On the scaling of entropy viscosity in high order
methods

Adeline Kornelus* and Daniel Appelo*

Abstract In this work, we outline the entropy viscosity method and discuss how
the choice of scaling influences the size of viscosity for a simple shock problem.
We present examples to illustrate the performance of the entropy viscosity method
under two distinct scalings.

1 Introduction

Hyperbolic partial differential equations (PDE) are used to model various fluid flow
problems. In the special case of 1-dimensional linear constant coefficient scalar hy-
perbolic problems, the solutions to these PDE are simply a translation of the initial
data. However, for nonlinear problems the solution may deform, and as a result,
shock waves can form even if the initial data is smooth [12].

In computational fluid dynamics, it is desirable that numerical methods capture
shock waves and maintain a high accuracy for smooth waves. Low order methods
have sufficient numerical dissipation to regularize shock waves but obtaining ac-
curate solutions in smooth regions can become expensive. On the other hand, high
order methods are capable of achieving high accuracy at a reasonable cost. Their
low numerical dissipation enables such accuracy, but on the downside, it limits their
ability to regularize shock waves.
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Various techniques have been implemented to capture shocks while maintaining
high accuracy, at least away from shocks. There are two major classes of shock cap-
turing techniques: shock detection techniques, where we find slope limiters [12],
Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) [14], and artifi-
cial viscosity techniques, where we find filtering [15, 13], the PDE-based viscosity
method [9], the entropy viscosity method [4], among others.

In this work, we focus on the entropy viscosity method. In essence, the entropy
viscosity method provides shock capturing without compromising the high accuracy
away from the shock. An important advantage of this method is that it generalizes
very easily to higher dimensions and unstructured grids.

As a model problem, we consider Burgers’ equation
u+ f(u)x =0, ey

where f = % Physically correct solutions to (1) can be singled out by requiring
that they satisfy an entropy inequality such as

2 3
rey = B+ Fo = (”—) T (”—) <o0. )
2 t 3 X

The entropy residual, rgy, is zero wherever u is smooth. If the solution u contains
a shock, then the entropy residual takes the form of a negative Dirac distribution
centered at the location of the shock, x;, i.e. rgy = —C 8 (x — x;). The property that
the entropy residual is unbounded at a shock was first used by Guermond and Pas-
quetti in [4], as a way to selectively introduce viscosity. The artificial viscosity, v,
proposed in [4], defined as the minima of two viscosities

V = min(Vmax, Vev ), (€)
becomes the coefficient of the viscous term in the viscous Burgers’ equation,
ur + f()x = (Viy) - 4)

Here, Vinax is the Lax-Friedrich viscosity whose size depends on discretization
and the largest eigenvalue, A g, of the flux Jacobian, D{)(””). The second viscosity
Vgy is proportional to the magnitude of the entropy residual (in fact, a discretization
of the entropy residual) and will thus be zero (or small after discretization) away
from discontinuities. In theory, the entropy residual becomes unbounded at a shock,
numerically however, the entropy residual rgy remains bounded with the size of
the residual depending on the discretization size. As we will see below, this subtle
difference has consequences for how to choose the scaling of the viscosity terms in
the entropy viscosity method.

On a grid with step size 5, the second viscosity Vgy can be expressed as

vev (x) = agvhP|rey (x)], (5)
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with a parameter oy that requires tuning. In recent papers on entropy viscosity
method, see e.g. [3, 3, 6, 7, 16], the parameter 3 is chosen to be 2, but the original
paper [2] uses B = 1. It is unclear to us why the later works prefer f = 2. Here,
we will present analysis and computational results that suggest the original scaling
B = 1is a more natural choice. We note that the entropy residual is typically scaled
by ||E — E||, with the over-bar indicating a spatial average, but as this quantity is
roughly constant in the problems presented here, we omit it for brevity and reduced
complexity.

The rest of the paper is organized as follows. In Section 2, we describe different
discretizations of (4) that we consider here, in Section 3, we present an analysis of
how the entropy viscosity v depends on the two viscosities, Vgy and Vp,x, under
different scaling for a model problem. In Section 4, we then conduct experiments
with the entropy viscosity method where 3 takes on values 1 or 2 and compare the
results.

2 Numerical methods

We will consider the discretization of (4) by our conservative Hermite method [11],
a standard discontinuous Galerkin (dG) method [8] and a simple finite volume type
discretization [12]. For all the discretizations we let the domain x; < x < xg be
discretized by the regular grid x; = x;, +ih, i =0,...,n, h = (xg —x1.)/n.

The degrees of freedom for the finite volume method is cell averages centered at
the grid points. For the Hermite method, the degrees of freedom are the coefficients
of node centered Taylor polynomials of degree m and for the dG method, they are
the (m+ 1) coefficients of element-wise (we take an element to be Q; = [x;_,x;])
expansions in Legendre polynomials. For smooth solutions the spatial accuracy of
the Hermite method is 2m + 1 and m + 1 for the dG method.

All three methods use the classic fourth order Runge-Kutta method to evolve the
semi-discretizations in a method-of-lines fashion.

In the Hermite method, we evaluate the fluxes and their derivatives at the nodes

(element edges) for the four stages in the RK method. Precisely, for the first stage
h
we compute the slope f' = %9 [(ul)?]— %% for the Taylor polynomial u = u" ap-

proximating the solution at the first stage. Here .7 [(u")?] is the truncated polynomial

T o dul" . . .
multiplication of u’f with itself and % is the derivative of the polynomial. At the

L dfh . dut
next stage, the solution is u = u" + % %, the slope is £ = 3.7 ((uh)?] — £ 52
and so on. Once the stage slopes f,s = 1,...,4 and their spatial derivatives are

known, we perform a Hermite interpolation to the element centers of the solution
and the spatial derivatives of the stage slopes. These are then used to evolve the ele-
ment centered Hermite interpolant of u” to t =1, + At /2. As the Hermite interpolant
is of higher degree than the original Taylor polynomial, we conclude a half-step by
truncating it to the appropriate degree. To advance the solution a full time step, the
half-step process is repeated starting from the element centers.
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To handle the artificial viscosity in the dG method, we use the approach of Bassi
and Rebay [1] with a Lax-Friedrichs flux for the advective term and alternating
fluxes for the viscous term. The nonlinear terms are constructed explicitly and de-
aliased by over-integration [10].

For the finite volume method, we let u; ~ u(x;) be a grid function approximating
the solution and f; 1= Jiy ! (ui,u; 1) be an approximation to the flux at x; 1 To
compute the time derivatives, we use the spatial approximation

dup Sy = fi) ©
dr h ’
where 5
I (ui+uiq Vit Viel | Uiv1 — U
iy (i uir) = 5 ( 5 ) - ( > ) PR (7

When v; = 0, the above discretization is linearly stable (when paired with a suit-
able time-stepping method) but is not non-linearly stable, and we thus add artificial
viscosity to stabilize it.

For all three discretizations, we approximate the time derivative of the entropy
function, E;, by a backward difference. This approach is explicit as we use the cur-
rent solution to compute E at the current time before evolving the solution in time.
The residual (and hence the viscosity) is kept on each element / grid-point over each
step.

To approximate the entropy flux derivative F, using the Hermite method, we
compute the derivative of the truncated polynomial multiplication .7 [u".7 [(u"")?]]
at the node. For the dG method, we evaluate the flux F on a Legendre-Gauss-Lobatto
(LGL) grid and differentiate it to get an approximation for F,. The residual on an
element is taken to be the maximum of the absolute value of the residual on the LGL
grid. In the finite volume method F; is approximated by

ar, Ty —Fiy 1 uituig )
s B e

o - 2, where, F, 5

We note that more sophisticated discretizations of the entropy residual could be
considered. In particular, a higher order approximation to rgy would result in a
higher rate of convergence for smooth solutions, but as we are mainly concerned
with the scaling 3, we did not pursue such discretizations here. In fact, in our expe-
rience, the results concerning the choice of scaling are not affected by the order of
the accuracy of the approximation to rgy .

We also define vy to be the classical Lax-Friedrich viscosity, which for Burg-
ers’ equation takes the form

Vmax = arnathax|u|a (8)

where the maximum is taken globally.
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Finally, for the purpose of comparison we also present some results computed
using the sub-cell resolution smoothness sensor of Persson and Peraire, [13]. The
smoothness sensor compares the L, energy content of the highest (Fourier or expan-
sion) mode with the total L, energy on an element and then maps its ratio (which
is an indicator of the smoothness) into the size of the artificial viscosity. Precisely,
if the approximate dG solution on an element is u" = Yl kP, with P being an
orthogonal basis, we compute the smoothness as s = log; (|| @i Pn||*/||u||?) and the
viscosity as

0 § <sp)— K,
vy = { &h s> 850+ K,

% (1 +sin (w)) otherwise.

When applied to the Hermite method, we first project the Taylor polynomials
centered at two adjacent grid-points into an orthogonal Legendre expansion on the
element defined by the grid-points and then proceed as above.

3 Impact of the /-scaling on the selection mechanism

To study how the selection mechanism depends on the shock speed and the size
of the jump, consider a solution of the Burgers’ equation consisting of a Heaviside
function H with left state u; and right state u,, given by

u(x,t) =u;+Au H (x — vyt) . 9)

This corresponds to a shock of size |Au| = |u, — u;| moving with speed vy = 0.5(u; +
u,). Solutions of the form (9) always has a negative Au value since Lax entropy
condition for Burgers’ equation dictates u; = f'(u;) > vy > f'(uy) = uy.

For simplicity, we use the short hand notation H for H (x — vyt). A direct compu-

tation
u? u; + uy , , (Au)2 ,
w+ (=] =(- (Au)H" ) + | (Auw)uH'+ ——H
2 ). 2 2

_ —An (2u1+Au>H,+AM <2ul+Au>H/

2 2
:07

shows that (9) is a solution of (1). Further, it can be shown that the entropy residual
(2) for (9) is
(Au)® (Au)®
H — X¢) =
R M=
That is, the size of the entropy residual grows with the cube of Au.
Now, by the properties that define the Dirac delta function §, we have

O (x —xy). (10)

rey =
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/ 5(x)dx = 1. (1)

Thus, a consistent discretization of the Dirac delta function &, ...,8, on a grid
X0, .-, X, Must obey the condition

n—1
Y hisi=1, (12)
=0

where hj = x;;1 — x;. For any approximation with a finite width stencil, we must
have §; ~ h;l and we thus expect 7gy to behave like (Au)? /h on a uniform grid. We

therefore proceed with the analysis using the discrete approximation rgy = (Au)? /h.
Using this expression for gy, we estimate the viscosity v by the minimum of

Vev = aevhP ! |(Au)?| and Viax = Omaxhmax (|uy, uy]). (13)

The comparison between the size of Vgy and v,k in various scenarios is re-
ported in Table 1. If B = 2, then the two viscosities Vgy and Viax scale as h. For
a problem with multiple shocks, the homogeneity in i-scaling introduces an addi-
tional difficulty in determining agy. Should it be chosen based on the largest or
smallest shock? What if new shocks appear during the course of the computation?
To avoid answering these questions, we instead consider 8 = 1. Now vgy = O(1)
while Viax = O'(h), and the particular choice of oy is thus irrelevant since as 1 — 0,
the selection mechanism will eventually select Vipax at the shocks. We will provide
an example to illustrate the two-shock dilemma in Section 4.3.

Table 1 Size of g and . for different size of shock speed (vs) with respect to the size of the
jump (Au) in the entropy viscosity method.

Case VEy Vmax

[vs| < |Aul agvhﬁ_l\AuP Otmaxh|vs|

|ve| & | Aul apy P | Aul? 20tmaxh|vs|
[vg| > |Aul oy P~ Aul? 0.50maxh|Aul

4 Experiments

In this section, we describe the experiments and present a convergence study in L,
norms, and also study the effects of the scaling in the entropy viscosity method
on the convergence under grid refinement. For all the examples we solve Burgers’
equation and vary the initial data. In each problem, we report the L,-errors (the
Li-errors behaves quantitively similar).
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The solutions are obtained using the following methods: H1 and H2 refer to
Hermite-entropy viscosity method for 8 = 1 and 8 = 2 respectively, DG1 and DG2
refer to dG-entropy viscosity method for 3 = 1 and 8 = 2 respectively, FV1 and FV2
refer to finite volume-entropy viscosity method with f = 1 and 8 = 2 respectively,
DGP and HP refer to dG and Hermite method with smoothness sensor respectively.

The size of the time step is chosen close to the stability limit, which in the cases
considered here results in the error being dominated by the spatial discretization.
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Fig. 1 Convergence of the different methods for stationary (left) and moving (right) shocks.

4.1 A single shock

In this example, we compute the solution to (1) on the domain D = [—1, 1] with the
initial data imposed as the exact solution
—0.5 , e |—1,vt),
u(_x,t) _ + vy X [ Vs ) (14)
0.5+vs, xE€ v, 1],

at time t = 0. Here vy is the shock speed which we choose to be either vy = 0 corre-
sponding to a stationary shock or vy = 0.1 corresponding to a moving shock.

We solve until time ¢t = 1 for the two different shock speeds and perform a grid
refinement study using a dG method of order 5, a Hermite method of order 9, and
the Finite Volume method, all using the classical fourth order Runge-Kutta time
stepping. For the Hermite method, we fix (max |u|)At/h = 0.3, for the dG method,
the time step is set as A¢/h = 0.0625 and for the Finite Volume method, the time
step is set according to (max |u|)At/h = 0.9.

The L, norm of errors in the numerical solution u;, are plotted against the dif-
ferent grid sizes for different methods, see Figure 1. In the stationary shock exper-
iment, FV1 and FV2 use (0gy, Omax) = (0.7,0.5) and (10,0.5) respectively, DG1
and DG?2 use (Qgy, Omax) = (1,0.25) and (10,0.25) respectively, Hl and H2 use
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Fig. 2 Average in time of n,,, number of elements using Lax-Friedrich viscosity Vimax, versus the
number of elements (). Left: stationary shock, right: moving shock.

(agy, Omax) = (1,0.4) and (10,0.4) respectively, DGP and HP use (so,k,&) =
(—1,2,0.5) and (log;((1/256),1,0.125) respectively.

The parameters for moving shock experiment are (Qgy, Omax) = (0.7,0.5) and
(10,0.5) for FV1 and FV2 respectively, (0tzy, Omax) = (1,0.25) and (10,0.25) for
DG1 and DG?2 respectively, (Qgy, Omax) = (1,0.4) and (10,0.4) for H1 and H2
respectively, (so, k,&) = (2log,(1/256),1,0.5) and (log,y(1/256),1,0.125) for
DGP and HP respectively.

To the left in Figure 1, we display convergence results for the stationary shock.
In this case, the results indicate that all methods produce convergent solutions with
roughly the same rates of convergence. The rate of convergence is limited by the
smoothness of the solution but as can be seen in the same figure, the error levels are
lower for the higher order methods. It is interesting to note that the smallest errors
are observed for the computations using the smoothness-based sensor.

The results for the moving shock, displayed to the right in Figure 1, are quite
different. Now, for the high order methods, we observe convergence only when we
use the entropy viscosity with B = 1. When we use the entropy viscosity with § =2
or when we use the smoothness based sensor, the errors clearly saturate as the grid
is refined. The errors for the low order Finite Volume method are still reduced with
the grid size, independent of the scaling in the entropy viscosity method.

To understand why the convergence results obtained with f = 1 and § = 2 in the
moving shock example do not agree, we study where the Lax-Friedrich viscosity
Vmax 18 activated in the vicinity of the shock. We know that when the viscosity is
chosen to be just the Lax-Friedrich type viscosity, then under a suitable Courant
number, the solution will converge to the correct vanishing viscosity solution of the
conservation law [12].

It seems that the Lax-Friedrich viscosity is necessary in some neighborhood of
the shock, and the size of this neighborhood becomes an important factor in the
convergence of the solution to the moving shock problem. In Figure 2, we plot
the average (in time) of the number of elements 7, which use the Lax-Friedrich
viscosity Vmax as a function of total number of elements n for the stationary shock
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Fig. 3 Convergence of the different methods for a smooth initial data, left: before shock forms,
right: after shock forms. The dashed lines are 4> and /3.

(left) and for the moving shock (right). We see that n,, is roughly constant for both
B =1 and B = 2 in the stationary shock. In the moving shock problem, n,, stays
constant for B = 2 as in the stationary shock, but grows slowly for § = 1 (note the
log-scale). While the growth in n,, is irrelevant in the convergence in the stationary
shock example, it seems to play an important role in determining the convergence
in the moving shock example.

4.2 Sinusoidal to N wave

Next, we consider the smooth 2-periodic initial data
u(x,0) = —sin(mx) + 0.5, (15)

which develops into a single N wave.

In Figure 3, we present the L, norm of the errors at + = 0.1 before the shock
forms (left) and at t = 1 after the shock forms (right). The spatial and temporal
discretization of the PDE itself is performed with a high order method, so rate of
convergence that we observe in Figure 3 is limited by either the discretization of the
artificial viscosity or the smoothness of the solution, whichever is more restrictive.

For this N-wave experiment, FV1 and FV2 use (0gy,0max) = (2,0.5) and
(20,0.5) respectively, DG1 and DG?2 use (0, Omax) = (0.1,0.125) and (1,0.125)
respectively, H1 and H2 use (Qgy , Omax) = (0.4,0.4) and (5,0.4), DGP and HP use
(50, %, &) = (21log;(1/256),2,0.05) and (log,o(1/256),1,0.125) respectively.

The discretization of the entropy residual rgy is only first order due to the use
of backwards Euler, so we expect the entropy-based viscosity Vgy to be (B +1)™
accurate, i.e. 2" order when 8 = 1 or 3" order when B = 2. This analysis agrees
with the convergence plot to the left in Figure 3. To the right, we observe the same
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phenomena as in the moving shock example described in Section 4.1. We also note
that the shock in this sinusoidal wave is also moving.

4.3 Shocks of different size

To complement the analysis in Section 3, we next consider a problem with a big
shock and a small shock on the same simulation. According to the analysis, the
entropy viscosity will capture the small shock when 8 = 1, but not when 8 = 2. In
this setup, we start with an existing shock of size Au; = 0.5 and a small sinusoidal
wave that develops into an N-wave of size Aup = 0.2. Thus, we consider Burgers’
equation on [—1,5] with initial data

0 xe[~1,-0.5),
u(x.0) = —0.1sin(27x) x € [=0.5,0.5), 6
’ 0 x€[0.5,4.5),
-0.5 x€[4.5,5),

and fixed boundary condition u(—1,7) = 0 and u(5,7) = —0.5.

The solution initially consists of a shock and a smooth sine wave, which are
placed far away from each other so they never interact. Over time, the sinusoidal
wave develops into a N-wave. In Figure 5, we present the numerical solutions at
time ¢ = 2 for different grid resolutions, obtained with a Hermite method of order 9
and dG method of order 5. In these plots, we can see that the shock is resolved for
both values of 3, however, the N-wave comes with some overshoots when 8 = 2 for
all the finer grid resolutions, see Figure 5.

For this two-shock experiment, DG1 and DG2 use (Qgy , Omax ) = (0.5,0.25) and
(10,0.25) respectively, H1 and H2 use (0tzy,Omax) = (1,0.125) and (50,0.125)
respectively.

Because the magnitude of this N-wave is small, the entropy residual at the N-
wave is relatively small compared to that at the existing shock. On one hand, § = 1
results are free from overshoots when the grid is refined, but = 2 results do have
overshoots, see Figure 4-5.

5 Conclusion

In summary, we have performed a convergence study for Burgers’ equation with
various initial data. We demonstrated that the entropy viscosity method with § =2
does not produce convergent results(fixing the parameters oy and Ohnax) in the
cases where the shock is moving or more than one shock is present. Therefore,
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Fig.
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4 Effect of the choice of scaling on a small perturbation near a larger shock. The results in the

left and right column are for § = 1 and 8 = 2 respectively. The upper figures display the results for
the dG method and the lower figures display the results for the Hermite method. The black curve
is for a simulation using 320 elements and the black uses 2560.

we recommend readers to use 3 = 1; to achieve desired accuracy or better rate of
convergence, use a higher order approximation of the residual.
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