
SparsePPG: Towards Driver Monitoring Using Camera-Based Vital Signs

Estimation in Near-Infrared

Ewa Magdalena Nowara∗†, Tim K. Marks∗, Hassan Mansour∗, Ashok Veeraraghavan†

∗Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA
†Rice University, Houston, TX

{emn3,vashok}@rice.edu, {tmarks,mansour}@merl.com

Abstract

Camera-based measurement of the heartbeat signal from

minute changes in the appearance of a person’s skin is

known as remote photoplethysmography (rPPG). Meth-

ods for rPPG have improved considerably in recent years,

making possible its integration into applications such as

telemedicine. Driver monitoring using in-car cameras is

another potential application of this emerging technology.

Unfortunately, there are several challenges unique to the

driver monitoring context that must be overcome. First,

there are drastic illumination changes on the driver’s face,

both during the day (as sun filters in and out of overhead

trees, etc.) and at night (from streetlamps and oncom-

ing headlights), which current rPPG algorithms cannot ac-

count for. We argue that these variations are significantly

reduced by narrow-bandwidth near-infrared (NIR) active

illumination at 940 nm, with matching bandpass filter on

the camera. Second, the amount of motion during driving is

significant. We perform a preliminary analysis of the motion

magnitude and argue that any in-car solution must provide

better robustness to motion artifacts. Third, low signal-to-

noise ratio (SNR) and false peaks due to motion have the

potential to confound the rPPG signal. To address these

challenges, we develop a novel rPPG signal tracking and

denoising algorithm (sparsePPG) based on Robust Princi-

pal Components Analysis and sparse frequency spectrum

estimation. We release a new dataset of face videos col-

lected simultaneously in RGB and NIR. We demonstrate that

in each of these frequency ranges, our new method performs

as well as or better than current state-of-the-art rPPG algo-

rithms. Overall, our preliminary study indicates that while

driver vital signs monitoring using cameras is promising,

much work needs to be done in terms of improving robust-

ness to motion artifacts before it becomes practical.

1. Introduction

Vital signs such as the heartbeat waveform offer a way to

continuously monitor the health or alertness of a person. In

controlled scenarios such as hospitals, contact devices such

as pulse oximeters and electrocardiographs (ECG) are the

de-facto standard tools used for vital signs measurement.

These contact-based devices provide accurate, robust mea-

surements that are clinically relevant.

In several emerging applications, however, it is desir-

able to measure vital signs in a non-contact manner, be-

cause contact with the skin should be avoided or is infea-

sible. Examples include vital signs monitoring on sensitive

populations such as neonates and burn victims, in which

contact increases the possibility of infection. Other scenar-

ios include non-medical applications such as entertainment

or driver monitoring—applications in which contact-based

measurements are infeasible due to practical constraints.

In the past decade, improvements in camera-based re-

mote photoplethysmography (rPPG) technology [25, 17, 6,

29, 33, 7, 32, 31, 14, 27, 16] have enabled non-contact mea-

surement of vital signs, such as heart rate (HR) and heart

rate variability (HRV), with accuracy comparable to that

of contact-based devices. In this paper, we focus on one

emerging application for non-contact vital signs estimation,

driver monitoring, and study the various challenges facing

rPPG technology in this scenario.

1.1. Driver Monitoring Using Remote Vital Signs

Driver fatigue and distraction are the leading causes of

car accidents [13]. Being able to detect when a driver is

not paying attention to the road or is too sleepy to continue

driving could potentially lead to preventing these car acci-

dents. Additionally, if a driver goes into a cardiac arrest

or other serious and sudden health event that would impede

their ability to drive they may pose a danger to others on the

road. Therefore, it is desirable to detect such events before

they occur and alert the driver to prevent an accident.

Changes in HR and HRV can provide insights into a

person’s health or psychological well being. For exam-
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ple, changes in HRV have been linked to cognitive stress

[22, 15, 19] and driver fatigue [24, 1]. Being able to mea-

sure vital signs continuously and unobtrusively while driv-

ing would provide a way to infer the driver’s health and

mental status.

1.2. Challenges and Opportunities

Seamless integration of camera-based monitoring of

driver HR and HRV would be extremely useful to detect

changes in driver alertness and prevent accidents. Unfortu-

nately, the application of rPPG to driver monitoring presents

several unique challenges that must be addressed head-on.

We now outline three major challenges presented by in-car

rPPG and explain how our proposed method addresses each

of these challenges.

1.2.1 Challenge 1: Drastic Illumination Changes

During driving, illumination on the driver’s face can change

dramatically (Figure 1). During the day, sunlight is filtered

by trees, clouds, and buildings before reaching the driver’s

face. As the car moves, this direct illumination changes

dramatically in both magnitude and spacial extent.

Figure 1. Example of light variations in the car during driving in

IR and RGB. Narrowband IR is more robust to outside light varia-

tions.

At night, overhead streetlamps and headlights of ap-

proaching cars cause large-intensity, spatially non-uniform

changes in illumination. These illumination changes are so

dramatic and omnipresent that algorithmic approaches to

mitigate these illumination variations are not practical.

Instead, we argue that active in-car illumination, in a nar-

row spectral band in which sunlight and streetlamp spec-

tral energy are both minimal, is the most effective means

to combat this challenge. Shown in Figure 2 is the spectral

energy content of sunlight that reaches the Earth’s surface.

Due to the increased absorption near 940 nm by water in

the atmosphere, sunlight at the surface has much less energy

around that frequency [23]. The light output by streetlamps

and vehicle headlights is typically in the visible spectrum,

with very little power at infrared frequencies. Using an ac-

tive illumination source at 940 nm ensures that much of the

illumination changes due to environmental ambient illumi-

nation are filtered away. Further, since it is beyond the visi-

ble range, humans do not perceive this light source and thus

are not distracted by its presence. Moreover, the narrower

the bandwidth of the light source used in the active illumi-

nation, the narrower the bandpass filter on the camera can

be, which further rejects changes due to ambient illumina-

tion. In our experiments, we used an LED source and cam-

era bandpass filters with 10 nm bandwidth, but laser diode

sources that have a 2 nm bandwidth could be used to further

improve ambient light rejection.
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Figure 2. Spectrum of sunlight at the Earth’s surface [5]. The ab-

sorption by water in the atmosphere causes a notch at 940 nm.

1.2.2 Challenge 2: Low Signal-to-Noise Ratio (SNR)

Independent of the application, one of the principal chal-

lenges for camera-based vital signs estimation is the low ra-

tio of signal to background/noise in the raw measurements.

Even in the visible spectrum, the intensity changes due to

blood flow are extremely small compared to the absolute

pixel intensity values. With the additional restriction of us-

ing NIR frequencies, the already weak pulsatile signal con-

tent is further minimized. Measuring rPPG in NIR is es-

pecially difficult because hemoglobin absorption is signifi-

cantly lower in the infrared compared to its peak absorption

in the green range of the light spectrum [29, 30, 11, 21].

The sensitivity of standard camera sensors is also decreased

in the infrared range. Hence, the strength of the rPPG signal

in NIR will be much lower than in the visible spectrum, as

shown in Figure 3. For these reasons, the rPPG signal ob-

served by our 940 nm system will be significantly weaker

than would be observed using a regular RGB camera and

broadband ambient indoor illumination. This challenging

operational scenario necessitates an algorithm that is robust

to noise sources.

We propose a novel robust algorithm called SparsePPG

that tracks the rPPG signal over time in presence of high

noise. Denoising with SparsePPG is illustrated in Figure 4.

We adaptively select good facial regions and denoise their

estimated rPPG signals by relying on the fact that the pul-

satile signal should be sparse in the frequency domain and

low-rank across facial regions. Unlike many existing meth-

ods, which require multiple wavelengths of light to achieve

robustness [6, 25, 28], our algorithm is able to achieve high
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Figure 3. Comparison of rPPG signal frequency spectrum in IR

and RGB. The rPPG signal is IR (blue) is about 10 times weaker

than in RGB (orange).

accuracy in time-varying average heart rate estimation us-

ing a single-channel image with narrow-band illumination.
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Figure 4. Example of SparsePPG algorithm denoising an rPPG sig-

nal to provide a clean rPPG estimate.

1.2.3 Challenge 3: Large Motion

Measuring rPPG while driving is additionally challenging

because of large motion present in the car. The driver has to

constantly turn their head to look for on-coming traffic. The

motion of the car itself also causes the head of the driver to

move from side to side. Lastly, the car motion causes the

camera and lights to vibrate slightlty, leading to erroneous

rPPG estimates.

We propose a novel algorithm that is based on sparsity

in the Fourier domain that has the potential to handle large

magnitude motions. There are two key ideas that work to-

gether to help handle large motions. First, we use face align-

ment (face landmark localization) and facial region tracking

to explicitly account for and compensate for as much of the

motion as possible. Second, we use a sparse Fourier repre-

sentation that has the potential to separate the true peaks of

the rPPG signal from false peaks due to motion.

1.3. Contributions

The main contributions of this paper are:

1. We study the applicability of camera-based vital signs

measurement for driver monitoring and quantify the

major challenges facing this application.

2. We develop a novel system that includes active illumi-

nation at 940 nm and show that it is feasible to accu-

rately estimate heart rate using narrow-band NIR light

around a single frequency.

3. We propose a novel algorithm, SparsePPG, to esti-

mate the heartbeat signal in a high noise rPPG setting.

The algorithm leverages the joint sparsity in the fre-

quency spectra of rPPG signals across facial regions.

The joint sparsity characterizes the common heartbeat

signal in the rPPG data. Motion tracking and Robust

Principal Components Analysis (RPCA) are also used

to suppress a large portion of the noise and reject non-

pulsatile peaks in the frequency spectrum.

4. We release the first public dataset containing simulta-

neous NIR and RGB videos captured in the lab with

ground-truth pulse oximeter recordings.

5. We achieve high accuracy in time-varying average

heart rate estimation, and show that for both NIR and

RGB data, our proposed method matches or exceeds

the performance of state-of-the-art rPPG algorithms.

2. Related Work

Camera-based rPPG methods have reached a high level

of accuracy for RGB video recordings in bright, controlled

illumination, achieving robustness to some motion and vari-

ation in skin tones. In RGB, linear components analyses of

the three color channels (R, G, B) have been used to sepa-

rate the heart rate signal from noise. Poh et al. performed

blind source separation, applying independent component

analysis (ICA) on the three color channels to separate the

heart rate signal from noise [25]. Later, Lewandowska et al.

used principal components analysis (PCA) on RGB chan-

nels to estimate heart rate [17].

It has also been shown that rPPG can be obtained in the

presence of subject motion by using a combination of multi-

ple wavelengths of light. The chrominance features method

(CHROM) of de Haan et al. [6] is based on the observa-

tion that whereas the rPPG signal is strongest in the green

channel [6, 29], the noise caused by motion is similar in all

three channels. Most methods that are designed to be ro-

bust to motion require multiple camera wavelengths in or-

der to separate the motion-related noise from the rPPG sig-

nal [6, 33, 7, 32, 31]. Estep et al. alternatively used multiple

cameras to overcome large motion [8].

Blackford et al. showed the feasibility of obtaining a

long-distance rPPG signal in natural sunlight outdoors [3].

The only source of light variation was the naturally chang-

ing cloud cover, and subjects were stationary during the

recording. However, this work did not address scenarios

that have low light levels or rapidly varying illumination,

which remain a challenge for rPPG in a moving vehicle and

in other outdoor situations. One way to account for uncon-

trolled lighting is to divide by the stationary (slowly vary-

ing) portion of the signal, as suggested in [6]. This nor-

malization addresses slowly varying illumination, but it is

not sufficient to account for illumination that varies rapidly

during the time window.

The rPPG signals obtained in NIR video recording are

more noisy than in visible light [30], a possible reason why

less work has been done using NIR images for rPPG mea-

surement. He et al. used broadband NIR light to show the

feasibility of obtaining a rPPG signal beyond the visible
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spectrum [10]. Using broadband NIR light (versus narrow-

band) allows more light to be captured by the camera, which

improves the SNR of the estimated rPPG signals. Thus

broadband NIR can enable vital signs monitoring indoors

at night, but it is susceptible to lighting variations that occur

at any frequencies in the near-infrared spectrum. Narrow-

band NIR light, in contrast, has the potential to be robust to

such variations.

Van Gastel et al. simultaneously recorded images using

multiple narrowband wavelengths of NIR light to achieve

motion robustness in NIR [28]. While this was effective

for motion robustness, it was not intended to handle time-

varying lighting in NIR. Robustness to lighting variations

requires narrow-band NIR filters at the camera (matched to

the light source frequencies), which for multiple bands re-

quires either multiple cameras, or a multi-band filter, which

can be cost prohibitive. In order to achieve robustness

to outside lighting variations with a simple, cost-effective

physical setup, it is advantageous to use a single narrow

frequency band, to ensure that the majority of the light

recorded by the camera comes from the designated illumi-

nators rather than from uncontrolled outside light. Robust,

cost-effective measurement of vital signs in varying illumi-

nation requires algorithms that can use single-channel im-

ages without the need for multiple light frequencies.

Kumar et al. showed that by rejecting noisy facial re-

gions, and using the signal-to-noise ratio (SNR) of the re-

maining regions as weights, accurate heart rate estimates

can be obtained using only the green color channel in pres-

ence of slight motion [14]. Based on a similar intuition that

facial regions with poor-quality signals should be identified

and rejected, Tulyakov et al. applied self-adaptive matrix

factorization to the chrominance feature signals from sev-

eral facial regions [27]. Lam et al. used blind source separa-

tion with multiple facial regions to achieve robustness [16].

The method we propose uses a similar idea of reject-

ing facial regions with poor signal quality and denoising

the remaining regions. Our method successfully uses a sin-

gle channel of narrow-band NIR light, which is effective at

rejecting outside lighting variations.

3. SparsePPG

In this section, we describe SparsePPG, our proposed

model for rPPG signal tracking and denoising that we apply

to videos recorded with a combination of NIR illumination

and unknown ambient lighting. SparsePPG extracts, tracks,

and denoises the rPPG signal to obtain an accurate heart rate

measurement. An overview is shown in Figure 5.

3.1. The rPPG signal model

We obtain the raw rPPG signals from NIR-illuminated

video of a face by averaging the pixel intensity values within

N facial regions. As shown in the top right image in Fig-

ure 5, these facial regions are focused around the forehead,
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Figure 5. Overview of SparsePPG. (1) 68 landmarks are detected

(blue), interpolated (red), and connected to create 48 facial regions

(white). (2) Robust Principal Components Analysis (RPCA) is

used to denoise the low-rank rPPG signals. (3) The signals are fur-

ther denoised by finding the sparse frequency signal corresponding

to the rPPG waveform.

cheeks, and chin area. We exclude areas along the face

boundary as well as the eyes, nose, and mouth, since these

areas exhibit weak rPPG signals.

For every facial region j ∈ {1, . . . , N}, the measured

mean pixel intensity pj(t) is a one-dimensional time series

signal, where t ∈ {1, . . . , T} is the temporal video frame

index within a temporal window of length T . We first de-

scribe the signal model based on stationary facial regions,

and later describe an approach for tracking the regions over

time as the subject’s face moves. In the most general formu-

lation, we may model the rPPG measurements from the N

facial regions as a multichannel signal acquisition scenario,

in which every facial region j provides a different channel

measurement of the underlying heartbeat signal contami-

nated by noise. In particular, we model the measured sig-

nals pj(t) as follows:

pj(t) = hj(t) ∗ yj(t) + nj(t), (1)

where ∗ is the linear convolution operator, yj(t) denotes the

heartbeat signal observed at channel j, and hj(t) and nj(t)
denote the channel response function and channel noise, re-

spectively. Since the heartbeat signal is known to be sparse

in the frequency domain, we rewrite (1) in vector form as

shown below

pj = hj ∗ F
−1xj + nj , (2)

where F is the one-dimensional discrete Fourier transform

of size T , and xj ∈ C
T denotes the sparse frequency spec-

trum of the heartbeat signal yj ∈ R
T .

The signal model in (2) is a blind multichannel estima-

tion problem that appears in fields such as wireless commu-

nications and sensor calibration. In particular, if xj = x̄ is
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fixed across all regions j, the problem is known as the self-

calibration from multiple snapshots model [18]. The recov-

erability of these models relies on the ability to find low-

dimensional characterizations of the channel responses hj

and the sparse signal x̄. In this paper, we ignore the effect of

the channel response functions and consider the following

signal model:

pj = F−1xj + nj , (3)

where the sparse spectrum signals xj are not equal to each

other, but they share the same support, i.e., the frequencies

that have nonzero energy are mostly the same across all fa-

cial regions. We plan to address the more general form of

the signal model in future work.

3.2. Denoising the rPPG signals

We process the rPPG data by considering sliding time

windows of length T . For each time window, we stack

the N rPPG signals into a T ×N rPPG matrix P. The

rPPG matrix contains raw rPPG signals that are contami-

nated by large amounts of noise due to inaccurate motion

alignment, abrupt illumination changes, and variations in

the strength of the rPPG signal across regions. However, all

regions should express the same periodic physiological sig-

nal caused by the cardiac cycle. Moreover, the periodicity

of the underlying heartbeat signal over the duration of the

temporal window induces a low-rank matrix when the noise

is removed [27]. Therefore, we model the rPPG matrix P

as the superposition of a low-rank matrix Y containing the

heartbeat signal and a noise matrix N = E + S, where E

denotes inlier noise and S denotes outlier noise, such that

P = Y +N = Y +E+ S = Z+ S. (4)

In particular, the outlier noise arises from abrupt illumina-

tion changes and region tracking errors. These generally

occur over a short time duration relative to the temporal

processing window and affect a small number of regions.

The inlier noise characterizes regions of the face where the

heartbeat signal is not the dominant driving harmonic. In

this case, we wish to suppress such regions from the heart-

beat signal estimation. In order to extract an estimate of Y

from P and suppress outliers, we follow the robust principal

component analysis (RPCA) approach of [4] and formulate

the following optimization problem:

min
Z,S

‖Z‖∗ + γ‖S‖1 subject to P = Z+ S, (5)

where ‖Z‖∗ =
∑

k σk(Y) denotes the nuclear norm of

the matrix Z, which equals the sum of its singular val-

ues σk. The ℓ1 norm of a matrix S is defined as ‖S‖1 =∑
t,j |S(t, j)|, which equals the sum of the absolute values

of its entries. The parameter γ controls the relative propor-

tion of the signal energy that will be absorbed into the noise

component S. A smaller value of γ allows more of the sig-

nal to be considered as noise.

While many algorithms exist in the literature for solv-

ing (5), we follow the approach of Mansour et al. [20] for its

speed and accuracy. In [20], the low-rank matrix Z is split

into two factors Z = LRT, where L ∈ R
T×r,R ∈ R

N×r,

and r < T,N is a rank estimate parameter. Notice that

the RPCA model is capable of eliminating sparse outlier

noise from the rPPG measurements. An illustration of de-

noising the rPPG signals with RPCA is shown in Part 2 of

Figure 5. However, it may happen in some instances that

the signal from a facial region is noisy for the entire time

window. Such a noise distribution could still be modeled as

low-rank, and would therefore not be removed by RPCA.

We address such noise artifacts in the following section on

sparse spectrum estimation.

3.3. Sparse spectrum estimation

Over a short time window, the heartbeat signal is approx-

imately periodic, composed of a dominant frequency along

with its harmonics. As a result, the frequency spectrum of

a heartbeat signal should be sparse. Moreover, the same

heartbeat signal drives the periodic behavior in the rPPG

signals across all facial regions. Therefore, the noise-free

frequency spectra xj of the signals yj from all regions j

should have the same support.

Consider again the signal model in (4), where now we

model the denoised output of RPCA as zj = F−1xj + ej
and written in matrix form below:

Z = F−1X+E = [F−1I]

[
X

E

]
, (6)

where E corresponds to the region level noise. Therefore,

if a region is noisy, we want the entire time window (all

samples) of that region to be absorbed into the matrix E.

This can be achieved by forcing complete columns of E

to be either zero or nonzero. On the other hand, since the

frequency components in X should be sparse and have the

same support across all the regions, we want the columns of

X to be jointly sparse, i.e., we want entire rows of X to be

either completely zero or nonzero.

Consequently, we define the following optimization

problem to compute X and E from Z:

min
X,E

1

2

∥∥∥∥Z−A

[
X

E

]∥∥∥∥
2

2

+ λ‖X‖2,1 + µ‖ET‖2,1, (7)

where we defined A := [F−1I], and the ℓ2,1 norm of a

matrix X is defined as

‖X‖2,1 =
∑

t

√∑
jX(t, j)2. (8)

The solution to the above problem can be obtained using

standard iterative shrinkage/thresholding algorithms, such

as FISTA [2], where the shrinkage function should be ap-

plied appropriately to the row norms of X and column

norms of E. Part 3 of Figure 5 shows the frequency spectra

of recovered signal X and noise E.
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3.4. Fusion of Time Windows

Since heartbeat signals vary slowly over time, we may

consider the rPPG observations as multichannel measure-

ments from a nearly stationary process. Therefore, we pro-

cess the rPPG signals using a sliding window P =
[
Po

Pn

]
,

where Pn denotes the new rPPG data that did not exist in

the previous window, and Po is the portion of the previous

(old) window’s rPPG data that is also in the current win-

dow. For better noise suppression, we construct a weighted-

average time-fused window P = αP+(1−α)
[
Ỹo

Pn

]
, where

Ỹ = F−1X is the filtered output of the previous time win-

dow, and Ỹo is the portion of Ỹ that is also present in the

current window. The time-fused window P is then further

denoised using the RPCA procedure, and the new sparse

spectrum is estimated as described above.

3.5. Preprocessing to Reject Facial Regions

Some facial regions are physiologically known to con-

tain better rPPG signals [14]. However, the “goodness” of

these facial regions also depends on the particular video

conditions, facial hair, or facial occlusions. Therefore, it

is important to identify which regions are likely to contain

the most noise and remove them before any processing, so

that they don’t affect the signal estimates. Similarly to the

distancePPG method of Kumar et al. [14], we throw away

a region if its signal-to-noise ratio (SNR) is below a thresh-

old θSNR or if its maximum amplitude is above a threshold

θamp. The SNR is measured as the ratio of the area under

the power spectrum curve in a region surrounding the max-

imum peak in the frequency spectrum, divided by the area

under the curve in the rest of the frequency spectrum from

30 to 300 beats per minute (bpm), as illustrated in Figure 6.

SNR =
∫
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Figure 6. Definition of SNR measure: The ratio of the signal

power in the region surrounding the maximum peak divided by

the signal power in the rest of the range from 30 bpm to 300 bpm.

Within each time window, we may reject different fa-

cial regions. To perform fusion of time windows (see Sec-

tion 3.4), we first recompose the signal X in the missing

regions by interpolating from neighboring regions.

3.6. Implementation Details

To compute the raw rPPG signals P, we first we detect

68 facial landmarks using the Dlib library [12], then inter-

polate and extrapolate the detected landmarks to a total of

145 points to include the forehead region and subdivide the

face into more regions. We fix the number of facial regions

for each person to be 48 We track the facial regions of inter-

est using the Kanade-Lucas-Tomasi (KLT) tracker [26] and

RANSAC algorithm [9]. In each frame, we spatially aver-

age the pixel intensities in each facial region to obtain a raw

rPPG signal. We subtract the mean intensity over time of

each region’s signals and use a bandpass filter to restrict the

signals to the frequency range [30 bpm, 300 bpm], which

includes the physiological range of the cardiac signals of

interest.

We use a time window of 10 seconds and an overlap be-

tween time windows, where only 10 frames come from the

new time window (0.33 seconds for videos recorded at 30

frames per second (fps)). We set the rank r to 12, γ used

in RCPA to 0.05, λ = 0.2, µ = 1 and the threshold for

fusing time windows α = 0.03. We use SNR and ampli-

tude threshold values θSNR = 0.2 and θamp = 16, set to 4×
average rPPG signal amplitude which was around 4 in our

dataset.

To combine the denoised signals from each facial region,

we take a median in each frequency bin across the regions

of X. The frequency component for which the power of the

frequency spectrum is maximum corresponds to the heart

rate in the given time window.

4. Experimental Evaluation and Results

In this section, we present our experimental setup and

results. First, we show the feasibility of using narrow-

band 940 nm illumination for rPPG measurement. Next,

we demonstrate the advantages of using NIR over RGB in

varying illumination. Finally, we analyze the challenges of

estimating heart rate (HR) in a moving car.

4.1. HR estimation in 940 nm illumination

To test the feasibility of measuring HR in narrow-band

NIR light, and to compare the performance to standard

broadband RGB, we recorded videos inside the lab in con-

trolled illumination.

We recorded videos of 12 healthy subjects (3 female, 9

male), aged 20–40, with varying skin tones (4 of the males

had facial hair). The subjects were asked to sit still, but to

allow for natural head motion we did not use a headrest. The

raw 10-bit images were recorded with 640×640 resolution

at 30 fps. The exposure for the IR camera was fixed for all

participants, but the RGB camera’s exposure was manually

adjusted to ensure that images of people with darker skin

tones were well exposed. We turned off gamma correction

and set gain to zero. The videos are each about 3 minutes

long. This dataset will be publicly released.

An illustration of our experimental setup is shown in

Figure 7a. We simultaneously recorded videos with an

RGB camera (FLIR Blackfly BFLY-U3-23S6C-C) as a

benchmark, and an NIR camera (Point Grey Grasshop-
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per GS3-U3-41C6NIR-C) fitted with a narrow-band 940

nm bandpass filter with 10 nm passband. We used two

Bosch EX12LED-3BD-9W illuminators, with diffusers on

the lights to widen the beam in order to more uniformly

illuminate the face. We used ambient overhead lights to ac-

commodate the RGB camera. We used a CMS 50D+ finger

pulse oximeter to obtain a ground-truth PPG waveform.

IR camera

RGB camera

2 x NIR light

Ambient light

Optical table

Subjects

Diffuser

bandpass 
filter

Pulse 
Oximeter

Subjects Headrest

NIR 
lights 
and 
diffuser

WindShield

Dashboard

RGB 
camera IR camera 

and 
bandpass 
filter

Pulse 
Oximeter

(a) (b)

Figure 7. Schematic of the experimental setup (a) in the lab and (b)

in the car, consisting of RGB and NIR cameras, NIR lights, and a

finger pulse oximeter for ground-truth measurement.

4.1.1 Comparison to state-of-the-art methods

In order to compare the accuracy of our proposed algo-

rithm, we implemented ICA [25], CHROM [6], and dis-

tancePPG [14] methods and evaluated their performance on

our dataset. Because ICA and CHROM require multiple

camera channels, we could only evaluate their performance

on our RGB videos. RGB results using distancePPG and

using our algorithm were obtained using the green chan-

nel only. For ICA and CHROM, we used spatially averaged

signals from all facial regions. For distancePPG, we applied

thresholds and weights on each facial region before spatially

comibining them as described by Kumar et al. [14]. We

increased the amplitude threshold from 4 (the value used

in [14]) to 16 because, we were using 10-bit videos, so our

range of values was 4 times larger than in 8-bit videos.

We used two error measures: root mean squared error

(RMSE) in bpm, and the percentage of time that the HR

error is less than 6 bpm (PTE6) in %. We chose an er-

ror threshold of 6 bpm because 6 bpm is the expected fre-

quency resolution on a 10 second window assuming no

zero-padding.

Table 1. HR Estimation Error on Our IR and RGB datasets
IR RGB

RMSE PTE6 RMSE PTE6

[bpm] [%] [bpm] [%]

SparsePPG (Ours) 13.6 79.7 9.6 88.5

distancePPG [14] 14.7 77.7 9.7 88.4

ICA [25] — — 10 87.8

CHROM [6] — — 13.6 85.9

In Table 1, we report the results averaged over all 12 sub-

jects. As the table shows, SparsePPG algorithm performs

slightly better than the state-of-the-art camera-based rPPG

methods on both the NIR and RGB videos. Notice that the

performance of all methods is decreased in NIR compared

to RGB due to lower rPPG signal strength in NIR.

4.2. Varying Illumination in the Lab

In the lab, we simulated the lighting variation that might

occur while driving at night by manually switching the over-

head lights on and off. We recorded videos simultaneously

with an NIR and an RGB camera on 2 subjects. Each video

lasted two minutes, divided into four 30-second intervals:

1) lights ON, 2) lights rapidly oscillating ON/OFF, 3) lights

ON, and 4) lights OFF. (See the top graph in Figure 8.) NIR

illuminators were constantly on. Because the tracking of

the facial regions on RGB images failed in varying light

and darkness, we used a headrest to minimize the amount

of motion, in order to keep the positions of the facial land-

marks fixed.

The light conditions, and sample results on one subject,

are shown in Figure 8. The summarized results (averaged

over two subjects) are shown in Table 2. To make this anal-

ysis independent of the rPPG algorithms, we used a simple

spatial average of all facial regions’ intensities over time as

an estimate of the rPPG signals. The SNR computed for this

experiment is the ratio of the area under the power spectrum

around the ground truth signal frequency (instead of around

the maximum peak, which was used for preprocessing in

Section 3.5), divided by the area under the curve in the rest

of the frequency spectrum from 30 to 300 bpm.

The results show that broadband RGB cameras are more

affected than narrow-band NIR by the changing (ON/OFF)

light conditions. We were not able to block all ambient light

completely, so there was a small amount of light reaching

the face. As a result, the RGB camera was able to accurately

measure the rPPG signal in the dark, but the SNR was much

lower than in bright lighting. The rPPG signals captured in

NIR were accurate in all light conditions.
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Figure 8. Varying illumination experiments. Top: Average pixel

intensities on the face over time. Middle: Estimated HR in NIR

(black) and RGB (red), compared to ground truth HR (orange).

Bottom: SNR [dB] of the spatial average rPPG signal in NIR

(black) and RGB (red).
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Table 2. HR Estimation Error in Varying Light
IR RGB

RMSE PTE6 SNR RMSE PTE6 SNR

Lights [bpm] [%] [dB] [bpm] [%] [dB]

ON 4.1 91.7 -1.8 7.6 95.9 7.6

OFF 2.4 95.1 -5.7 7.5 95.1 -43.4

ON/OFF 2.4 95.1 -3.4 26.1 0 -12.7

4.3. Challenges in a Moving Car

We built a setup to mount RGB and NIR cameras with

NIR illumination on a car dashboard (Figure 7b). We

recorded a video on one subject while driving to understand

the challenges for continuous HR monitoring in the car. For

safety and to reduce excessive head motion, the subject was

the passenger, not the driver. We found that there are two

major difficulties that need to be overcome for rPPG mea-

surements in the car: large head motion, and large illumina-

tion changes.

4.3.1 Motion in the Car

We found that even when driving at the low campus speed

limit of 20 mph, the motion of the car caused the head

of the passenger to move with large out-of-plane rotations

so significant that the tracking of facial landmarks failed.

Whenever the tracker failed, we re-detected the facial land-

marks and resumed tracking. However, we found that re-

detecting the facial landmarks used to define the facial re-

gions had detrimental effects on the rPPG signals estimated

from those regions. The position of the landmarks in one

frame was not exactly the same as in previous frame, result-

ing in a slightly different intensity values in each regions

and consequently corrupted rPPG signals. Moreover, the

cameras and lights moved slightly during driving, causing

small intensity variations.

4.3.2 Illumination Variation in the Car

To understand the challenges with varying illumination, in-

dependent of the passenger’s motion, we recorded a video

without the passenger in the car seat to measure how the in-

tensity on the smooth seatback surface changes over time.

We recorded videos on a sunny day, for 2 minutes while

parked (stationary) and for 5 minutes while driving around

campus.

We measured the average pixel intensity over time in

small (20×20 pixel) regions on the left and right side of

the car seat headrest. We found that the intensity changes

over time were small in both NIR and RGB when the car

was parked (see Figure 9). While driving, the intensity

changes in RGB caused by varying outside light were large.

There were also intensity changes in the NIR video record-

ings during driving, but they were much smaller than those

in RGB. The sources of intensity changes in NIR could be

caused by some outside light that is not completely blocked

by the bandpass filter, or by small motion of the lights and

the camera during driving.

We also found that the intensity was constantly higher on

the region that was closer to the window (curve A in Figure

9) in both NIR and RGB, but the difference between the in-

tensities of the two regions was much larger in RGB. This

suggests that perhaps the NIR videos were also affected by

sunlight to a small extent, even with a narrow 940 nm band-

pass filter on the camera.
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Figure 9. Intensity variations in NIR and RGB when the car was

parked and while driving. The intensity variations were larger

while driving than when the car was parked for both cameras,

but the changes in RGB were much larger. Region A, which was

closer to the window, has consistently higher intensity in both NIR

and RGB.

5. Conclusions

In this paper, we tested the feasibility of using narrow-

band 940 nm NIR illumination to measure rPPG signals in

controlled and varying light. We found that it is possible

to accurately measure average heart rate in 940 nm indoors

in both controlled and varying ambient light, but that the

SNR is significantly decreased in NIR compared to RGB in

controlled lighting conditions.

We presented SparsePPG, a new algorithm for denoising

raw rPPG signals that achieves state-of-the-art accuracy in

HR estimation. SparsePPG is able to achieve a high accu-

racy using a single camera channel by relying on the fact

that rPPG signals should be sparse in frequency and low-

rank with across facial regions.

We conducted an analysis of sources of error in a re-

alistic scenario in the car. We built a set up with RGB

and NIR cameras and NIR illumination, and recorded data

while driving. We found that large motion and illumi-

nation changes significantly affect both RGB and NIR

video recordings, making rPPG measurements very diffi-

cult. However, we found that NIR data are much less af-

fected by these changes.
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