nµf

n+ 1
, (1)

where n is a positive integer. The higher values of n give more weight to µf

than µb in computing µ and hence making it close to µf . Therefore, the value

of n can be tweaked to classify more or less contours as the cell contours.

Let σf and σb be the standard deviation of foreground and background pixels

intensities respectively. Then we define sf as

sf = µ2
f

(

σf

µf

)

= µfσf , (2)

which is used as a measure of dispersion of the foreground pixels intensity. In120

computation of sf , the coefficient variation of pixel intensities in the foreground

is multiplied by µ2
f to encourage the area which is going to be classified as cell

area to be in a darker region as well as having a lower coefficient variation.

After this step, all contours are classified either as cell contour or as back-

ground contour. The cell contours usually overlap with each other and therefore,125

in an extra step we handle overlapping contours.

3.4. Overlapping Contours

The slides used in this study are thick slides (> 15 um after all tissue pro-

cessing). This means that cells appear at different depths (in or out of focus)

when the image is acquired. This issue causes the active contours to miss some130
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of the most shallow and out of focus cells and therefore increases the segmen-

tation error. Because of initial cell over-detection and classifying contours as

either cell or background contour, we frequently encounter cell contours that

overlap with each other. These cell contours are either segmenting the same

cell or two different overlapping cells.135

To define overlapping contours, we set a threshold, θ, and say two contours,

c1 and c2, are overlapping if

max

{

Ac

Ac1

,
Ac

Ac2

}

> θ, (3)

where θ is the overlapping threshold, Ac is the area of the overlapping surface of

contours c1 and c2, and finally Ac1 and Ac2 are the areas of the surfaces covered

by contours c1 and c2. We then form a graph, G, whose nodes represent the

contours, edges represent the overlapping relation. We compute standard error

of the mean for each node v in G as

SEMc =
σc√
Ac

, (4)

, where σc is the standard deviation of the intensities of pixels inside the contour

c represented by v. This measure estimates the uniformness of pixels intensities

in the contour area. Iteratively, the contour represented by each node with the

minimum standard error of the mean is selected as final cell contour and all

nodes adjacent to it are removed from the graph. This process is continued140

until all nodes are removed. The pseudo code of this algorithm can be found in

Algorithm 1.

We use the final cell contours to segment the image and mark the grid

points which fall within the segmented area as cell points and count them for

each image. The number of cell points from all images make up the number of145

cell points for each section and subsequently for each rat brain tissue.

4. Experiments and Results

In this section, we present the experiments and results for applying the

automatic point counting approach to estimating the total volume of cells im-
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Algorithm 1 Handling overlapping contours

while G is not empty do

Select an arbitrary connected component, C, of G

for each node v, representing contour c, in C do

Compute SEMc = σc/
√
Ac

end for

Let c′ = argminc{SEMc}
Mark c′ as final cell contour

Remove v and all nodes adjacent to v from G

end while

munostained for tyrosine hydroxylase (TH) in the rat substantia nigra.150

4.1. Dataset

The dataset consists of thick sections of four rat brains. Each rat brain con-

sists of 12 sections and tissues are stained with TH using standard immunos-

taining protocols. Two of the cases (rat brains) are in the control group and the

other four have experimental treatment. We denote the cases in control group155

by A1 through A4 and the cases in treated group by B1 and B2.

A total of 2563 images at 100x zoom were acquired from all sections of cases

and cell points in each image were marked manually. The number of images

acquired from each case and the total number of manually marked cell points

for each case are summarized in Table 1. The process of acquiring these images160

and the ground truth are discussed below.

To obtain the ground truth, each section of a rat brain was examined vi-

sually under a microscope at 2.5x zoom and analyzed using computer-assisted

stereology software (Stereologer). The substantia nigra was outlined manually

and under software control a point grid was placed at random across each image.165

The points which hit the region and are close to cells are selected and for each

selected point an image centered at that point, at 100x zoom, is shown. A 10x10

grid is put on each of those images and points which fall within the boundaries
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Table 1: Total number of images and manually marked cell points for each case.

Case Images Manually marked cell points

Control Group

A1 550 3425

A2 520 2999

A3 405 2311

A4 201 1313

Treated Group
B1 327 2270

B2 560 2341

of a cell are selected manually. Each of these images are saved to be processed

by the algorithm later. At the end of each process, software summarizes the170

results for each section and the whole brain. Then the number of marked cell

points in each section is reported and also the total cell volume is estimated

(based on the provided thickness of each slide).

4.2. Experiments

The proposed algorithm automatically segments the images at 100x zoom,175

which is then stored during the manual process and the number of grid point

which fall within a cell boundary counted.

Most of the parameters, such as µb, µf , σb, σf , σc, sf are computed adaptively

based on each specific image and contours during the process. M is chosen based

on image size and τ1 and τ2 in (2) are chosen empirically based on three test

images. The remaining three parameters, m, n in (1) and θ in (3) are set based

on a leave-one-out process, from the possible values below:

m ∈ {2000, 2500, 3000}, n ∈ {1, 2, 3}, and

θ ∈ {65%, 75%, 85%}.

We evaluate the performance based on two measures: Norm of residuals, Nres

and R2. Denote the manual count of cell points from 12 sections of a particular
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case by x1 through x12 and denote the corresponding automated counts by x′

i’s.

Norm of residuals is defined as

Nres =

√

√

√

√

12
∑

i=1

(xi − x′

i)
2. (5)

Moreover, R2 for the case is also defined based on xi’s and x′

i’s.

4.3. Results

The Nres, R
2, automated count and selected set of parameters based on the180

leave-one-out process is presented in Table 2. At each phase of the leave-one-out

processing, the set of parameters which gives the least average norm of residuals

on training cases is used for the algorithm to run on the test case.

Table 2: The total count of cell grid points, R2 and norm of residuals for the testing cases

with parameters selected in a leave-one-out process

Case Man. Count Auto. Count R2 Nres m,n, θ

A1 3425 3653 0.95 136.48 2000, 3, 85%

A2 2999 2783 0.98 99.75 2500, 3, 85%

A3 2311 2429 0.97 103.88 2500, 3, 85%

A4 1313 1202 0.97 87.82 3000, 2, 85%

B1 2270 2166 0.97 101.67 2500, 2, 75%

B2 2341 2254 0.96 103.23 2500, 3, 85%

Fig. 3 shows two more final segmentation and point counting results of

sample images.185

The code was implemented in Matlab and the average processing time of

an image is around 24 seconds on a PC with 3.80 GHz processor and 8 GB of

RAM.
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(a) (b)

Figure 3: Two more final results on sample images.

5. Discussion

Although we obtain a cell segmentation inside each image, the ultimate190

purpose of the proposed framework is to automate the manual process of point

counting for stereology studies. The process of point counting is usually used

to compare the average cell volume for cases in control group as compared to a

treatment group. For validation purposes, the automated method should return

a final total count close to that obtained from a manual count. Our results195

show that although parameters were tuned based on the norm of residuals, the

algorithm total count is very close to the manual count. Except for A3, where

the final automated count is barely larger than 105% of the manual count, the

differences between automated and manual counts for all other cases is less than

5% of the manual count. Also an R2 higher than 0.95 shows a high correlation200

between the manual counts of each section to the corresponded automated count.

This difference in the two final manual and automated counts was also present in

training cases and can be considered negligible. A number of cells are observed

during the manual point counting which had a weak boundaries and/or high

staining intensity. The decision of the expert to include each of these cells when205

encountered can change the final total point count by several percent. As an

example, four images including such cells can be seen in Fig. 4. In these images

there are cells that are not well enough in focus to be included or excluded

decisively.
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(a) (b) (c) (d)

Figure 4: Samples of images from the case A2 containing very shallow cells.

Other than those cells, the count inaccuracy in different images may occur210

because of the segmentation error. The two main sources of errors in segmen-

tation are accuracy of the active contour model and the contour classification

process. The contour may not fit to cells or the classification may classify some

contours incorrectly. Visual examination showed that the active contour model’s

accuracy is larger source of errors. The accuracy is affected mostly because of215

the image quality.

Three main sources of errors are listed below. The first two affect model

accuracy and the last causes classification inaccuracy.

1. Images are slightly to moderately out of focus. Slides are obtained from

thick sections and therefore cells appear in different depths and focusing220

on a cell can make other cells to go out of focus. If focus for some cells is

poor, real boundaries cannot even be determined by an expert. Therefore,

in practice, it is impossible to have an ideal focus and subsequently many

cells will appear out of focus and/or with low intensity. False positive

error will increase as cells are not segmented. Where possible, thinner225

slides will avoid this source of error. Cells in acquired images from thin

slides will have sharper boundaries and images will have fewer out of focus

cells.

2. We smooth the image to weaken noises such as noisy edges. Smoothing

less will increase the strength of noisy edges and thus the contour will be230

attracted to incorrect edges. Smoothing more will make it difficult for

the contour to find the edges as they are the main force for overcoming

the balloon force and stopping the contour from expanding beyond the
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cell boundaries. Therefore the contour may stop at an approximate cell

boundary location. This will make the contour unable to segment the235

whole cell area and therefore some manually marked cell points will not

be marked in segmented images. This contributes to false negative errors.

3. The staining process, in this case TH immunostaining, may also stain

axons. Based on the strength and thickness of axons in images, they may

be segmented as part of the cell body (soma). This can be a difficult source240

of error to avoid. However, this kind of error is rare because axons are

usually less intense and not as thick as cell bodies. In practice, segmented

axons may be removed as a source of error using a min blob size check.

Overall, one of the easiest ways to properly increase the quality of images is

to use thin slides. Cells in acquired images from thin slides will have sharper245

boundaries and images will have fewer out of focus cells. This especially helps

with more dense and populated images.

6. Conclusions

A framework based on a variation of the balloon snake is proposed to au-

tomate the manual process of area and volume estimation of stained biological250

objects on tissue sections. The framework basically over-detects cells inside each

image and then in a selection process reject some contours and keeps the others

to segment and detect grid points which fall inside cell boundaries. Contours

are initialized around each of the grid points. The main difference between the

proposed model and the original balloon snake are the inability of the contour255

to shrink and the variable balloon force. Three free parameters are set based

on a leave-one-out process to run the algorithm on each case. The algorithm

segmented a total of 2563 images at 100x zoom from all cases and the results

were compared to the ground truth data. The results show a high correlation

with the ground truth data and the difference of the final total count of cell260

points to the manual total count is around 10% of the total manual count.

Based on these findings, it can be concluded that the algorithm is providing an
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efficient and reliable approach for automating the point counting approach for

stereology.
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