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Abstract

The principle of dynamical similitude—the belief that the same behavior may be exhibited by very different systems—allows us to
use mathematical models from physics to understand psychological phenomena. Sometimes, model choice is straightforward. For
example, the two-frequency resonance map can be used to make predictions about the performance of multifrequency ratios in phys-
ical, chemical, physiological and social behavior. Sometimes, we have to dig deeper into our dynamical toolbox to select an appro-
priate technique. An overview is provided of other methods, including mass-spring modeling and multifractal analysis, that have been
applied successfully to various psychological phenomena. A final demonstration of dynamical similitude comes from the use of the
same multifractal method that was used to extract team-level experience from the neurophysiological data of individual team members
to the analysis of a large scale economic phenomenon, the stock market index. Continual development of analytical methods that are
informed by and can be applied to other sciences allows us to treat psychological phenomena as continuous with the rest of the
natural world.
� 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The application of dynamical systems to psychology
offers both a means by which to demonstrate the continuity
of psychology with the rest of science and the ability to
characterize behavior, the subject of psychology, as a stable
pattern of change. For the majority of the time that psy-
chology has been a science, psychologists have used analyt-
ical methods that reduce the complex behavior exhibited by
humans to only one (e.g., a mean) or a few (measures of
central tendency) numbers. The implication of that
approach is twofold: that behavior was unchanging and

could be characterized statically and that observed varia-
tion was due to random influence.

Psychologists began to adopt dynamical systems meth-
ods during the 1980s by making a straightforward analogy
between the rhythmic behavior of the limbs and the rhyth-
mic behavior of pendulums. They adopted coupled oscilla-
tor models, meant to capture coordination across two
physical oscillators, to better understand stable patterns
of bimanual coordination (e.g., Haken, Kelso, & Bunz,
1985; Kelso, 1981, 1984; Kugler & Turvey, 1987). During
the 1990s, cognitive, developmental, and social psycholo-
gists began to extend the application of dynamical systems
thinking and methods to characterize patterns that they
observed in social interactions and across development
(e.g., Port & Van Gelder, 1995; Thelen & Smith, 1994;
Vallacher & Nowak, 1994). The new millennium brought
increased exploration of dynamical tools to capture those
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patterns of change, including the identification of fractal
processes in reaction time data (Gilden, 1997, 2001;
Gilden, Thornton, & Mallon, 1995) and the formulation
of a singular model to capture all previously-documented
effects in the classic ‘‘A-not-B error” in cognitive develop-
ment (Thelen, Schöner, Scheier, & Smith, 2001). That short
story is just a broad overview of the tremendous growth in
the dynamical approach to psychology. A detailed review
of the history of dynamical systems in psychology could
easily fill an entire book.

As psychologists have access to methods of data collec-
tion that produce more detailed, continuous data
streams—for example, the access to momentary diary data
through smart phone apps or neuroimaging techniques—
there is an even greater need for preserving in our analyses
the processes that are revealed. One approach has been to
extend repeated measures analyses common in statistical
techniques to accommodate those longer data sets. How-
ever, there are assumptions common to traditional statisti-
cal techniques—that observed fluctuations are the influence
of (random) noise around a true population mean—that
become computationally burdensome when scaled up to
data sets of hundreds, thousands, or even tens-of-
thousands of values. An alternate approach is to treat the
observed fluctuation as structured and potentially accom-
modated by low-dimensional dynamical equations. The
focus of the present paper is to present a dynamical
approach that captures with few parameters the details of
complex human behavior that we wish to study. The prin-
ciple of dynamical similitude—that the same behavior may
be observed across very different systems—allows us to
sample from a much broader selection of techniques as
our search for new methods extends to fields of science
beyond psychology. The emphasis on behavior over struc-
ture identifies dynamics as a truly multidisciplinary
approach that sees commonalities across the sciences rather
than restricting scientific inquiry to phenomena that appear
the same structurally.

1.1. Metronomes and people

We often begin with our search for common dynamical
principles in the field of physical models, but even those
models are motivated by real-world behavior. A great
example of dynamical similitude comes in the comparison
of two online videos (available on YouTube and other
sites): the synchronization of 32 metronomes and gait syn-
chronization during Opening Day of London’s Millenium
Bridge. In both cases, synchronization occurs across very
many different rhythmic processes, but the entities generat-
ing those processes—physical objects and people—couldn’t
look more different. In the first case, 32 metronomes rest on
a flexible surface and are set ticking, one after the other. At
first, the phasing of the metronomes is completely random,
governed by when they were started up by the young You-
Tuber. There is no cohesive sound to 32 metronomes all

beating at roughly the same frequency but not at the same
time. . . it’s rather ‘‘clackety”.

Luckily, it doesn’t take long for some of the metro-
nomes to start synchronizing their beats so that the pen-
dula reach the endpoint at the same time. That sounds a
little more cohesive to the listener. However, most of the
metronomes continue to swing left and right seemingly
not in time with the rest or each other. It doesn’t take very
long before we notice all pendula swinging back and forth
together, with the exception of one hold-out, a metronome
whose pendulum swings right while the others swing left.
Dynamicists call the former pattern inphase because the
position of those pendulums in their cycles (i.e., their phas-
ing) is the same as that of their neighbors at any given
moment. Looking at one pendulum is the same as looking
at any one of those other pendulums. The latter pattern is
called antiphase because the position of that lone pendulum
in its movement cycle is exactly opposite to that of its
neighbors. At any given moment, that one pendulum looks
like the mirror image of any of the other pendulums. Anti-
phase, in fact, can be rather stable. But the movement of
the other metronomes on the flexible platform is too much
for that one antiphase metronome, and, eventually, it
switches to the same phasing as all of the other metro-
nomes. By the end of the video, all of the metronomes
are synchronized inphase and the viewer hears a strong,
singular beat given by all metronomes reaching their end-
points at the same exact time.

Why does that synchronization occur? As the pendulum
of each metronome moves back and forth, it generates a
slight movement of the flexible platform below. That dis-
ruption is felt by the other metronomes on the same plat-
form that are also perturbing the platform ever so
slightly. Think about it this way: movement of one pendu-
lum to the left disrupts the platform and other metronomes
in a direction-specific way, influencing them to behave the
same way as it. The coupling medium of the platform
serves to connect all of the metronomes so that they can
communicate with each other. That bidirectional influ-
ence—metronomes influencing and being influenced by
each other—provides the conditions for synchronization.
An understanding of the behavior of the whole system is
not really given by understanding the behavior of one
metronome alone but by understanding the relation of
the metronome to its entire environment: the other metro-
nomes and the platform on which they rest.

What does this have to do with humans walking across a
bridge? The Millenium Bridge is a striking 320-m long steel
suspension bridge that spans the River Thames in London.
The bridge opened to pedestrians on June 10, 2000 and
closed later that same day because of unpredicted sway.
As a suspension bridge, a certain amount of sway was
expected, but amplitude of that sway generated when the
crowds walked across the bridge on opening day was
alarming. Like the metronomes on the flexible platform,
each person generated a little bit of direction-specific
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movement that influenced other people to move the same
way. That may be hard to imagine not having experienced
it first-hand, but think about walking along a rope bridge
with just one other person and recognize that your move-
ments would undoubtedly be affected by any movement
that they made.

Information was carried across the pedestrians on that
suspension bridge in much the same way as information
was carried across the metronomes on the flexible plat-
form. Multiply that influence by a large crowd, and the
result was a singular crowd dynamics in which everyone’s
gait pattern was eventually synchronized. From the per-
spective of a movement scientist, the gait was interesting
in that it wasn’t just straightforward walking in the for-
ward (anterior-posterior, AP) direction. Instead, people
incorporated lateral movements, presumably to increase
their stability as they walked. That resulted in a rather
funny-looking walk that is discussed further in Steven
Strogatz’s (2004) TED talk and Nature article (Strogatz,
Abrams, McRobie, Eckhardt, & Ott, 2005). We have
observed that same stabilization strategy in postural con-
trol: when asked to extend the feet in the AP direction,
as might be seen on beam work in gymnastics, participants
angle the feet to the side (mediolateral direction) to
increase postural stability (Gibbons, Amazeen, & Likens,
2018).

1.2. Which model: phase locking or frequency locking?

The synchronization discussed so far has focused on
phase locking, in which the relative phasing between the
two or more processes being coordinated remains constant.
There is an enormous literature on relative phase dynam-
ics, starting with Kelso’s observation of synchronization
across finger movements in 1981 (Kelso, 1981, 1984) and
continuing through to the present day. We can imagine
that dynamics was adopted into psychology through the
area of motor coordination because the physics of pendula
were a straightforward fit to the physics of swinging limbs.
Scott Kelso claimed that he had the insight to model gait
patterns from a phone book jingle (for those who remem-
ber phone books)—‘‘Let your fingers do the walking
through the Yellow Pages”—and a central paradigm in
motor coordination research was born (Kelso, 1995).

The study of stable patterns of coordination (gaits) in
coordinated finger movements gave rise to the adoption
of a coupled oscillator model, the Haken et al. (1985;
HKB) model, in psychology. For nearly 10 years, dynami-
cists in psychology studied inphase and antiphase as pri-
mary patterns of interest (see summary in Amazeen,
Amazeen, & Turvey, 1998). They looked at transitions
between them (e.g., Kelso, 1984), patterns across multiple
effectors (e.g., Kelso & Jeka, 1992), handedness effects
(Treffner & Turvey, 1996), the influence of cognitive effects
like the direction of attention (e.g., Amazeen, Amazeen,
Treffner, & Turvey, 1997) or the performance of a dual task
paradigm (e.g., Temprado, Zanone, Monno, & Laurent,

1999). They studied different relative phase patterns by
conducting learning studies (e.g., Amazeen, 2002; Lee,
Swinnen, & Verschueren, 1995; Zanone & Kelso, 1992a,
1992b, 1994, 1997) and demonstrated that the same predic-
tions were supported for coordination within and across
people (e.g., Amazeen, Schmidt, & Turvey, 1995;
Richardson, Marsh, & Schmidt, 2005; Richardson,
Marsh, Isenhower, Goodman, & Schmidt, 2007; Schmidt,
Bienvenu, Fitzpatrick, & Amazeen, 1998; Schmidt,
Carello, & Turvey, 1990).

Phase synchronization has even been extended from the
bivariate case, in which phasing is estimated across two
rhythmic processes, to the multivariate case, in which it
can be estimated across more than two processes (Frank
& Richardson, 2010). We’ve arrived back at the example
of the Millenium Bridge. But in all of those examples, the
two processes being coordinated moved at approximately
the same frequency.

It is the very special case that people coordinate pro-
cesses that occur at the same exact rate. Instead, across
social, business, military, and sport settings, people are able
to manage and synchronize concurrent processes that all
occur at different rates. Parents coordinate a child’s nightly
homework assignments with biweekly soccer practices and
weekly soccer games; musicians spontaneously coordinate
a variety of nested rhythms in jazz; young athletes coordi-
nate jumping patterns between two ropes in the sport of
Double Dutch; an employee schedules daily work to meet
a goal that is due at the end of the week. In all of those
examples, the synchronization across individuals cannot
be captured by a singular relative phase value because the
component processes are moving at inherently different
speeds. Instead of looking for phase locking, we focus on
the pattern of frequency locking exhibited. Consider the
employee who must coordinate daily activities over the
next five working days to accomplish the one bigger goal,
due at the end of the week. That pattern can be character-
ized with a frequency ratio of 5:1, i.e., five working days for
one big project. The fact that we can characterize so many
of those synchronization examples with these multifre-
quency ratios, rather than relative phase patterns, makes
the multifrequency ratio a better index of coordination
for those particular examples and motivates the use of a
different model of coordination.

2. A physical model

The two-frequency resonance map is a model of coupled
oscillators in which the two oscillators cycle at different fre-
quencies (Bak, 1986; Gilmore & Lefranc, 2002; Hardy &
Wright, 1965). Technically, it identifies the phasing of a
second cyclic process (Process Q) at some landmark phas-
ing of the first cyclic process (Process P). Consider the work
of the employee above: to meet the deadline at the end of
the week (Process P), the employee structures the activity
of five work days (Process Q). In this model, the boss does
not check in on progress during the week but only checks
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on the status of the project at the end of the week. The two-
frequency resonance map works the same way. From the
perspective of this two-frequency resonance map, the
emphasis is on the delivery (the phase in that project cycle:
is it done?) at the end of the week, not the work that is done
in the interim.

To be honest, the model assumes that you maintain a
steady working frequency during the week, but there’s
really no way to tell because the strobe is at the end of
the week. So how does the model work and what does it
predict?

hnþ1 ¼ hn þ Xþ
K

2p
sinð2phnÞ ð1Þ

Eq. (1) predicts the future state hn+1 of Process Q from the
previous state hn and two control parameters: a ratio that is
called the bare winding number X because it is the ratio that
would be observed in the absence of any coupling, and a

coupling function K
2p
sin 2phnð Þ that captures the influence,

or coupling strength K, across the two processes. Review
of the coordination dynamics literature will reveal that a
coupling function of some form is critical for any coordina-
tion across multiple processes. We observed the relevance
of coupling in both real-world examples discussed so far:
the presence of a flexible platform in the metronome exam-
ple and the fact that the Millenium Bridge was a suspension
bridge. Coupling in any system, captured by K in the
equation above, promotes communication and eventual
synchronization. In other dynamical models of complex
behavior, e.g., Agent Based Modeling (e.g., Janssen &
Ostrom, 2006), coupling is captured by the rules of influ-
ence among individual agents as they interact.

The mathematics underlying the two-frequency reso-
nance model and its parameters are well-documented else-
where (e.g., Bak, 1986; Bak, Bohr, & Jensen, 1984;
deGuzman & Kelso, 1991; Glazier & Libchaber, 1988;
González & Piro, 1985; Hardy & Wright, 1965; Hilborn,
1994). Predictions about the frequency ratio between the
two processes, Process P and Process Q, are generated by
iterating the model for different values of X and K. When
applied to real systems, that prediction is about the fre-
quency ratio (p:q, p < q). There is support for the predic-
tions of the two-frequency resonance map for
spatiotemporal patterns in physical, chemical, and biologi-
cal phenomena, including Rayleigh-Bénard convection, the
Belousov-Zhabotinsky (BZ) reaction, periodically-forced
semiconductor lasers, cardiac arrhythmias, and drumming
patterns (e.g., Glazier & Libchaber, 1988; deGuzman &
Kelso, 1991; McGuinness, Hong, Galletly, & Larsen,
2004; Peper, Beek, & van Wieringen, 1991, 1995a, 1995b;
Treffner & Turvey, 1993; Winful, Chen, & Liu, 1986).

One can generate predictions by iterating Eq. (1) for all
possible combinations of X and K or turn to others who
have done that before us and summarized the results in
intuitive visual displays. The Arnold tongues (Fig. 1a;
Arnold, 1983) and Farey tree (Fig. 1b; González & Piro,
1985; Hardy & Wright, 1965), named after their creators,

mathematician Vladimir Arnold and geologist John Farey,
Sr., depict the predictions of the two-frequency resonance
map. Performed frequency ratios are depicted as tongue-
shaped resonance regions in the Arnold tongues of
Fig. 1a; for purposes of clarity, only larger tongues are
depicted, but there are an infinite number, just as there
are an infinite number of p:q ratios. When applied to
real-world phenomena, like the BZ reaction or drumming
rhythms, tongue width corresponds to performance stabil-
ity. Examination of Fig. 1a reveals that some ratios (e.g.,
1:1, 1:2) are more stable than others (e.g., 1:4, 1:5) and that
performance of a ratio becomes more stable as coupling
strength increases. Those predictions can be tested
empirically.

Comparison of smaller tongues is often difficult. The
Farey tree (Fig. 1b) is useful in that regard because it pro-
vides a rank ordering of the Arnold tongues by width.
Notice that the same ratios that occupied wide tongues in
Fig. 1a occupy lower levels of the Farey tree in Fig. 1b.
The level of the Farey tree corresponds inversely to ratio
stability, so that we would expect to see the ratios that
reside at lower levels of the Farey tree performed more
often and exhibit lower variability (greater stability) than
ratios at higher levels. Fig. 2a depicts predictions for 5
simple ratios (1:1, 2:1, 3:1, 4:1, and 5:1) that occupy five
different levels of the Farey tree.

2.1. From physics to motor coordination

Application of the two-frequency resonance map to
motor and social coordination requires that the two

Fig. 1. Predictions from the two-frequency resonance map are depicted in

the (A) Arnold tongues and (B) Farey tree.
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parameters X and K be operationalized. The ratio of
uncoupled frequencies, X, can be manipulated by varying
differences in the physical properties, and therefore the pre-
ferred (eigen-)frequency of the two oscillators; different
pacing signals can be provided that drive the oscillators
at different frequencies independently of each other; or
instructions can be given to perform a required ratio. The
prediction is that performance success will be constrained
by the dynamics of the two-frequency resonance map. I will
not discuss coupling strength in depth in this paper,
although it is often manipulated as the overall movement
frequency (e.g., Peper et al., 1995b). Additional manipula-
tions include the amount of visual information available
about a partner’s movements during social coordination
(e.g., Gorman, Amazeen, Crites, & Gipson, 2017); and
the role of practice in a learning experiment (e.g., Hessler
& Amazeen, 2014). The application of the two-frequency
resonance map to motor coordination is well-supported
by research on bimanual coordination (e.g., drumming pat-
terns, Peper et al., 1991, 1995a, 1995b; also see Treffner &
Turvey, 1993).

To understand whether the model might generalize to
synchronization across people, we first tested whether
predictions hold across two physiological subsystems. A
number of years ago, we ran some experiments on
motor-respiratory coordination (MRC) to test whether
the same model could be used to make predictions about
coordination across the motor and respiratory subsystems
of the body as occurs when someone synchronizes their
breathing with their movements during exercise, for exam-
ple. We were motivated by the observation that motor-
respiratory coordination is widely observed: during both
quadrupedal and bipedal locomotion (e.g., walking, van
Alphen & Duffin, 1994; running, Bernasconi & Kohl,
1993; Bramble & Carrier, 1983; Lafortuna, Reinach, &
Saibene, 1996; cycling, Garlando, Kohl, Koller, &
Pietsch, 1985; Paterson, Wood, Morton, & Henstridge,
1986) and during upper-limb locomotion in both animals
(e.g., geese, Butler & Woakes, 1980; bats, Suthers,
Thomas, & Suthers, 1972) and humans (e.g., wheelchair
propulsion, Amazeen, Amazeen, & Beek, 2001; rowing,
MacLennan, Silvestri, Ward, & Mahler, 1994; Mahler,
Hunter, Lentine, & Ward, 1991; Mahler, Shuhart, Brew,
& Stukel, 1991).

Despite large differences in the patterns of coordination
produced and the number of joints required, there was
remarkably low variability in the ratios observed across
those experiments: 1:2 (during rowing only), 1:1, 2:1, 3:1,
4:1, 6:1, 3:2, 5:2 [Note that some researchers do not report
integers greater than five (e.g., MacDonald, Kirby, Nugent,
& MacLeod, 1992)]. The ratios observed during motor-
respiratory coordination are readily apparent in the Arnold
tongues and Farey tree of Fig. 1, although the convention
in the physiological and sport literature is to report ratios
p > q, in contrast to the convention of p < q in the model.
Both simple (p:1, as in 2:1) and complex ratios (p – q – 1,
as in 3:2) are performed in real-world MRC, but it is clear
that simple ratios are preferred. We collected data using a
simple experimental protocol in which both simple ratios
and complex ratios, including novel ratios that had not
been observed in the physiological literature, could all be
performed without exposing participants to dangers like
the potential loss of postural stability during the perfor-
mance on a treadmill, for example, of some complex ratio
like 5:3. In that way, the predictions of the two-frequency
resonance map could be fully tested.

Participants sat in a chair and were asked to swing the
arm back and forth as they breathed into a mask that mea-
sured their respiration. In the first experiment, we asked
participants to maintain a simple ratio of 1:1, 2:1, 3:1,
4:1, or 5:1. The instruction was simple enough not to
require any additional explanation or training and permit-
ted a comparison of ratios that were predicted to vary in
stability. Predicted distributions are depicted in Fig. 2a.
Notice that the height of those predicted distributions cor-
responds directly to the width of the Arnold tongue for
that ratio and inversely to the level of the Farey tree at
which that ratio resides.

Fig. 2. Frequency distribution of performed frequency ratios as

(A) predicted by the two-frequency resonance map and (B) observed in

an experiment on motor-respiratory coordination.
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Eight participants performed the ratios in random
order, and frequency ratios were calculated per cycle.
Group data, which correspond to the predicted data of
Fig. 2a, are depicted in Fig. 2b. It is clear that performance
variability varied as a function of the ratio performed:
ratios occupying larger Arnold tongues and residing at
lower levels of the Farey tree were observed more often
and performed with greater stability than ratios occupying
smaller tongues or residing at higher levels on the Farey
tree. Analysis of variance (ANOVA) revealed that both
mean frequency ratio and the standard deviation of
frequency ratio, a measure of variability, were significantly
different across the five ratios, F(1, 7) = 22,131.56, p < .001
and F(1, 7) = 25.18, p < .005, respectively. We further sup-
ported the predictions of the two-frequency resonance map
by testing both simple and complex ratios in subsequent
experiments (e.g., Hessler & Amazeen, 2014; Hessler,
Gonzales, & Amazeen, 2010).

2.2. From physics to social coordination

More recently, we tested the application of the two-
frequency resonance map to coordination across dyads.
We used a continuation tapping paradigm to allow partic-
ipants to initiate each trial with a perfect uncoupled fre-
quency ratio X but no coupling. Participants closed their
eyes and tapped their forefinger to a metronome pacing sig-
nal, distinct for each member of the dyad and specifying X

that was delivered through headphones. After 15 sec, we
discontinued the pacing signal but asked the participants,
who were seated across from each other, to continue tap-
ping at the same pace as they watched their partner’s fin-
ger. That was the introduction of coupling K. We tested
all 16 ratios (excluding 0:1, which eliminates one process)
depicted in the Farey tree of Fig. 1b. A sample time series
depicting the performance of 3:2 is depicted in Fig. 3a.
Notice that Person 2 completes three full cycles during
the time that only two cycles are completed by Person 1.

The results for all 16 ratios are presented as a function
of the Farey tree level in Fig. 3b; additional analyses will
be presented in a manuscript that is currently being pre-
pared. Notice the correspondence of those results with
the results of Fig. 2b. Both figures depict multifrequency
coordination across five levels of the Farey tree, but the
remarkable difference is that coordination was within a
person (and between two physiological subsystems) in
Fig. 2b and between two different people (but within the
same physiological subsystem) in Fig. 3b. Results are con-
sistent with previous empirical work and support the
predictions of the two-frequency resonance map.

To fully support the principle of dynamical similitude,
we brought our testing back into the real-world to study
multifrequency ratios generated during Double Dutch
jump roping. Double Dutch requires coordination across
multiple people: Two rope turners holding the endpoints
of two long ropes in their hands rotate the ropes in oppo-
site directions as one or more jumpers jump and perform

acrobatic tricks. Anyone who has observed the sport of
Double Dutch can attest to the fact that it involves com-
plex patterns of coordination. We had the opportunity to
collect coordination data from elite Double Dutch teams
at a summer camp sponsored by the National Double
Dutch League. In some conditions, we simply recorded
jumping routines and analyzed them for observations of
spontaneously-performed multifrequency ratios. In other
conditions, we asked teams to explicitly perform particular
ratios so that we could examine their stability.

For purposes of illustration, consider the recording of
rope turns and footfalls when teams were asked to perform
5:7 (Fig. 4). Blocks of rope turns and footfalls help to iden-
tify the performed ratio. Notice that, for every block, the
rope hits the ground five times for every seven footfalls
so that a 5:7 ratio is maintained. Perhaps more intriguing

Fig. 3. (A) In one representative dyad, synchronized finger tapping is

observed as the maintenance of a 2:3 frequency ratio. (B) Across all dyads,

the distribution of frequency ratios performed supports the predictions of

the two-frequency resonance map.

Fig. 4. In the sport of Double Dutch jump roping, maintenance of a 5:7

frequency ratio demonstrates synchronization between the movements of

the rope by the rope turner and footfalls of the jumper.
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is this team’s strategy for performing this particular ratio:
with an odd number of footfalls required, there is a higher
order structure such that one block starts on the left foot
(LRL, RL, LR) and the next block starts on the right
(RLR, LR, RL). To maintain a stable complex ratio, teams
alternated footfall patterns. Preliminary results are avail-
able in a number of papers (Gorman, Amazeen, et al.,
2017; Gorman, Dunbar, Grimm, & Gipson, 2017), and full
details will be published following additional analyses. For
the time being, it is sufficient to note that dynamical simil-
itude is demonstrated in the application of this singular
dynamical model to patterns of coordination in physical,
chemical, biological, psychological, and social systems.

3. A dynamical systems toolbox

I don’t want to leave the reader with the impression that
dynamical systems application requires the use of a pre-
existing model. In fact, the models identified so far are only
two dynamical models out of a whole set of dynamical
methods—a dynamical systems toolbox—that may be
applied in psychology. Dynamical similitude is important
for use of this tool box because method selection is based
on behavioral, not material, similarity. Therefore, we do
not look within a subfield of science or a subfield of psy-
chology for inspiration. Instead, we look across science
as a whole to identify appropriate methods for our phe-
nomenon of interest.

We’ve seen that motor coordination across two rhyth-
mic processes might be characterized as phase-locked or
frequency-locked, depending on whether the two processes
reside in a common time scale, and are best characterized
by their relative phasing, or different time scales, and are
best characterized by a frequency ratio. The selection of
an appropriate model follows from those data characteris-

tics: relative phase predictions are captured by the HKB
model, and frequency ratio predictions are captured by
the two-frequency resonance map. From each of those
models, we can make predictions about performance accu-
racy, performance stability, and, relatedly, transitions
between patterns as a function of different conditions,
including, in both cases, coupling strength.

However, dynamical analysis is not limited to the use of
just those two models. Dynamical systems analysis is a
toolbox of methods that belong to the general class of time
series analyses. Fig. 5 depicts what I playfully call a Holly-
wood Squares of Dynamical Systems Analysis. Hollywood
Squares was a game show where players called on celebri-
ties occupying the squares to answer particular questions.
In the best of all worlds, there would be a match between
the question asked and the knowledge of the celebrity cho-
sen. That was rarely the case. In the Hollywood Squares of
Dynamical Systems Analysis, we choose a dynamical
method that helps us to characterize the pattern repre-
sented in the box. For example, one might use a logarith-
mic function to capture the idealized learning curve of
Fig. 5d.

Notice that the patterns depicted in Fig. 5 vary consid-
erably: Some patterns, like the stationary data of Fig. 5j,
might be characterized with descriptive statistics that do
not change over time. A mean calculated over the first third
of the data, for example, is not appreciably different from a
mean that is calculated over the last third of the data. In
contrast, descriptive statistics change over time for nonsta-
tionary series, like the phase transition data of Fig. 5h or
the learning data of Fig. 5a. The mean for the first third
of the series depicted in Fig. 5h is considerably greater than
the mean calculated over the last third of those data. In
that case, we may want to use a windowing technique
where we use different values to characterize the different

Fig. 5. Dynamical systems toolbox is a collection of dynamical systems methods that can be used to analyze multiple types of patterns, including (A)

learning data; (B) damped oscillations; (C) cyclic data; (D) logarithmic data; (E) fractal processes; (F) multifractal processes; (G) data with no apparent

pattern (team coordination data from Gorman et al., 2010); (H) phase transitions; and (J) fluctuations about a single mean.
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stable regions observed. The size of the window can be var-
ied to capture the transition phenomenon. There are many
dependent measures in the field of dynamical systems anal-
ysis that can be used to study transitions (Scholz, Kelso, &
Schöner, 1987). One option is to estimate transition time to
make comparisons of ease of transition across multiple
observations.

Notice in Fig. 5 that some of the changing patterns
appear to be systematic: the learning data of Fig. 5a
approach some accuracy value and become less variable
over time (practice). Other systematicities—we might call
them patterns of change—include the cyclic data of
Fig. 5c and damped cycling in Fig. 5b. In those situations,
we can identify a pattern that repeats itself over time either
precisely or with some systematic transformation like
damping. Finally, there are those panels that appear
incredibly noisy (e.g., Fig. 5e) or whose patterning, if it
exists, is not visually accessible or easily described
(Fig. 5g). All of the patterns depicted in Fig. 5 have been
observed in psychological experiments, and there are
dynamical analyses that can characterize each of them.
The key to applying these methods is making an appropri-
ate selection for your data.

Consider the damped oscillations of Fig. 5b. We
observed patterns like this in diary data from a month-
long study on patients with rheumatoid arthritis (Finan
et al., 2010). The dependent measure of interest was the
accuracy with which these patients predicted their daily
pain because errors in either direction have negative conse-
quences for the patient’s lifestyle and coping (Rachman &
Arntz, 1991). Traditional studies that focused on aggregat-
ing the data ended up with conclusions that treated patients
as static: they were overpredictors (Arntz, van Eck, &
Heijmans, 1990; Rachman & Lopatka, 1988) or underpre-
dictors (e.g., Arntz & Peters, 1995; Finan, Zautra, &
Tennen, 2008; McCracken, Gross, Sorg, & Edmands,
1993). In those studies, fluctuations were characterized as
random (Arntz et al., 1990; Finan et al., 2008; Rachman
& Lopatka, 1988).

Were the observed fluctuations truly random or was
there some systematicity that could be characterized
dynamically? Review of the raw time series data for all
170 patients revealed two consistencies: nearly all patients
exhibited cycling and damping. Instead of consistently
overpredicting their pain or underpredicting it, as the liter-
ature had suggested, patients cycled between overpredic-
tion and underprediction during the course of the month.
They also became more accurate as they engaged in the
prediction process, an observation that was consistent with
previous literature (Crombez, Vervaet, Baeyens, Lysens, &
Eelen, 1996; Rachman & Arntz, 1991).

The appropriate model choice, then, was mass-spring

models, where estimation of parameters like stiffness,
damping, and nonlinear escapements serve to characterize
the size and shape of the cycles (e.g., Beek & Beek, 1988;
Beek, Schmidt, Morris, Sim, & Turvey, 1995; Butner,
Amazeen, & Mulvey, 2005). Mass-spring models have the

very boring origin of being used to characterize—get
this—the behavior of a mass resting on a surface (with par-
ticular friction characteristics) attached to a wall by a
spring (of particular stiffness). It is through the modeling
of those friction and stiffness parameters that we estimate
observed damping and cycling, respectively. Nonlinear
parameters allow us to capture nonlinearities in the cycling
pattern. It turns out, though, that mass-spring models,
while being developed for that simple physical system,
characterize the behavior of very many types of systems
that exhibit cycling.

We combined mass-spring modeling with multilevel
modeling to extract group-level patterns of behavior as well
as identify the effects of individual differences, like pain
control, on the patterns observed. As a group, we found
support for our initial observations of cycling and damp-
ing. One particularly interesting finding was that patients
who differed in pain control (using an 11-point scale found
in Tennen, Affleck, & Zautra, 2006) differed in the manner
in which they approached accuracy: patients who were low
on the pain control index cycled toward accuracy in a lin-
ear fashion. That means that their cycling pattern didn’t
change as a function of where they were in their cycle. In
contrast, patients who were high in pain control cycled in
a nonlinear fashion, lingering more in regions of accuracy
than in regions of inaccuracy. In addition to being useful
for diagnostics, one can imagine that knowledge being rel-
evant for the timing of therapeutic interventions.

Mass-spring models can also be coupled, allowing for
the analysis of how two cyclic processes influence each
other over time (e.g., Butner et al., 2005; Hessler, Finan,
& Amazeen, 2013). That method would be useful for social
application. Although the equations are slightly different,
those models are used in social psychology to characterize
patterns in everything from weekly cycles in emotions
(Chow, Ram, Boker, Fujita, & Clore, 2005) to a wide range
of other clinical and social phenomena (see summary in
Boker, Staples, & Hu, 2016).

A discussion of all of the tools represented in the Holly-
wood Squares of Dynamical Systems Analysis is not within
the scope of this paper. In the interest of providing one
more example of a tool that can be used across physical,
physiological, cognitive, and social systems, we will con-
sider the fractal data of Fig. 5e and f in the next section.

4. Fractal methods for nested data structures

In the absence of conducting our psychological research
in a vacuum, we recognize that we can never completely
isolate a phenomenon from everything that influences it.
Instead, the measurements that we make inherit the stamp
of all of the other effects, both above and below the level of
analysis, that have some influence. Consider the very prac-
tical example of having your heart rate recorded at a doc-
tor’s office. The doctor analyzes heart rate not because she
is only interested in the activity of your heart but because
that recording acts as an index for the overall health of
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the body. That is because when we record heart rate, we are
picking up on the very many other interacting physiologi-
cal subsystems of the body. It has been known for some
time that breathing patterns, for example, influence the car-
diac signal: heart rate increases during inhalation and
decreases during expiration, a phenomenon known as res-
piratory sinus arrhythmia (Hirsch & Bishop, 1981;
Melcher, 1976; Weiss & Salzano, 1971). The effects on
heart rate of cognitive and social factors, like psychological
stress and social isolation, are well-documented (Horsten
et al., 1999; Schnall, Dobson, & Landsbergis, 2016;
Steenland et al., 2000).

Consider the schematic drawing of Fig. 6, inspired by
Iberall (1987) and Van Orden, Holden, and Turvey
(2003). The ordering of the processes identified in Fig. 6
is not critical. What is important is the identification of
activities both above and below the level of measurement
that might influence the measurement that is taken. For
example, social interactions can range in time from short
social encounters at a grocery counter to long-lasting
friendships and family relationships. The study of a rela-
tionship, for example will necessarily be influenced by
slower-moving cycles, like the annual (seasonal) cycles that
dictate holiday celebrations, the academic year, sports sea-
sons, and taxes, and by faster-moving cycles that influence
each individual in the relationship, like weekly emotional
cycles (Chow et al., 2005), cognitive processes like shifts
in the direction of attention, level of motivation and

engagement, and physiological processes. On any given
day, a relationship may flourish because of some of these
influences and suffer because of others. A measurement
taken in a psychological experiment, like a daily diary data
study, is a necessary product of all of those influences and
demonstrates the integration of dynamics across scales of
behavior.

Additional influences both above and below the level of
the social group are presented in Fig. 6. Importantly, the
influence across each of those processes is bidirectional,
so that fluctuations in individual behavior, for example,
influence the social relationship, but fluctuations in the
social relationship also influence the individual’s behavior.
Specifically, an individual’s cognitive reasoning, affected by
a lack of sleep, may help to create friction with his partner.
At the same time, miscommunications within the couple
can affect the individual’s cognitive state and sleep pattern.
That bidirectional influence will form the basis for the anal-
ysis of the empirical data presented next.

4.1. From motor to social coordination

Fig. 6 allows us to start considering the very many
nested cycles in a psychological measurement. Now let us
consider concretely some real empirical data, specifically,
electroencephalogram (EEG) data from individual team
members (Stevens, Galloway, et al., 2013; Stevens,
Galloway, Wang, & Berka, 2012; Stevens, Gorman,
Amazeen, Likens, & Galloway, 2013) that formed the basis
for a multifractal analysis of neural signatures of team
(social) coordination (Likens, Amazeen, Stevens,
Galloway, & Gorman, 2014). That analysis will be dis-
cussed shortly. Mimicking the structure of Fig. 6, we see
that the team resides at the social level but may be con-
strained by both slower processes at levels above the level
of the group and smaller, faster processes. EEG signals
came from team members who were engaged in a Sub-
marine Piloting And Navigation (SPAN) simulation task
at the Naval Training Academy in Groton, CT. That
means that team behavior observed during the training ses-
sion was influenced by more slowly-changing processes like
the training procedures of the Naval Training Academy
and the broader mission and directives of the U.S. Navy.
At the same time, team behavior was influenced by individ-
ual characteristics of team members, i.e., their cognitive,
motor, respiratory, cardiac, and neurophysiological states.

A significant feature of this data set was the assumption
of bidirectional influence: For example, teams engaged in
rhythmic tasks, like the ‘‘taking of Rounds”, which con-
sisted of a highly scripted reporting procedure that
recurred every 3 min. It is highly likely that the presence
of that recurring team-level task caused the neurophysio-
logical states of individual team members to be correlated
in some important way during the execution of that task.
Their neurophysiological states may not have reflected
the same level of coordination during times when they were
not engaged in that common task. That assumption

Fig. 6. Schematic drawing of the very many nested processes that,

through their interactions, give rise to fractal behavior.
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allowed us to expect that analysis of EEG signals at the
level of measurement would reflect the state of the team
at the social level.

Let us consider briefly the multifractal analysis that was
conducted. Fifty years ago, Mandelbrot (1967, 1975)
coined the term fractal to refer to phenomena whose inter-
esting features did not exist at one privileged level of anal-
ysis but were distributed across all scales; that is, there is a
single unifying scaling principle. This concept may be illus-
trated with a simple method for discovering a fractal scal-
ing law called power spectral density (PSD). Any simple
(e.g., simple cycling/sinusoid) or complex time series (e.g.,
music) can be decomposed via the Fourier transform into
component frequency signals. The presence of a single peak
in the resulting power spectrum identifies the contribution
of a single frequency, as expected in a simple sine wave; the
implication is that all observed fluctuations are accounted
for by that one frequency. The presence of multiple peaks
identifies the contribution of multiple frequencies, as in
music. Fractal structure is identified by logarithmic decay
across those spectral components; that is, all frequencies
contribute to the observed series, but the energy accounted
for by each frequency is inversely related—via a loga-
rithm—to the size of that frequency. When transformed
to logarithmic coordinates, the slope of the decay is �1;
thus, the label 1/f noise. That is one way of estimating a
scaling exponent.

In addition to PSD, many more sophisticated methods
have been developed to characterize the fractal nature of
a time series (see summary in Eke, Herman, Kocsis, &
Kozak, 2002). All of them have as their output some vari-
ant of the scaling exponent discussed above that character-
izes the relation of fluctuations across scales of analysis.
Those methods allow us to quantify in empirical data Man-
delbrot’s scaling principle, the distribution of important
features across all scales. Decades of research have con-
tributed to our understanding that fractals exist broadly
in the natural, psychological and cognitive sciences (e.g.,
Mandelbrot, 1982; Wagenmakers, Farrell, & Ratcliff,
2004). Some particularly interesting examples include the
fractal structure of geographical distance and timing
between earthquakes as related to the fractal structure of
fault lines (e.g., Abe & Suzuki, 2003; Bak, Christensen,
Danon, & Scanlon, 2002; Bak & Tang, 1989); the fractal
structure of a healthy heart (Goldberger et al., 2002;
Ivanov et al., 1996; Solé & Goodwin, 2000); coordination
across people (e.g., Delignières, Almurad, Roume, &
Marmelat, 2016; Fine, Likens, Amazeen, & Amazeen,
2015); and performance on a wide range of cognitive tasks,
including simple response time, word naming, choice deci-
sion, and interval estimation (Gilden, 2001; Ihlen &
Vereijken, 2010; Thornton & Gilden, 2005; Van Orden
et al., 2003).

It is the very special case that real systems exhibit a sin-
gle scaling principle across all levels of analysis. Real
phenomena, including some of the examples mentioned

above, exhibit multiple scaling regions, where each scaling
exponent characterizes relations across a range of scales or
across a range of time (e.g., Ihlen, 2012; Ihlen & Vereijken,
2010). Consider fractal structures within the human body,
including the lungs and neural pathways, which exhibit dif-
ferent scaling relations and motivate the use of multifractal
analysis.

It was the insight of Likens et al. (2014) that multifrac-
tals could be used to extract meaningful structures like
events from empirical data. Pre-processing steps used to
convert 54 channels of EEG data (nine channels per team
member) to the Shannon entropy time series of Fig. 7a
are presented in detail in Likens et al. (2014) and Stevens
et al. (2012), but I will present a general outline here:
EEG data were converted to one Engagement time series
per participant using the B-Alert� EEG system. Those six
individual time series were further reduced to a single time
series of neurodynamic symbol patterns, labeled 1–25, that
corresponded approximately to activity level across team
members from least to greatest (see Stevens et al., 2012).
A transition matrix tracked the changes in those patterns
over time by mapping the current symbol onto the preced-
ing symbol. The distribution of activity across that matrix
was captured with Shannon entropy, calculated in 100-sec
sliding windows (‘‘Epochs” in Fig. 7a). In this context,
entropy was inversely related to team organization: low
values of entropy indicated high levels of organization,
rigidity in the extreme, and high values indicated disorgani-
zation or transitioning.

Just as there are many methods for estimating fractals,
there are many methods for estimating multifractals. One

Fig. 7. Multifractal analysis of (A) an entropy signal derived from EEG

data revealed (B) regions of organization that corresponded to team-level

experiences in Likens et al. (2014). Brightness corresponds to the

correspondence of the analyzing wavelet to features of the time series in

(A) at a particular time (horizontal axis) and scale (vertical axis).
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popular method, called multifractal detrended fluctuation
analysis (MFDFA, Ihlen, 2012), estimates the spectrum
(range) of scaling exponents. Likens et al. (2014) used
another multifractal method called wavelet transform mod-
ulus maxima (WTMM; Mallat, 1999; Muzy, Bacry, &
Arneodo, 1993; Percival & Walden, 2000; Struzik, 2001)
because of its ability to localize those exponent changes.
WTMM replaces the spectral components used in PSD
and other fractal analyses with analyzing wavelets that
permit customization to characteristics of the signal being
analyzed and promote the identification of singularities,
or transition points. That allows for wavelet analysis to
be used to locate meaningful events in both time and scale
of analysis.

In the first step, a continuous wavelet transform is gen-
erated by translating a wavelet of a particular size across a
time series to estimate wavelet coefficients, or correlations
of the wavelet with the series, over time. The process is
repeated with wavelets of different sizes to derive the same
estimates across a range of scales. The output is a matrix of
wavelet coefficients that can be depicted as a heat map with
brightness used to refer to the value of the wavelet coeffi-
cient, or correlation of the analyzing wavelet to features
in the original signal. In Fig. 7b, brighter points identify
strong positive correlations.

Interpretation is most meaningful when we consider
regions of color/brightness rather than each individual
point, for it is those regions that correspond to events.
Coordinates of those events are given by time (‘‘Epoch”)
on the horizontal axis and scale (‘‘log2(scale)”), or the size
of the analyzing wavelet, on the vertical axis. Those coor-
dinates can be used to locate meaningful events in both
time and scale of analysis. Branching indicates nesting of
smaller, faster-moving events inside larger, slower-moving
events that mimics the nested structure (Fig. 6) that we
expect gives rise to the fluctuations we observe in our mea-
surements of human behavior.

What is often lost in empirical reports is the story of
how the analysis unfolded. What I find most remarkable
about this particular analysis is the fact that we did not
have access to the transcripts while we completed the
multifractal analysis. We identified what we considered rel-
evant features and our colleagues, who had the transcripts,
looked up the times we identified to provide a match to our
observations. What is immediately clear is that larger,
brighter regions at the largest scales of Fig. 7b are filled
with branching that distinguishes events at smaller scales.
At approximately Epoch 2800, the onset of debriefing is
identified as a dark line that separates the largest scale
events of Experimental Session and Debriefing. The impact
of that debriefing pervades all scales of analysis, from the
largest ‘‘session identity” to the smallest, momentary inter-
actions. I mentioned previously the taking of Rounds, a
recurring event for the team. The band of branching at
log2scale 6 corresponds to that rhythmic event. Finally,

we notice an encapsulated event at approximately Epoch
1500 and log2scale 8. Consultation of the transcript
revealed a period of confusion for the team that resulted
from a near-collision with another ship under conditions
of reduced visibility.

Thinking back to the nested processes of Fig. 6, we can
imagine that one of the reasons we can see this team-level
experience in what started as neurophysiological data is
due to the bidirectional influence of the very many nested
processes inherent in social behavior. We used multifractal
analysis to integrate neurophysiological and social scales of
behavior. Moving forward, we must recognize that the fluc-
tuations that we observe in our measurements in any exper-
iment may reflect fluctuations in the process that we intend
to measure as well as fluctuations of many other processes
that reside both above and below the level of measurement.
Instead of treating those fluctuations as negative, we can
harness them to identify larger-scale and smaller-scale
events of significance.

The next step is to characterize lagged influences across
both spatial and temporal scale to identify the influence of
one process on another at both concurrent and later points
in time. That method will enable us to identify precise
timing and size of influences across scales of behavior.
Methods that identify historical (lagged) influence across
bivariate or multivariate processes include vector autore-
gressive models (Hamilton, 1994; Sims, 1980), recurrence
quantification analysis (RQA) and its variants (e.g.,
CRQ, JRQ) (e.g., Eckmann, Kamphorst, & Ruelle, 1987;
Marwan, Romano, Thiel, & Kurts, 2007; Romano, Thiel,
& von Bloh, 2004; Wallot, Roepstorff, & Mønster, 2016;
Webber & Zbilut, 1994), and spectral and wavelet coher-
ence analysis (e.g., Grinsted, Moore, & Jerejeva, 2004;
Mandel & Wolf, 1976). Other methods characterize multi-
scale but contemporaneous influences across two processes
(e.g., Kristoufek, 2015; Podobnik & Stanley, 2008;
Podobnik, Wang, Horvatic, Grosse, & Stanley, 2010).

We recently submitted a paper that introduces a tech-
nique called Multiscale Lagged Regression Analysis
(MLRA) that accomplishes both of those tasks (Likens
and Amazeen, submitted for publication). Following the
precedent of Kristoufek (2015), we apply detrended fluctu-
ation analysis (DFA), a multiscale method, across two data
streams whose lagged relationship is varied systematically.
In this way, we are able to determine the influence of one
process on another across both spatial and temporal scale.
Using the example above, this would enable us to measure
both neurophysiological and social states and estimate
directly the influence of each one on the other at different
scales (momentary vs long-term) and over time (immediate
vs delayed). The future direction of this research program
is to track influences across both time and scale in the mul-
tivariate case, that is, for the very many nested processes
(e.g., Fig. 6) that contribute to the richness and complexity
of human behavior.
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4.2. From social coordination to large scale social

phenomena

Is multifractal analysis limited to team coordination? Of
course not. Dynamical similitude means that we can find
those same dynamical patterns across many different
systems. Because wavelets are particularly well-suited for
spatial recognition, they have been used across a wide vari-
ety of tasks in the physical (cloud formations, Arneodo,
Audit, Decoster, Muzy, & Vaillant, 2002); biological
(DNA sequencing, Arneodo et al., 2002); neural (detection
of event-related potentials, Aniyan, Philip, Samar,
Desjardins, & Segalowitz, 2014); and psychological (facial
recognition, van der Lubbe, Szumska, & Fajkowska,
2016; hand-mouse coordination, Nie, Dotov, & Chemero,
2011) sciences. Let’s scale our question to the extremely
large scale social level of an economic indicator: the Dow
Jones Industrial Average (Dow Jones, for short). I must
caution readers that this analysis is presented to illustrate
the potential for this technique and is not rigorous enough
to create conclusions about what events are and are not sig-
nificant economically. The main point is to illustrate the
generalizability of the technique used above for human
teams and to point to potential for future development
and application.

Consider temporal fluctuations in a stock market index
(e.g., Mandelbrot & Hudson, 2004; Solé & Goodwin,
2000). The stock market, like the cardiac signal considered
earlier, does not exhibit a characteristic frequency but is
composed of fluctuations of all sizes. Like the social
behavior considered in Fig. 6, the stock market index is
influenced from above and below by slower- and faster-
moving processes. Consider the fact that the value of the
Dow Jones, a stock market index, fluctuates as a function
of the behavior of the 30 companies of which it is com-
posed. However, the behavior of those companies is con-
strained from above by federal laws governing business
practices and the overall state of the world economy and
influenced from below by the productivity of its employees,
the cost of its materials, and the successes and failures of
other companies with which it does business. We can think
about those processes as bidirectional: the behavior of the
company is both influenced by and influences the behavior
of the employees. Success of the company as a whole might
be reflected in larger bonuses, greater happiness, less stress
(or more stress!); likewise, how the employees feel wealth-
wise, happiness-wise, stress-wise, can affect the success of
the company. Modeling the analysis of Likens et al.
(2014), we can use multifractal analysis to integrate those
very different scales of behavior.

We can use WTMM to extract information from the
Dow Jones closing prices not just about the success of
those 30 companies, but about larger-scale, impactful busi-
ness and world events. Fig. 8a depicts closing prices of the
Dow Jones from opening day in 1885 to the present day;
the trendline has been removed to keep it from dominating
the analysis. Notice that, even with the trend line removed,

there are considerable fluctuations in the market. Most
notable is the sharp decrease during late October 1929 that
marked the beginning of the Great Depression. Sometimes,
landmark events like that are obvious in the original time
series. However, other events are temporally extended so
that visual detection is less obvious.

Multifractal analysis allows us to extract from that sig-
nal major events in time that are not just economic events
but signify important national and international events as
well. In effect, the output of WTMM, depicted in Fig. 8b,
expands into two dimensions the one-dimensional time ser-
ies of Fig. 8a. The level of brightness in Fig. 8b corresponds
to the value of the wavelet coefficient, with bright regions
indicative of positive correlations between the analyzing
wavelet and features in the time series. Transition points
are identified as dark lines separating bright regions; in
the analysis, they correspond to a lack of correlation with
the analyzing wavelet. As demonstrated earlier, the coordi-
nates of ‘‘Days” and scale (‘‘log2(scale)”), or the size of the
analyzing wavelet, can be used to locate, in time and size,
meaningful events in the Dow Jones time series. Branching
indicates nesting of smaller, faster-moving events inside lar-
ger, slower-moving events that mimics the nested structure
(Fig. 6) that we expect gives rise to the fluctuations we
observe in our measurements of human behavior.

Just as landmark events revealed in Fig. 7b were clari-
fied by reference to team training transcripts, so the eco-
nomic analysis presented here is clarified by reference to
external information. Because this analysis is illustrative,
I will refrain from commenting on smaller features and will
identify just three important events: Most interesting is the

Fig. 8. Multifractal analysis of (A) the closing prices of the Dow Jones

Industrial Average (growth trend removed) revealed (B) regions of

organization that corresponded to significant historical events. Brightness

corresponds to the correspondence of the analyzing wavelet to features of

the time series in (A) at a particular time (horizontal axis) and scale

(vertical axis).
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observation that two events—the onset of the Great
Depression in 1929 and the terrorist attacks of
9/11/2001—seem to form boundaries for some large-scale
economic period that spans WWII and so very many other
economic and social events. Within that period is a large
encapsulated region that could correspond to any number
of events around the time of John F. Kennedy’s assassina-
tion; that might include important events in the Civil
Rights movement, including Martin Luther King’s ‘‘I Have
a Dream” speech. Follow-up analyses that focus on that
time period would be better able to localize the effect in
time. The dark regions along the bottom of Fig. 8b are
non-interpretable in this analysis. Again, follow-up analy-
ses that focus on the smaller scales of analysis may reveal
additional structure.

The significant contribution of this analysis is the iden-
tification of patterns that are not otherwise obvious. I think
back to the discussion over these past 10 years about when
the Great Recession (2008) ended. The National Bureau of
Economic Research (NBER, 2010) defined June 2009 as
the end of the recession based on the presence of a trough
in the Gross Domestic Product and Gross Domestic
Income, but the reporting committee acknowledged that
other economic indicators at different levels of analysis
had not improved. Both impact and recovery differed
across areas of the country, socioeconomic groups, and
industries (e.g., automobile, housing markets) (Reid,
Carroll, & Ye, 2013). Areas that had experienced recent
housing booms were hit particularly hard (Charles,
Hurst, & Notowidigdo, 2015). At the more local level,
families that experienced job loss delayed educational
opportunities for their children (Charles et al., 2015). Some
economists point to ‘‘economic scarring”, that is, long-
lasting effects of nutritional and educational disruptions
that persist across future generations through their impact
on health and wage earning potential (Irons, 2009).
Analyses such as this one would enable an answer to that
question across levels of analysis, from the largest national
or international scale to smaller scales that might be indica-
tive of the housing market or consumer confidence.

The analysis presented here is merely illustrative and
limited due to a number of factors. To track events more
accurately, we have to recognize that the data are closing
prices for the Dow Jones for all of the days that the market
was open. The fact that weekends and holidays exist within
the same time frame means that the time steps are uneven
along the horizontal axis. Recall that data were analyzed in
Epochs in the previous example and here, the data are trea-
ted individually. The choice of step size, as well as the range
of scales considered, will affect the structures that are visi-
ble. In Likens et al. (2014), follow-up analyses were con-
ducted to provide quantitative evaluations of the
structures that we observe visually. Finally, surrogate anal-
yses, in which the analysis is repeated multiple times on
shuffled copies of the same data set, provide a test of the
null hypothesis that observed structure is spurious.

5. Lessons learned and future directions

Modern cognitive science laboratories have access to all
types of continuous data streams, thanks to the affordabil-
ity of modern-day eye trackers, physiological measurement
devices, and a wide range of neuroimaging techniques. At
the same time, the computational power of modern com-
puters reduces processing of very large data sets to reason-
able amounts of time (minutes or hours, depending on the
analysis). The Dynamical Systems Toolbox offers cognitive
scientists a collection of techniques to explore the informa-
tion in fluctuations that accompany time series data. Study-
ing cognition in this way acknowledges the primacy of
behavior over (static) structure.

Psychology has a rich history of contrast between struc-
ture and function. Wilhelm Wundt and his student,
Edward Titchener, promoted a structuralist approach
whose influence persists to this day. Titchener (1898) mod-
eled psychology after the science of biology, promoting
reduction of a phenomenon to its parts to understand
structure. He believed that an understanding of function
(behavior) would logically follow. The structuralist tradi-
tion persisted through the 1900s and continues in some
cognitive science laboratories today with researchers who
treat the content of cognition as static mental constructs
upon which operations are performed or who use neural
imagery primarily to catalogue the neural structures
responsible for different aspects of cognition. With the goal
of looking for constancy, the standard approach is to heav-
ily filter out what a dynamicist would consider potentially
meaningful fluctuations and reduce data sets to single data
points that imply punctate events.

The functionalist approach came from the branch of
psychology that originated in America. Its founder, Wil-
liam James, believed in the primacy of function, or behav-
ior, over structure. His famous treatment of a stream of
thought identified cognition as a continuous process, with
the implication that the memory of a past event was funda-
mentally different from the contemporaneous experience of
that event (James, 1890). The application of dynamical sys-
tems to cognitive science is a natural extension of the Jame-
sian vision of cognition as a dynamic, constantly evolving
process. It is the functionalist approach that allows for
the principle of dynamical similitude to be used to under-
stand behavior across systems that are structurally very dif-
ferent. It is the functionalist approach that allows us to
borrow and adapt dynamical methods from very different
scientific fields.

Two of my favorite examples of the contrast between
function and structure come from modern-day treatments
of team coordination and the brain: Gorman, Cooke,
and colleagues use dynamical systems to study team coor-
dination as a flexible, constantly evolving process rather
than a shared mental model (Gorman, 2017; Gorman,
Amazeen, & Cooke, 2010; Gorman, Cooke, & Amazeen,
2010). Buzsáki (2006) likewise treats the brain as constantly

652 P.G. Amazeen / Cognitive Systems Research 52 (2018) 640–657



active and changing in his book, Rhythms of the Brain.
That dynamic weakens the argument for subtraction tech-
niques that are commonly used to compare multiple brain
scans, for example, during baseline and cognitive task per-
formance trials.

5.1. Implications for cognitive science

The current status of dynamics in psychology is a con-
tinuation of the trajectory that was begun in the 1980s with
the first application of dynamical systems models to psy-
chology in the field of bimanual coordination. Advances
follow technological upgrades in measurement devices,
development of analytical methods, and improved accessi-
bility to equipment and knowledge through price reductions
and electronic information sharing. It would be impossible
to provide an overview of all of the latest developments. In
this section is presented just some of the most recent
research that extends the methods reported in this paper.

Some of the most recent research continues to broaden
our understanding of the range of applicability of well-
established models. There is continued interest in the study
of relative phase and multifrequency (motor) coordination
both within and across two people in both laboratory and
applied settings (e.g., Bingham, Snapp-Childs, & Zhu,
2018; Gorman, Amazeen, et al., 2017; Pickavance,
Azmoodeh, & Wilson, 2018). Researchers are taking
advantage of technological advances in artificial intelli-
gence to generate artificial teammates to perturb team
coordination dynamics (e.g., Demir, Amazeen, McNeese,
Likens, & Cooke, 2017). Those studies provide a cross-
over to human factors research questions about the dynam-
ics between human and machine systems. There continues
to be a lot of interest in the dynamics of teams, and
researchers are scaling up group size to study the creation
of nested dynamical patterns, for example, the creation of
subgroups within larger teams (Zhang, Kelso, & Tognoli,
2018).

Analytical developments, particularly in the area of
multifractal methods, are being used to understand the
interdependence of perception, action, and cognition.
Researchers are using a variety of methods to study how
complexity matching facilitates both coordination and
communication across individuals (Delignières et al.,
2016; Fine et al., 2015; Ramirez-Aristizabal, Médé, &
Kello, 2018). They are studying postural adjustments, esti-
mated from multiple body sites, to understand how partic-
ipants correct their actions in response to the visual
distortions created by prism goggles (Carver, Bojovic, &
Kelty-Stephen, 2017) and kinematic and physiological
measures to understand how perceptions are formed
(Hajnal, Clark, Doyon, & Kelty-Stephen, 2018; Waddell
& Amazeen, 2017, 2018).

Dynamical modeling also allows for simulation work
that promotes new insights: Recall that wavelets were

particularly well-suited to detect features in time series. A
recent study reported the development of a wavelet-based
algorithm for the automatic detection of lying from EEG
data (Xiong, Gao, & Chen, 2018). One of my favorite
applications of dynamics to cognition was the use of
entropy to track the emergence of insight in a problem-
solving task (Stephen, Dixon, & Isenhower, 2009). Recent
work models the emergence of innovation as a series of
random walks on a complex topology of ideas and con-
cepts (Iacopini, Milojevic, & Latora, 2018).

5.2. Summary and conclusion

The principle of dynamical similitude implies that the
same method may be used to capture the same basic behav-
ior pattern across systems whose physical appearance
seems very different. In this paper, I presented examples
that characterize two distinct approaches to using dynam-
ical similitude to understand human behavior: The first
entailed the use of models that characterize patterns across
patterns. That is, they serve to unify behavioral patterns
through parameterization of a single dynamical model.
Models of both phase locking and frequency locking were
derived from physical systems but apply to psychological
and social systems. Those models can be used to make pre-
dictions about the patterns that we see as well as patterns
that we have not yet observed and, importantly, the rela-
tion that bridges them all.

The second approach entailed the use of dynamical
methods to characterize observed patterns. Mass-spring
models and multifractal analysis, as well as other methods
represented in the Dynamical Systems Toolbox, have been
applied successfully across physical, chemical, biological,
psychological, social, and economic systems. I would argue
that this latter approach characterizes most of the use of
dynamics in psychology today. However, to lose sight of
the power and generativity of the first approach would be
a mistake. Our goal as psychologists should be to continue
to search for unifying dynamical models that focus on
behavior over structure to ensure the continuity of psycho-
logical phenomena with the rest of the natural world and to
ensure an impact of our science beyond our own disci-
plinary boundaries.
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