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Abstract

Camera-based estimation of vital signs has made signifi-
cant progress in last few years. Despite of the significant al-
gorithmic advances, the low signal-to-background ratio in
video-based photoplethysmography continues to be a per-
formance bottleneck. One of the main challenges is that
much of the light returning to the camera from the subject
is surface reflection from the skin and other dermal layers,
and hence does not contain any pulsatile blood perfusion in-
formation to estimate photoplesthysmogram (PPG). In this
paper, we show that direct-global separation techniques de-
signed to reject much of the surface reflection photons can
improve the signal-to-background ratio in the raw captured
video signal. We study two techniques for the suppression
of direct surface reflection (a) cross-polarization and (b)
structured illumination. Using a dataset from 28 partic-
ipants, our results show an average SNR improvement in
estimating PPG from the use of structured illumination is
1.42 dB compared to the brightfield illumination. The use
of cross-polarizers leads to an average SNR increase of 1.49
dB compared to brightfield illumination. And the combined
structured illumination and polarizer method increases the
SNR on the average by 1.90 dB compared to the brightfield
illumination. The key result is that local PPG estimate SNR
can increase to more than 5.63dB, enabling very large gains
on regions with a large specular component. The RMSE de-
creased 55% and the range of error reduced by 12.9% with
the use of a polarizer and structured illumination.

1. Introduction

Vital signs offer a way to continuously monitor the health
or alertness of a person. In many controlled scenarios such
as hospitals, contact devices such as pulse oximeters and
electrocardiographs (ECG) is the de-facto standard of care.
Such contact-based devices provide accurate, robust mea-
surements.

However, there are several other application domains
wherein, it is desirable to measure vital signs in a non-
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contact manner because contact with the skin should be
avoided or is infeasible. Examples include vital signs mon-
itoring on sensitive populations such as neonates and burn
victims, in which contact increases the possibility of in-
fection. Other scenarios include non-medical applications
such as entertainment or driver monitoring—applications
in which contact-based measurements are infeasible due to
practical constraints.

Over the last few years, significant improvements have
been demonstrated in algorithms for camera-based remote
photoplethysmography (rPPG) estimation [1, 2, 3,4, 5,6, 7,
8]. These advances have enabled non-contact measurement
of vital signs, such as heart rate (HR) and heart rate vari-
ability (HRV), with accuracy comparable to that of contact-
based devices.

In spite of these significant advances, one key challenge
remains: much of the light that is recorded at the sensor
comes from surface reflection and sub-surface reflection
components that did not interact with blood. As a conse-
quence, the pulsatile signal that is critical for estimating
PPG is buried in a large background signal which is com-
posed primarily of surface reflections. This background sig-
nal comes from light that does not penetrate deep enough
into the skin and thus does not interact with the blood ves-
sels. Furthermore, the part of the signal that contains pul-
satile information is extremely low and this problem is ex-
asperated in low lighting conditions (like in NICUs) and in
darker skin tones.

The key idea in the paper is to exploit two computational
illumination and imaging techniques: (a) cross-polarization
and (b) structured illumination, to reject much of the surface
reflection photons increasing the signal quality for PPG es-
timation. We are the first to analyze small time-signal esti-
mation from a video with cross-polarization and structured
illumination based global separation; here the small signal
is the PPG waveform that is buried in the large surface re-
flection component.

The overall system consists of a “front-end” illumina-
tion control combined with an algorithm to extract iPPG
from the video of the exposed skin surface. The front-
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end consists of either structured illumination or combined
structured illumination and polarizer to first separate direct-
global components. We have chosen direct-global separa-
tion methods that can operate on a per-frame basis, as our
objective is to extract a small-magnitude time-domain PPG
signal from the videos.

We collected data from 28 adult subjects with ground
truth PPG using a contact-based pulse oximeter. The data
was collected with structured illumination, polarizer com-
bined with structured illumination and brightfield illumina-
tion. Our key results are as follows.

1. The average SNR increase in the estimation of iPPG,
using global-separation techniques compared to the
standard brightfield illumination is 1.60 dB, with range
of improvement from 1.25 dB to 2.00 dB.

2. The average SNR improvement was almost constant as
a function of skin tone, specifically the improvement
numbers were 1.62 dB for light, 1.70 dB for medium,
and 1.50 dB for dark skin tones.

3. While the average improvement is computed over the
whole exposed region, the improvement in the SNR
of specific skin regions (with high specular compo-
nent) ranged from 3.48 dB to more than 5.63 dB. This
large local improvement can have a significant impact
on methods that aim to measure local perfusion, see

e.g.[9].

4. The increase in SNR translated into a decrease in
RMSE for heart rate estimation by using global sep-
aration. The RMSE decreased 55% from 0.3635 to
0.1680 with the use of polarizer and structured illumi-
nation. The error range reduced by 12.9%.

The rest of the paper is organized as follows. In sec-
tion 2, we discuss prior works on remote vital signs esti-
mation as well as two direct-global separation methods —
cross-polarization and structured illumination. In section 3,
we explain how direct-global separation improves the iPPG
signal quality with a signal-to-background ratio. Section
4 explains the pipeline of acquiring videos using standard
brightfield illumination, structured illumination, and cross-
polarizers. We also define the algorithm used to extract the
iPPG signal. In section 5, we describe the data acquisi-
tion protocol and experimental setup. Then in section 6, we
present our result.

2. Prior Methods

We provide a brief overview of prior methods both for
remote estimation of vital signs and for direct-global sepa-
ration.

2.1. Remote Vital Signs Estimation

Over the last decade, researchers have been trying to esti-
mate vital signs remotely using a non-contact based system
such as a camera due to its low cost and ease of use[10][11].
The main drawback with using a camera is that the strength
of pulsatile PPG signal is very low mainly because the blood
volume change is small in intensity [12]. The signal con-
taining the pulsatile information is small in contrast to the
background. In addition to the challenge of detecting the
low-intensity signal, the image capturing process contami-
nates the signal with photon shot noise, camera quantiza-
tion noise, and read noise. The skin tone of the subject
also affects the signal strength which decreases with higher
melanin content in the skin that absorbs a large amount of
incident light. Small movements of the subject like talking
and nodding can cause large changes in the skin surface re-
flectance captured by the camera, affecting the quality of
the estimated signal.

To reduce the effects of noise and motion, algorithms
have been used to filter out the unwanted artifacts [4, 13,
14, 15]. These algorithms can be classified broadly into two
categories—signal processing based and machine learning-
based approaches. It has been previously studied in [3],[16]
that the pulse rate (PR) and the breathing rate (BR) can
be estimated with the help of a color camera and ambient
illumination. Simple band-pass filtering and Fast Fourier
Transform (FFT) was used to estimate the PR and BR from
the extracted PPG signal. Independent Component Analy-
sis (ICA) have been used to decompose the red, green, and
blue channels into three independent sources [1],[17]. The
PPG signal is then extracted using the separated green chan-
nel which can yield better PPG estimates.

In a later study, Principal Component Analysis (PCA)
was used to extract PPG signal from a standard webcam.
To eliminate the effects of motion artifacts, the authors in
[2] have used a chrominance based method to reliably ex-
tract heart rate using a camera from exercising subjects, and
have shown that this method works better than ICA and
PCA for both stationary and moving people. Further, the
adaptive LMS filter was used to reduce the motion artifacts
from a corrupted PPG signal [18]. They have used FFT,
SVD, and ICA to generate a noise reference signal, then
applied an adaptive step-size least mean squares (ASLMS)
filter for estimating an artifact-reduced PPG signal. Re-
cently, a supervised learning based approach was proposed
in [19] to estimate the heart rate after extracting PPG sig-
nal obtained from an off-the-shelf webcam. A trained SVM
model is applied as a sliding window on the extracted noisy
PPG signal to filter out false beats introduced by noise. Au-
thors in [20] have used Support Vector Regression (SVR)
on chrominance based method obtained from a video cam-
era.

Almost all of the discussed methods is a post-processing
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based approach aimed at reducing the effects of artifacts
in estimating vital signs from the PPG signal. Rejecting
noise in the data-capturing and pre-processing step could
increase the performance of the algorithm as well as the
post-processing evaluation. The strength of the light con-
taining the pulsatile information that enters the camera is
small compared to the background signal. Eliminating the
direct surface reflection that does not contain pulsatile in-
formation can enhance the PPG signal strength as discussed
in the next section.

2.2. Direct-Global Separation

When a face or other exposed skin area of the human
body is lit by a source of light, and a camera image acquired,
the intensity recorded at each pixel can be viewed as hav-
ing two components, namely, direct and global. The direct
component is due to the direct illumination of the point by
the source and is typically caused due to surface reflection.
The indirect (or global) component in such a scenario is pre-
dominantly composed of the sub-surface reflection compo-
nents, i.e., the photons that penetrate the skin and interact
with deep tissue and then exit the skin after multiple scat-
tering events. In the context of remote PPG estimation, it
is these sub-surface scattered global photons that contain
information about the pulsatile component. Unfortunately,
the direct surface reflection photons are much more numer-
ous than the sub-surface scattered photons and this typically
limits the signal to background ratio in camera-based vital
signs estimation.

Over the last two decades, several computational illumi-
nation and imaging-based techniques have been developed
for separating the direct and the global components of the
image intensity. Two of the most popular and effective tech-
niques are (a) cross-polarization and (b) structured illumi-
nation; both explained next.

2.3. Cross-Polarization

When light interacts with a surface like the human skin,
the surface reflection components retain the polarization
state of incident light. In contrast, the sub-surface scatter-
ing components have, through multiple scattering interac-
tions, completely lost their polarization state and are ran-
domly polarized. This difference can be used to enhance
the sub-surface signal component. As an illustrative exam-
ple, assume that the illumination source is horizontally po-
larized. The surface reflection retains the polarization state
and so remains predominantly horizontally polarized. In
contrast, the sub-surface component has lost its polariza-
tion state and so contains equal parts horizontal and vertical
polarized light. If we add a vertical polarizer in front of the
camera sensor, then most of the horizontal polarized sur-
face reflection is rejected — thereby significantly improving
the sub-surface or global component.

Polarized light Camera with

i, Polarizer

Epidermis

Dermis
Blood Vessel

P
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Figure 1: An illustration of on how the cross polarization
works. When polarized light hits the surface of the skin
without penetrating the skin, polarization is retained. When
polarized light penetrates the skin, the light loses its polar-
ization.

There are many applications in using cross-polarizers
from synthesizing novel images to capturing hidden struc-
tures in medical imaging. Specular reflections are polar-
ized while diffuse reflections are unpolarized [21]. Ad-
ditionally, the diffuse amount of polarization depends on
the angles of incidence and reflection [21]. Using these
known properties of polarized light, images were captured
with cross-polarized cameras from multiple directions in a
controlled lighting environment to understand the skin re-
flectance property [22]. With the image collection of skin
appearance with varying polarization, the authors were able
to reconstruct realistic looking subsurface scattering repre-
sentation of skin [22].

Characterizing skin appearance with cross-polarizers has
been studied in biomedical systems as well. Polarizers have
been used with medical imaging systems such as confocal
fluorescence microscopy as well as conventional RGB cam-
eras for acquiring PPG signals [23]. The depolarization of
backscattered light that penetrates into the tissue depends
on the scattering characteristics of the tissue [24]. Studying
how polarized light interacts with different types of tissues
can help non-invasively characterize tumors [25]. The point
spread function of reflected polarized light has been stud-
ied to aid in the application of using cross-polarizers for
imaging superficial tissues [26]. Clinical studies demon-
strate that a camera with cross-polarizers could identify a
more accurate representation the size and margins of lesions
and basal cell carcinomas than a doctor could with her un-
aided eye [25]. Recent work by Sidorov et. al and Trumpp
et. al show experimentally that polarizers benefit camera-
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based photoplethysmography applications [27],[28]. Al-
though polarizers are effective in reducing specular reflec-
tions, it also decreases the intensity of light that passes
through the polarizer by half. Reducing the number of pho-
tons that reach the camera is a limitation especially in low
light scenarios. Structured illumination is an alternative to
separate the global components of light without losing the
light that reaches the camera.

2.4. Structured Illumination

Consider a simple example wherein a structured illumi-
nation pattern is projected on a surface, such as human skin,
the resulting image acquired on an image sensor. The spa-
tial pattern projected on the skin can be decomposed into its
frequency components. The surface reflection (or direct re-
flection) acts as an all-pass filter letting all spatial frequen-
cies to be reflected back towards the camera. In contrast,
the sub-surface scattering acts as a low pass filter, and only
the low spatial frequencies are retained — the higher spatial
frequencies are attenuated by the multiple scattering events.
This difference in how the low and high spatial frequencies
are attenuated by the direct surface reflection component
and the indirect sub-surface component can be utilized to
separate the direct and the global components.

Nayar et. al [29] demonstrated that capturing two images
with a dense binary illumination pattern L and its comple-
ment L can separate the scene into global and direct compo-
nents of light. The irradiances L’ and L are compared for
a scene point S%. If S is lit under a high-frequency pattern,
the irradiances can be written as:

L'=Ly+~L, N
L= (1- v)L’g
where LY, and L; are the direct and global components of
the irradiance at a scene point S° and the 7 is the fraction
of activated source pixels. If we know which patch is lit
directly by the source in the first image and which is not lit
in the second image, we know the v term and can compute
the direct and global components at each camera pixel with
the two images. Nayar et. al demonstrated several patterns,
one of which was using checkerboard illumination shifts in
which a number of images are taken with shifted checker
patterns. The maximum and minimum measured bright-
ness found at each pixel are used to compute the direct and
global estimates. High-frequency sinusoidal patterns that
vary over space and/or time can be used for direct-global
separation using three patterns. The brightness of the pro-
jector pixel for the first pattern is generated by using a uni-
form distribution between 0 and 1. Two more patterns are
generated by changing the phases of the sinusoids.
This method was later improved by allowing structured
light algorithms to work in dynamic scenes [30]. Direct-
global separation has also improved the performance of
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Figure 2: An illustration of the workings of structured illu-
mination. High-frequency binary pattern is projected onto
the skin. The areas of the skin directly lighted contain only
the surface reflections whereas the areas that are not di-
rectly lighted contain both the global and direct component
of light. Direct reflection acts as an all-pass filter whereas
sub-surface scattering acts as a low pass filter.

Blood Vessels]|

structured light 3D reconstruction that excludes global ef-
fects [31]. In medical applications, mapping of tissue opti-
cal properties with modulated imaging has been studied to
characterize diffusive systems [32].

Single image global separation has been explored for ap-
plications where the scene is not static and would benefit
from using all frames in a video. A single-image method us-
ing high-frequency striped patterns to separate global com-
ponents was presented by Nayar et. al [29].To separate the
global component using a single image, first, assign a pixel
a maximum or minimum label in a window around it. Then,
the pixel intensity values at the maximum and minimum
values are interpolated to obtain the L,,,4, and L,,;, at the
full resolution where Liy,q. is the L* and the L,,;,, the com-
plement L?. Recently, a real-time direct-global separation
method has been developed that uses the relation between
stereo geometry and light transport [33]. The integration of
global-separation into medical applications such as ours for
PPG estimation could be realized as more robust and effi-
cient techniques are developed for global light imaging.

3. Direct Global Separation for Enhancing
iPPG Signal

When light from the projector [ hits the skin, a large por-
tion of it b is reflected directly off the skin surface without
penetrating the skin and interacting with the tissue under-
neath. This portion of light does not contain any pulsatile
information. A small portion of light penetrates the skin
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Figure 3: Separation of a frame into (a) Global component
(b) Direct component. The direct component image shows
the specular reflections from the oils on the skin surface.

surface and gets modulated by the pulsatile blood volume
change waveform p(t). The « term represents the strength
of the modulated light. ¢(¢) is the quantization noise.

y(t) = I(ex p(t) +b) +q(t) 2

One way to quantify the improvement of signal quality is
by looking at the ratio of the subsurface reflectance o term
and the surface reflection b. Three reflectance terms need to
be considered. When the horizontally polarized light from
the projector reaches the skin surface, it can (1) enter the
skin and reach the pulsed blood beneath, (2) bounce off the
surface of the skin into the camera, or (3) it could enter the
top layer of the skin without reaching the blood vessels.
For quantifying the method using cross-polarizers, let us
define the horizontal component of the polarized light as
having a superscript h and the vertical component of light as
having a superscript v. In the first reflectance case where the
light enters the skin (the subsurface scattering case «) the
horizontally polarized light will lose its polarization state
and will be randomly polarized into o’ /2 + /2. In the
second case, the light does not enter the skin and will re-
tain its predominantly horizontally polarized state (specular
surface reflectance b%). The third case is when the light en-
ters only the top portion of the skin that does not contain
pulsatile blood (sub-surface reflectance that does not have
blood interactions bY, ¢ /24 b% ¢ /2). When the light reaches
the vertical polarizer at the camera side, horizontally polar-
ized components will be eliminated to yield the following:

! a2 af
bs +bns  bls/2 bl
The light that enters the camera sensor does not contain

the horizontally polarized specular surface reflectance term
which improves the signal quality.

3)

The structured illumination method also improves the
signal quality by removing the surface reflectance term. The
direct component which is the specular surface reflection
term bg acts as an all-pass filter, letting all high and low
spatial frequencies to be reflected back to the camera. The
sub-surface scattering allows only the low spatial frequen-
cies to be reflected back. The subsurface to surface re-
flectance ratio can be described as the following. We note
the high-frequency signals as having a superscript w and
low-frequency signals as having a superscript [.

(0% Oél Oél

bs +bys  bY+bs+bhg b+ bg

“)

The global-separation eliminates the specular surface re-
flectance term, thereby increasing the ratio.

4. Video Processing and PPG Extraction

4.1. Structured illumination Direct-Global separa-
tion

The global component was extracted from each frame
of the video using single-image separation as proposed by
Nayar et. al [29]. Although there are ways to separate
the global component with other patterns mentioned ear-
lier, these patterns require more than one image, which in
turn requires us to use a camera with a higher frame rate,
an extension that we plan to study in the future. For 30fps,
the time difference between frames is 33.3 ms which re-
sults in an ambiguity of +16.6 ms [7]. A projector was
used to project high-frequency binary green and dark pat-
tern of 2-pixel width on the face. For each pixel, we as-
signed it the maximum or minimum label if its brightness is
the maximum or minimum within the 9x1 window around
it. Then the brightness intensity values around those peaks
and valleys were interpolated to obtain the full resolution
Lipar and L,,;, image. Single-image global separation
was performed on each frame of the videos. The separated
global and direct components are shown in figure 5. The di-
rect component shows the specular reflections on the face.
The supraorbital ridge (the area between the eyebrows), the
cheek region near the nose, and the eyelids show more
specularities from oils on the skin surface. After all the
frames were global-component-separated, the videos were
passed into the PPG estimation algorithm to estimate the
PPG waveform.

4.2. PPG algorithm

The PPG estimation algorithm was used to measure the
blood volume pulse, as proposed in [7] and is briefly ex-
plained as follows. For every frame, the green channel was
used, because it has been proven in [10] that the absorption
spectra of the prominent blood chromophores are maximum
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Figure 4: Videos are obtained with different illumination. The structured light videos were separated into the global-
component video before passing through the PPG estimation algorithm to yield estimated PPG waveforms. The standard
brightfield illumination and the videos using cross-polarizers were passed into the PPG estimation algorithm without post-
processing. The «, bg and by g terms are in reference to equations 3 and 4. bg is the specular surface reflection term and the

by s is the non-specular surface reflection term.

in the passband range of the green filters used in color cam-
eras. Thus green channels from each frame were divided
into grids of 20x20 pixels and the grids confining the face
region are the Region of Interests (ROIs). These ROIs are
then tracked across frames with the help of KLT Motion
Tracker to reduce any effects from motion artifacts. We
then averaged the pixel intensities in each of the ROIs to
reduce the effect of camera sensor noise and the reflected
signal intensity y(r, t) is obtained as:

yr(t) = Ip(ar + p(t) + br) + g (1) (5)

where y,.(t) is the pixel intensity at r** ROL, b, is the sur-
face reflectance from the skin surface, a,-p(t) is the pulsatile
PPG signal and g, is the additive noise due to sensor noise,
changes in illumination or motion artifacts.

Each of these signals was then filtered with a bandpass
filter having cutoff frequency of (0.5Hz-5Hz). This removes
additional noise which lies beyond the specified frequency
range. The PPG signal estimate is then given by computing
the weighted average of the signals from all ROIs

N
p(t) = ZG(z‘)@(Lt) 6)

The weights G(r, t) are computed based on the idea of max-
imal ratio diversity [34]. Based on the assumption that the
pulsatile signals from the ROIs are locally coherent, these
weights are computed as a goodness metric G(r) given by:

PR+bw
Pr_pw Y (1 f)
(r) = —3 PR+bw (7
f05 ~ JPR—bw

where Y (r, f) is the power spectral density of the filtered
signal § from r** ROI, and PR is the pulse rate. This
estimates the power of the desired signal of interest around
the heart rate region. In our application, we have taken the

bandwidth bw to be 0.2.

5. Methodology

The main goal of the experiment is to quantify the per-
formance of a conventionally recorded video with a global-
separated video. To evaluate how well a globally sepa-
rated video performs we analyzed a video taken through a
polarizer, compared it with a video that had been global-
separated with structured illumination, and a combined
method of using a polarizer and structured illumination at
the same time.

5.1. Data acquisition

We carried out experiments on 28 human subjects (17
male, 11 female) with different skin tones from light, pale
white, to dark brown. 9 subjects from light, 9 from medium,
and 10 from dark skin tone categories were analyzed. The
participants were asked to face the camera and be static for
the duration of the video. A chin rest was provided so that
the subjects could rest on it to stay as motionless as pos-
sible for two minutes. All experiments performed in this
research were approved by the Rice University institute re-
view board (Protocal number: IRB-FY2018-120, Approval
date: October 10th, 2017).

5.2. Experimental setup and data acquisition pro-
tocol

The experimental setup was organized as illustrated in
Figure 3. Experiments were performed when the subject
was at rest and the chin was rested on a chin rest. We used a
Blackfly USB 3.0 BFLY-U3-23S6C color camera operated
at 30 frames per second with a resolution of 1920x1200 and
8 bits per pixel. An Epson V355 LCD projector was used
as the illumination source for all of the scenarios. The light
intensities reaching the camera sensor was consistent for all
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Figure 5: Setup for imaging PPG signals acquisition from
face. The subject is resting comfortably facing the camera
as the projector illuminates the face. A pulse oximeter was
attached to the finger.

videos at 150 lux. We also used a contact pulse oximeter
BIOPAC MP150 to record contact based PPG signals for
comparison. The same illumination, camera, and ground
truth pulse oximeter were used for all participants.

For the first set of experiment, we recorded a plain video
of the subject’s face at 30 fps. Standard green brightfield
illumination was projected onto the face.

For the second set of experiments using structured illu-
mination, we used a stripe pattern of repeating black and
green lines that are each 2 pixels wide to project onto the
face of the participants.

For the third set of experiments, we used a polarizer
(Thor Labs) in front of the camera and used the standard
green brightfield illumination to record videos.

In the fourth set of experiments, we used both polar-
izer and the structured illumination to record videos. In all
these experiments, contact PPG signal was synchronously
recorded from a pulse oximeter attached to the index finger.

5.3. Performance Metric

We used a signal-to-noise ratio (SNR) of the estimate to
quantify the performance for all the 4 sets of experiments,
and the SNR is calculated as according to the equations as
follows

n(t) =pt) = S Ay

iz(t) ®)

where p(t) is the extracted PPG signal, n(t) is the noise,
s(t) is the signal of interest coherent with the ground truth
signal, and z(t) is the PPG signal from the contact pulse
oximeter. It has been assumed that the noise contained in
pulse oximeter signal is negligible compared to that ob-
tained from a camera-based system.

6. Results

We categorized the subjects into different skin tone
categories: light, medium, and dark. The average SNR
for each of these categories and for each illumination are
shown in the table. The standard brightfield illumination
scenario had a lower SNR than the other three scenarios
that remove surface reflections from the scene.

In the light skin-tone category, the global separated video
using structured light performed better with an SNR
improvement of an average of 1.66dB for 9 subjects
(6 males, 3 females). The video using the polarizer
had an improvement of 1.24dB in SNR. The structured
illumination and polarizer combination improved the
SNR by 1.95dB. In the light skin-tone category, the com-
bined method using structured illumination and polarizer
performed best out of the three global-separated techniques.

Tone SBI SI Pol SI+ Pol
(dB) (dB) (dB) (dB)

Light 328 495 453 5.23
Medium 3.08 4.57 4.70 5.08
Dark 257 3.68 4.17 4.34

Table 1: Standard brightfield illumination (SBI), Structured
illumination (SI), Polarizer (Pol), and the Structured illu-
mination and Polarizer combined method. The combined
method performs the best.

In the medium skin-tone category, 9 subjects were an-
alyzed (7 males, 2 females). The average SNR improved
1.49dB by using global-separation with structured illumi-
nation. The polarizer method improved the SNR by 1.62
dB and the structured illumination and polarizer combined
method improved the SNR the most by 2dB. In the dark
skin-tone category, 10 subjects were analyzed (6 males, 4
females). The SNR improvement using structured illumina-
tion was 1.11 dB. Polarizers increased the SNR by 1.60dB
and the combined structured light and polarizer increased
the dB by 1.76dB.

The standard brightfield illumination without global sep-
aration performed the worst. The video taken with the po-
larizer and the video taken with structured illumination im-
proved the SNR. The combined method performed the best
for the light, medium, and dark skin tones. In all illumina-
tion cases, the videos of light and medium skin tones per-
formed better than that of dark skin tones.

While the average improvement is computed over the
whole exposed region, the improvement in the SNR of spe-
cific skin regions (with high specular component) ranged
from 3.48 dB to more than 5.63 dB. The area between the
eyebrows, eyelid, and the cheek area near the nose are areas
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Figure 6: Three different categories of skin tone are rep-
resented. Four methods were analyzed shown from left to
right: Standard brightfield illumination (SBI), Structured il-
lumination (SI), Polarizer (Pol), and the Structured illumi-
nation and Polarizer combined method. The SNR increases
with global separation and the combined structured illumi-
nation and polarizer method performs the best compared to
the other methods.

with high secular reflections where this large local improve-
ment can have a significant impact.

Cases: SBI SI Pol SI + Pol
(bpm) (bpm) (bpm)  (bpm)
H HRRMSE: 03735 0.33 0.33 0.1680 H

Table 2: Global separated methods perform better for heart
rate estimation. The combined sturctured illumination and
polarizer method shows the lowest RMSE.

The pulse rate was also extracted from the estimated
PPG signal estimates and was compared to that obtained
from the contact PPG signal. Figure 7 shows the agreement
of the ground truth pulse rate to the estimated pulse rate
from the PPG signal for two separate cases- with standard
brightfield illumination and second, with structured illumi-
nation and polarizer combined. For the standard brightfield
illumination, the mean bias is 0.25 bpm with 95%limit of
agreement being from —0.308 to 0.8057. By using a po-
larizer and structured illumination combined, the estimated
error decreases to a bias of 0.1486 bpm with 95 limit of
agreement between - 0.007 bpm and 0.304 bpm. The root
means square error (RMSE) was also calculated for all the
four sets of experiments and is listed in Table 2. The use of
structured illumination and polarizer combined consistently
performs better than using a simple brightfield illumination.

7. Conclusion

We have presented an improvement in the remote
camera-based estimation of vital signs using direct global
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Figure 7: (a) PR estimation using Simple Brightfield Illumi-
nation (b) PR estimation using Structured Illumination and
Polarizer combined. The y-axis shows the difference of the
ground truth and the estimated PPG signal. The x-axis is the
mean of the ground truth and PPG. The skin tone is color-
coded and the fair, medium and dark skin tone corresponds
to the blue, red and green respectively.

separation. We explored two techniques using cross-
polarization and structured illumination for direct-global
separation. Four experiments were performed for each of
the 28 subjects: a standard brightfield illumination used for
reference, structured illumination, cross-polarized, and the
combine structured illumination and polarizer. PPG estima-
tion was used to extract the waveforms for which we calcu-
lated the SNR. All of the global-separated results improved
the SNR. The combined polarizer and structured illumina-
tion improve the SNR most.
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