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Abstract In this work, we outline the entropy viscosity method and discuss how

the choice of scaling influences the size of viscosity for a simple shock problem.

We present examples to illustrate the performance of the entropy viscosity method

under two distinct scalings.

1 Introduction

Hyperbolic partial differential equations (PDE) are used to model various fluid flow

problems. In the special case of 1-dimensional linear constant coefficient scalar hy-

perbolic problems, the solutions to these PDE are simply a translation of the initial

data. However, for nonlinear problems the solution may deform, and as a result,

shock waves can form even if the initial data is smooth [12].

In computational fluid dynamics, it is desirable that numerical methods capture

shock waves and maintain a high accuracy for smooth waves. Low order methods

have sufficient numerical dissipation to regularize shock waves but obtaining ac-

curate solutions in smooth regions can become expensive. On the other hand, high

order methods are capable of achieving high accuracy at a reasonable cost. Their

low numerical dissipation enables such accuracy, but on the downside, it limits their

ability to regularize shock waves.
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Various techniques have been implemented to capture shocks while maintaining

high accuracy, at least away from shocks. There are two major classes of shock cap-

turing techniques: shock detection techniques, where we find slope limiters [12],

Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) [14], and artifi-

cial viscosity techniques, where we find filtering [15, 13], the PDE-based viscosity

method [9], the entropy viscosity method [4], among others.

In this work, we focus on the entropy viscosity method. In essence, the entropy

viscosity method provides shock capturing without compromising the high accuracy

away from the shock. An important advantage of this method is that it generalizes

very easily to higher dimensions and unstructured grids.

As a model problem, we consider Burgers’ equation

ut + f (u)x = 0, (1)

where f = u2

2
. Physically correct solutions to (1) can be singled out by requiring

that they satisfy an entropy inequality such as

rEV = Et +Fx ≡

(

u2

2

)

t

+

(

u3

3

)

x

≤ 0. (2)

The entropy residual, rEV , is zero wherever u is smooth. If the solution u contains

a shock, then the entropy residual takes the form of a negative Dirac distribution

centered at the location of the shock, xs, i.e. rEV = −C δ (x− xs). The property that

the entropy residual is unbounded at a shock was first used by Guermond and Pas-

quetti in [4], as a way to selectively introduce viscosity. The artificial viscosity, ν ,

proposed in [4], defined as the minima of two viscosities

ν = min(νmax,νEV ), (3)

becomes the coefficient of the viscous term in the viscous Burgers’ equation,

ut + f (u)x = (νux)x. (4)

Here, νmax is the Lax-Friedrich viscosity whose size depends on discretization

and the largest eigenvalue, λLF, of the flux Jacobian,
D f (u)

Du
. The second viscosity

νEV is proportional to the magnitude of the entropy residual (in fact, a discretization

of the entropy residual) and will thus be zero (or small after discretization) away

from discontinuities. In theory, the entropy residual becomes unbounded at a shock,

numerically however, the entropy residual rEV remains bounded with the size of

the residual depending on the discretization size. As we will see below, this subtle

difference has consequences for how to choose the scaling of the viscosity terms in

the entropy viscosity method.

On a grid with step size h, the second viscosity νEV can be expressed as

νEV (x) = αEV hβ |rEV (x)|, (5)
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with a parameter αEV that requires tuning. In recent papers on entropy viscosity

method, see e.g. [3, 5, 6, 7, 16], the parameter β is chosen to be 2, but the original

paper [2] uses β = 1. It is unclear to us why the later works prefer β = 2. Here,

we will present analysis and computational results that suggest the original scaling

β = 1 is a more natural choice. We note that the entropy residual is typically scaled

by ‖E −E‖∞, with the over-bar indicating a spatial average, but as this quantity is

roughly constant in the problems presented here, we omit it for brevity and reduced

complexity.

The rest of the paper is organized as follows. In Section 2, we describe different

discretizations of (4) that we consider here, in Section 3, we present an analysis of

how the entropy viscosity ν depends on the two viscosities, νEV and νmax, under

different scaling for a model problem. In Section 4, we then conduct experiments

with the entropy viscosity method where β takes on values 1 or 2 and compare the

results.

2 Numerical methods

We will consider the discretization of (4) by our conservative Hermite method [11],

a standard discontinuous Galerkin (dG) method [8] and a simple finite volume type

discretization [12]. For all the discretizations we let the domain xL ≤ x ≤ xR be

discretized by the regular grid xi = xL + ih, i = 0, . . . ,n, h = (xR − xL)/n.

The degrees of freedom for the finite volume method is cell averages centered at

the grid points. For the Hermite method, the degrees of freedom are the coefficients

of node centered Taylor polynomials of degree m and for the dG method, they are

the (m+ 1) coefficients of element-wise (we take an element to be Ωi = [xi−1,xi])
expansions in Legendre polynomials. For smooth solutions the spatial accuracy of

the Hermite method is 2m+ 1 and m+ 1 for the dG method.

All three methods use the classic fourth order Runge-Kutta method to evolve the

semi-discretizations in a method-of-lines fashion.

In the Hermite method, we evaluate the fluxes and their derivatives at the nodes

(element edges) for the four stages in the RK method. Precisely, for the first stage

we compute the slope f h
1 = 1

2
T [(uh

1)
2]− ν

h

duh
1

dx
for the Taylor polynomial uh

1 = uh ap-

proximating the solution at the first stage. Here T [(uh
1)

2] is the truncated polynomial

multiplication of uh
1 with itself and

duh
1

dx
is the derivative of the polynomial. At the

next stage, the solution is uh
2 = uh + (∆ t/2)

2

d f h
1

dx
, the slope is f h

2 = 1
2
T [(uh

2)
2]− ν

h

duh
2

dx

and so on. Once the stage slopes f h
s , s = 1, . . . ,4 and their spatial derivatives are

known, we perform a Hermite interpolation to the element centers of the solution

and the spatial derivatives of the stage slopes. These are then used to evolve the ele-

ment centered Hermite interpolant of uh to t = tn+∆ t/2. As the Hermite interpolant

is of higher degree than the original Taylor polynomial, we conclude a half-step by

truncating it to the appropriate degree. To advance the solution a full time step, the

half-step process is repeated starting from the element centers.
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To handle the artificial viscosity in the dG method, we use the approach of Bassi

and Rebay [1] with a Lax-Friedrichs flux for the advective term and alternating

fluxes for the viscous term. The nonlinear terms are constructed explicitly and de-

aliased by over-integration [10].

For the finite volume method, we let ui ≈ u(xi) be a grid function approximating

the solution and f
i+ 1

2
= f

i+ 1
2
(ui,ui+1) be an approximation to the flux at x

i+ 1
2
. To

compute the time derivatives, we use the spatial approximation

dui

dt
≈

f
i+ 1

2
− f

i− 1
2

h
, (6)

where

f
i+ 1

2
(ui,ui+1) =

1

2

(

ui + ui+1

2

)2

−

(

νi +νi+1

2

)

ui+1 − ui

h
. (7)

When νi = 0, the above discretization is linearly stable (when paired with a suit-

able time-stepping method) but is not non-linearly stable, and we thus add artificial

viscosity to stabilize it.

For all three discretizations, we approximate the time derivative of the entropy

function, Et , by a backward difference. This approach is explicit as we use the cur-

rent solution to compute E at the current time before evolving the solution in time.

The residual (and hence the viscosity) is kept on each element / grid-point over each

step.

To approximate the entropy flux derivative Fx using the Hermite method, we

compute the derivative of the truncated polynomial multiplication T [uhT [(uh)2]]
at the node. For the dG method, we evaluate the flux F on a Legendre-Gauss-Lobatto

(LGL) grid and differentiate it to get an approximation for Fx. The residual on an

element is taken to be the maximum of the absolute value of the residual on the LGL

grid. In the finite volume method Fx is approximated by

dFi

dx
=

F
i+ 1

2
−F

i− 1
2

h
, where, F

i+ 1
2
=

1

3

(

ui + ui+1

2

)3

.

We note that more sophisticated discretizations of the entropy residual could be

considered. In particular, a higher order approximation to rEV would result in a

higher rate of convergence for smooth solutions, but as we are mainly concerned

with the scaling β , we did not pursue such discretizations here. In fact, in our expe-

rience, the results concerning the choice of scaling are not affected by the order of

the accuracy of the approximation to rEV .

We also define νmax to be the classical Lax-Friedrich viscosity, which for Burg-

ers’ equation takes the form

νmax = αmaxhmax |u|, (8)

where the maximum is taken globally.
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Finally, for the purpose of comparison we also present some results computed

using the sub-cell resolution smoothness sensor of Persson and Peraire, [13]. The

smoothness sensor compares the L2 energy content of the highest (Fourier or expan-

sion) mode with the total L2 energy on an element and then maps its ratio (which

is an indicator of the smoothness) into the size of the artificial viscosity. Precisely,

if the approximate dG solution on an element is uh = ∑m
k=0 ûkPk, with Pk being an

orthogonal basis, we compute the smoothness as s = log10(‖ûmPm‖
2/‖uh‖2) and the

viscosity as

ν =











0 s < s0 −κ ,
ε0h s > s0 +κ ,
ε0h
2

(

1+ sin
(

π(s−s0)
2κ

))

otherwise.

When applied to the Hermite method, we first project the Taylor polynomials

centered at two adjacent grid-points into an orthogonal Legendre expansion on the

element defined by the grid-points and then proceed as above.

3 Impact of the h-scaling on the selection mechanism

To study how the selection mechanism depends on the shock speed and the size

of the jump, consider a solution of the Burgers’ equation consisting of a Heaviside

function H with left state ul and right state ur, given by

u(x, t) = ul +∆u H (x− vst) . (9)

This corresponds to a shock of size |∆u|= |ur−ul| moving with speed vs = 0.5(ul+
ur). Solutions of the form (9) always has a negative ∆u value since Lax entropy

condition for Burgers’ equation dictates ul = f ′(ul)> vs > f ′(ur) = ur.

For simplicity, we use the short hand notation H for H (x− vst). A direct compu-

tation

ut +

(

u2

2

)

x

=

(

−
ul + ur

2
(∆u)H ′

)

+

(

(∆u)ulH
′+

(∆u)2

2
H ′

)

=−∆u

(

2ul +∆u

2

)

H ′+∆u

(

2ul +∆u

2

)

H ′

= 0,

shows that (9) is a solution of (1). Further, it can be shown that the entropy residual

(2) for (9) is

rEV =
(∆u)3

12
H ′(x− xs) =

(∆u)3

12
δ (x− xs). (10)

That is, the size of the entropy residual grows with the cube of ∆u.

Now, by the properties that define the Dirac delta function δ , we have
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∫ ∞

−∞
δ (x)dx = 1. (11)

Thus, a consistent discretization of the Dirac delta function δ0, ...,δn on a grid

x0, ...,xn must obey the condition

n−1

∑
j=0

h jδ j = 1, (12)

where h j = x j+1 − x j. For any approximation with a finite width stencil, we must

have δ j ∼ h−1
j and we thus expect rEV to behave like (∆u)3/h on a uniform grid. We

therefore proceed with the analysis using the discrete approximation rEV =(∆u)3/h.

Using this expression for rEV , we estimate the viscosity ν by the minimum of

νEV = αEV hβ−1|(∆u)3| and νmax = αmaxhmax(|ul , |ur|). (13)

The comparison between the size of νEV and νmax in various scenarios is re-

ported in Table 1. If β = 2, then the two viscosities νEV and νmax scale as h. For

a problem with multiple shocks, the homogeneity in h-scaling introduces an addi-

tional difficulty in determining αEV . Should it be chosen based on the largest or

smallest shock? What if new shocks appear during the course of the computation?

To avoid answering these questions, we instead consider β = 1. Now νEV = O(1)
while νmax =O(h), and the particular choice of αEV is thus irrelevant since as h→ 0,

the selection mechanism will eventually select νmax at the shocks. We will provide

an example to illustrate the two-shock dilemma in Section 4.3.

Table 1 Size of µE and µmax for different size of shock speed (vs) with respect to the size of the

jump (∆u) in the entropy viscosity method.

Case νEV νmax

|vS| ≪ |∆u| αEV hβ−1|∆u|3 αmaxh|vs|

|vs| ≈ |∆u| αEV hβ−1|∆u|3 2αmaxh|vs|

|vs| ≫ |∆u| αEV hβ−1|∆u|3 0.5αmaxh|∆u|

4 Experiments

In this section, we describe the experiments and present a convergence study in L2

norms, and also study the effects of the scaling in the entropy viscosity method

on the convergence under grid refinement. For all the examples we solve Burgers’

equation and vary the initial data. In each problem, we report the L2-errors (the

L1-errors behaves quantitively similar).
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The solutions are obtained using the following methods: H1 and H2 refer to

Hermite-entropy viscosity method for β = 1 and β = 2 respectively, DG1 and DG2

refer to dG-entropy viscosity method for β = 1 and β = 2 respectively, FV1 and FV2

refer to finite volume-entropy viscosity method with β = 1 and β = 2 respectively,

DGP and HP refer to dG and Hermite method with smoothness sensor respectively.

The size of the time step is chosen close to the stability limit, which in the cases

considered here results in the error being dominated by the spatial discretization.
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Fig. 1 Convergence of the different methods for stationary (left) and moving (right) shocks.

4.1 A single shock

In this example, we compute the solution to (1) on the domain D = [−1,1] with the

initial data imposed as the exact solution

u(x, t) =

{

−0.5+ vs, x ∈ [−1,vst),

0.5+ vs, x ∈ [vst,1],
(14)

at time t = 0. Here vs is the shock speed which we choose to be either vs = 0 corre-

sponding to a stationary shock or vs = 0.1 corresponding to a moving shock.

We solve until time t = 1 for the two different shock speeds and perform a grid

refinement study using a dG method of order 5, a Hermite method of order 9, and

the Finite Volume method, all using the classical fourth order Runge-Kutta time

stepping. For the Hermite method, we fix (max |u|)∆ t/h = 0.3, for the dG method,

the time step is set as ∆ t/h = 0.0625 and for the Finite Volume method, the time

step is set according to (max |u|)∆ t/h = 0.9.

The L2 norm of errors in the numerical solution uh are plotted against the dif-

ferent grid sizes for different methods, see Figure 1. In the stationary shock exper-

iment, FV1 and FV2 use (αEV ,αmax) = (0.7,0.5) and (10,0.5) respectively, DG1

and DG2 use (αEV ,αmax) = (1,0.25) and (10,0.25) respectively, H1 and H2 use
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Fig. 2 Average in time of nm, number of elements using Lax-Friedrich viscosity νmax, versus the

number of elements (n). Left: stationary shock, right: moving shock.

(αEV ,αmax) = (1,0.4) and (10,0.4) respectively, DGP and HP use (s0,κ ,ε0) =
(−1,2,0.5) and (log10(1/256),1,0.125) respectively.

The parameters for moving shock experiment are (αEV ,αmax) = (0.7,0.5) and

(10,0.5) for FV1 and FV2 respectively, (αEV ,αmax) = (1,0.25) and (10,0.25) for

DG1 and DG2 respectively, (αEV ,αmax) = (1,0.4) and (10,0.4) for H1 and H2

respectively, (s0,κ ,ε0) = (2log10(1/256),1,0.5) and (log10(1/256),1,0.125) for

DGP and HP respectively.

To the left in Figure 1, we display convergence results for the stationary shock.

In this case, the results indicate that all methods produce convergent solutions with

roughly the same rates of convergence. The rate of convergence is limited by the

smoothness of the solution but as can be seen in the same figure, the error levels are

lower for the higher order methods. It is interesting to note that the smallest errors

are observed for the computations using the smoothness-based sensor.

The results for the moving shock, displayed to the right in Figure 1, are quite

different. Now, for the high order methods, we observe convergence only when we

use the entropy viscosity with β = 1. When we use the entropy viscosity with β = 2

or when we use the smoothness based sensor, the errors clearly saturate as the grid

is refined. The errors for the low order Finite Volume method are still reduced with

the grid size, independent of the scaling in the entropy viscosity method.

To understand why the convergence results obtained with β = 1 and β = 2 in the

moving shock example do not agree, we study where the Lax-Friedrich viscosity

νmax is activated in the vicinity of the shock. We know that when the viscosity is

chosen to be just the Lax-Friedrich type viscosity, then under a suitable Courant

number, the solution will converge to the correct vanishing viscosity solution of the

conservation law [12].

It seems that the Lax-Friedrich viscosity is necessary in some neighborhood of

the shock, and the size of this neighborhood becomes an important factor in the

convergence of the solution to the moving shock problem. In Figure 2, we plot

the average (in time) of the number of elements nm which use the Lax-Friedrich

viscosity νmax as a function of total number of elements n for the stationary shock



On the scaling of entropy viscosity in high order methods 9

10
-3

10
-2

10
-1

10
-10

10
-8

10
-6

10
-4

10
-2

h

L
2
-e

rr
o
r

H1
H2

DG1
DG2

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

h

L
2
-e

rr
o
r

H1
H2
HP

DG1
DG2
DGP
FV1
FV2

Fig. 3 Convergence of the different methods for a smooth initial data, left: before shock forms,

right: after shock forms. The dashed lines are h2 and h3.

(left) and for the moving shock (right). We see that nm is roughly constant for both

β = 1 and β = 2 in the stationary shock. In the moving shock problem, nm stays

constant for β = 2 as in the stationary shock, but grows slowly for β = 1 (note the

log-scale). While the growth in nm is irrelevant in the convergence in the stationary

shock example, it seems to play an important role in determining the convergence

in the moving shock example.

4.2 Sinusoidal to N wave

Next, we consider the smooth 2-periodic initial data

u(x,0) =−sin(πx)+ 0.5, (15)

which develops into a single N wave.

In Figure 3, we present the L2 norm of the errors at t = 0.1 before the shock

forms (left) and at t = 1 after the shock forms (right). The spatial and temporal

discretization of the PDE itself is performed with a high order method, so rate of

convergence that we observe in Figure 3 is limited by either the discretization of the

artificial viscosity or the smoothness of the solution, whichever is more restrictive.

For this N-wave experiment, FV1 and FV2 use (αEV ,αmax) = (2,0.5) and

(20,0.5) respectively, DG1 and DG2 use (αEV ,αmax) = (0.1,0.125) and (1,0.125)
respectively, H1 and H2 use (αEV ,αmax) = (0.4,0.4) and (5,0.4), DGP and HP use

(s0,κ ,ε0) = (2log10(1/256),2,0.05) and (log10(1/256),1,0.125) respectively.

The discretization of the entropy residual rEV is only first order due to the use

of backwards Euler, so we expect the entropy-based viscosity νEV to be (β + 1)th

accurate, i.e. 2nd order when β = 1 or 3rd order when β = 2. This analysis agrees

with the convergence plot to the left in Figure 3. To the right, we observe the same



10 Adeline Kornelus and Daniel Appelö∗

phenomena as in the moving shock example described in Section 4.1. We also note

that the shock in this sinusoidal wave is also moving.

4.3 Shocks of different size

To complement the analysis in Section 3, we next consider a problem with a big

shock and a small shock on the same simulation. According to the analysis, the

entropy viscosity will capture the small shock when β = 1, but not when β = 2. In

this setup, we start with an existing shock of size ∆u1 = 0.5 and a small sinusoidal

wave that develops into an N-wave of size ∆u2 = 0.2. Thus, we consider Burgers’

equation on [−1,5] with initial data

u(x,0) =



















0 x ∈ [−1,−0.5),

−0.1sin(2πx) x ∈ [−0.5,0.5),

0 x ∈ [0.5,4.5),

−0.5 x ∈ [4.5,5],

(16)

and fixed boundary condition u(−1, t) = 0 and u(5, t) =−0.5.

The solution initially consists of a shock and a smooth sine wave, which are

placed far away from each other so they never interact. Over time, the sinusoidal

wave develops into a N-wave. In Figure 5, we present the numerical solutions at

time t = 2 for different grid resolutions, obtained with a Hermite method of order 9

and dG method of order 5. In these plots, we can see that the shock is resolved for

both values of β , however, the N-wave comes with some overshoots when β = 2 for

all the finer grid resolutions, see Figure 5.

For this two-shock experiment, DG1 and DG2 use (αEV ,αmax) = (0.5,0.25) and

(10,0.25) respectively, H1 and H2 use (αEV ,αmax) = (1,0.125) and (50,0.125)
respectively.

Because the magnitude of this N-wave is small, the entropy residual at the N-

wave is relatively small compared to that at the existing shock. On one hand, β = 1

results are free from overshoots when the grid is refined, but β = 2 results do have

overshoots, see Figure 4-5.

5 Conclusion

In summary, we have performed a convergence study for Burgers’ equation with

various initial data. We demonstrated that the entropy viscosity method with β = 2

does not produce convergent results(fixing the parameters αEV and αmax) in the

cases where the shock is moving or more than one shock is present. Therefore,



On the scaling of entropy viscosity in high order methods 11

-1 0 1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x

u

-1 0 1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x

u

-1 0 1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x

u

-1 0 1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x

u

Fig. 4 Effect of the choice of scaling on a small perturbation near a larger shock. The results in the

left and right column are for β = 1 and β = 2 respectively. The upper figures display the results for

the dG method and the lower figures display the results for the Hermite method. The black curve

is for a simulation using 320 elements and the black uses 2560.

we recommend readers to use β = 1; to achieve desired accuracy or better rate of

convergence, use a higher order approximation of the residual.
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-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.06

0.07

0.08

0.09

0.1

0.11

0.12

x

u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.06

0.07

0.08

0.09

0.1

0.11

0.12

x

u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.06

0.07

0.08

0.09

0.1

0.11

0.12

x

u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.06

0.07

0.08

0.09

0.1

0.11

0.12

x

u

Fig. 5 Effect of the choice of scaling on a small perturbation near a larger shock. Same as in Figure

4 but zoomed in.

6. J.-L. GUERMOND, R. PASQUETTI, AND B. POPOV, Entropy viscosity method for nonlinear

conservation laws, Journal of Computational Physics, 230 (2011), pp. 4248–4267.

7. , From suitable weak solutions to entropy viscosity, Journal of Scientific Computing, 49

(2011), pp. 35–50.

8. J. S. HESTHAVEN AND T. WARBURTON, Nodal Discontinuous Galerkin Methods: Algo-

rithms, Analysis, and Applications, vol. 54, Springer, New York, 2008.
9. C. JOHNSON, A. SZEPESSY, AND P. HANSBO, On the convergence of shock-capturing

streamline diffusion finite element methods for hyperbolic conservation laws, Mathematics

of computation, 54 (1990), pp. 107–129.

10. R. M. KIRBY AND G. E. KARNIADAKIS, De-aliasing on non-uniform grids: algorithms and

applications, Journal of Computational Physics, 191 (2003), pp. 249–264.
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15. H. YEE AND B. SJÖGREEN, Development of low dissipative high order filter schemes for mul-

tiscale Navier–Stokes/MHD systems, Journal of Computational Physics, 225 (2007), pp. 910–

934.
16. V. ZINGAN, J.-L. GUERMOND, J. MOREL, AND B. POPOV, Implementation of the entropy

viscosity method with the discontinuous Galerkin method, Computer Methods in Applied Me-

chanics and Engineering, 253 (2013), pp. 479–490.


