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Face Detection and Verification
Using Lensless Cameras

Jasper Tan, Li Niu, Jesse K. Adams, Vivek Boominathan, Jacob T. Robinson, Richard G. Baraniuk,
and Ashok Veeraraghavan

Abstract—Camera-based face detection and verification have
advanced to the point where they are ready to be integrated
into myriad applications, from household appliances to Internet
of Things (IoT) devices to drones. Many of these applications
impose stringent constraints on the form-factor, weight, and
cost of the camera package that cannot be met by current-
generation lens-based imagers. Lensless imaging systems provide
an increasingly promising alternative that radically changes the
form-factor and reduces the weight and cost of a camera system.
However, lensless imagers currently cannot offer the same image
resolution and clarity of their lens-based counterparts. This paper
details a first-of-its-kind evaluation of the potential and efficacy
of lensless imaging systems for face detection and verification.
We propose the usage of existing deep learning techniques for
face detection and verification that account for the resolution,
noise, and artifacts inherent in today’s lensless cameras. We
demonstrate that both face detection and verification can be
performed with high accuracy from the images acquired from
lensless cameras, which paves the way to their integration into
new applications. A key component of our study is a dataset
of 24,112 lensless camera images captured using FlatCam of 88
subjects in a range of different operating conditions.

Index Terms—face detection, face verification, lensless imaging,
coded aperture, machine vision, deep learning.

I. INTRODUCTION

THE last few decades have seen an explosion in the use of
cameras and other imaging devices. It is estimated that

in the year 2017 alone more than a billion camera modules
were sold, most of them integrated into mobile systems such
as phones, tablets, and other devices. The miniaturization
and rapidly decreasing cost of camera modules have been
the primary drivers of this scaling. With the rise in use and
integration of cameras, their role in our lives has also changed
significantly. Most cameras no longer take photographs, but
instead are used as sensors to provide inferential inputs for a
diverse range of applications, from biometrics (face recogni-
tion, authentication) to surveillance and security.

While modern camera modules can be thin (≈ 5mm) and
inexpensive (≈ $15)1, many emerging applications, such as
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1Estimates are based on breakdown analyses of the camera modules in
current mobile phones [1].
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Fig. 1: A lensless camera’s radically reduced form-factor and
size/weight profile can enable face detection and verifica-
tion in emerging applications. (a) Internet of Things (IoT)
applications can distribute a large number of inexpensive
sensors throughout an environment. (b) Drones, UAVs and
other mobile platforms can more easily satisfy their stringent
geometric and weight constraints. (Graphics by Freepik.)

the Internet of Things (IoT), surveillance, disaster recovery
using drones, etc., impose stringent constraints on size, weight,
and cost that cannot be met with today’s lens-based imaging
systems. Consider the integration of cameras into house-
hold electronics and electric appliances, such as thermostats,
coffee machines, toasters, refrigerators, etc. Given the cost-
constraints in these devices, integration is only feasible if we
can realize an order of magnitude reduction in the cost of
camera modules. Consider also the integration of cameras into
drones for distributed sensing in applications such as disaster
recovery or in very thin objects such as credit cards. Given the
weight and volume constraints in these devices, integration is
only possible if we can realize an order of magnitude reduction
in the weight and size of camera modules.

Fortunately, remarkable progress has been made in the past
five years on lensless imaging, resulting in imaging devices
that are an order of magnitude thinner (≈ 1mm) and less
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expensive at-scale (< $1) [2]–[5]. The main technological
advantage of the emerging class of lensless imaging devices
is that, by eliminating the need for a lens, they can reduce the
weight and thickness of the device by an order of magnitude.
Moreover, since they can be completely fabricated using tra-
ditional semiconductor fabrication processes, they can reduce
the cost by an order of magnitude to a lens-based camera.

Without a lens, focusing in a lensless camera is per-
formed through an algorithm that reconstructs an image
from coded measurements. These algorithms are invariably
imperfect and result in images with lower spatial resolution
and reconstruction-algorithm-dependent artifacts. Additional
degradation includes potentially reduced signal-to-noise ratio
(SNR), limited dynamic range, and blurring.

An important research question that needs to be addressed
is thus whether the quality and resolution of lensless cam-
era images are sufficient for their adoption in the emerging
applications discussed above. In this paper, we delve into
this question deeply in the context of face detection and
verification. We focus on these tasks because of their growing
maturity and application in real-world systems. Our goal is
to explore the feasibility of performing face detection and
verification with lensless cameras by building and studying an
imaging system that couples a lensless camera with existing
deep learning inference techniques. Since the performance of
deep learning depends strongly on the amount of training
data in order to identify the patterns induced by faces while
remaining unaffected by artifacts and noise, we present two
techniques to convert any standard training dataset into a
lensless camera image database: physically capturing images
displayed on a screen and digitally simulating them. Both
methods capture the characteristic noise sources, resolutions,
and artifacts of lensless cameras that differ significantly from
those of conventional cameras.

To evaluate the performance of our system in realistic
scenarios, we build a real face dataset, the FlatCam Face
Dataset (FCFD), with 88 subjects and 24,112 images acquired
using the FlatCam lensless system [2], [6] including multiple
lighting conditions, expressions, angles, capture times, and
backgrounds. Despite the lower image quality of our system,
we show that we can still achieve reasonable results for the
tasks of face detection and face verification.

The main technical contributions of this paper are as fol-
lows:

1) We perform a first-of-its-kind study to evaluate the per-
formance of lensless imaging systems in face detection
and verification.

2) We demonstrate techniques (simulation and display-
captured) for generating training datasets for inference
algorithms (such as deep learning based face analysis
algorithms) and study the effect of their approximations
on inference accuracy.

3) We demonstrate how with proper training images, ex-
isting deep learning methods can achieve reasonable
results for face detection and face verification on images
captured by a lensless imaging system.

4) We experimentally evaluate the performance difference
for face detection and face verification between one

particular lensless imaging system (FlatCam) and a
conventional camera.

5) We acquire and study a first-of-its-kind lensless camera
face dataset (that will be made publicly available) that
contains various lighting conditions, facial expressions,
angles, backgrounds, and resolutions.

II. RELATED WORK

A. Face Detection and Verification

The goal of face detection is to infer whether a given image
contains faces and if so to provide their locations using, for
example, bounding boxes. Following the impactful algorithm
introduced by [7], many methods have been developed to
solve the face detection problem, as described in the survey
papers of [8], [9]. Recently, deep learning methods have come
to the fore; they offer state-of-the-art performance for face
detection [10]–[14] using convolutional neural networks to
perform tasks such as classifying face vs. non-face regions
and predicting bounding box coordinates. In this work, we
follow the method of [11] and utilize Faster R-CNN [15], a
deep learning framework that has been successful for general
object detection, for face detection.

The goal of face verification is to identify whether two
given face images contain the same identity or not. Some
of the earlier efforts are described by [16]–[18]. As with
face detection, deep learning techniques offer state-of-the-art
performance for face recognition and verification [19]–[24].
Briefly, the idea is to use a convolutional neural network to
extract features from both images that are then input into a
classifier, which can be as simple as calculating the distance
between the two sets of features.

The above works focus on face detection and verification
from imagery captured by a conventional lens-based camera.
Another line of work has used data from other imaging devices
[25]. For example, some studies have aimed to perform face
recognition using thermal infrared imagery [26], [27], with the
argument that thermal sensors are less sensitive to ambient
light variations than visible light cameras. Researchers have
also tried improving face detection and verification results
using depth sensors [28]. While these studies replace tradi-
tional cameras with (often more expensive) detectors/set ups to
improve accuracy, we use lensless technology to achieve face
detection and verification with cheaper and thinner imaging
devices.

B. Lensless Imaging

While lensless imaging has been widely used for imaging
non-visible wavelengths [29], [30], we focus here on lensless
visible light imaging. A lensless imaging system captures
measurements using either a bare imaging sensor or a sensor
plus a non-lensing mask that modulates the light such that
recovery of the desired image is possible. Examples of masks
are compressive samplers [31], [32], programmable LCDs
[33], phase gratings [4], spatial light modulators [34], [35], and
diffusers [36]. In the works of [2], [6], several of the authors
built a new lensless imaging device called FlatCam by placing
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Fig. 2: The FlatCam lensless imager places a thin mask of apertures atop a bare image sensor. Light enters through the multiple
apertures, and the sensor captures a superposition of shifted mask shadows. A reconstruction algorithm unveils the desired
scene image.

a binary amplitude mask containing a pattern of opaque and
transparent features less than 1.5mm from the imaging sensor.

We use a FlatCam prototype for this work, since it has
been demonstrated to achieve a very thin form-factor in a
simple and inexpensive design. Such features allow its use in
applications with strict size and cost constraints wherein lens-
based cameras may be infeasible. We note that our experiments
and results in this paper are specific to the FlatCam and may
not accurately characterize face detection and verification with
other lensless imaging systems that operate differently.

There has been limited previous work in inference from a
lensless camera. The work in [37] classified images of digits
displayed on a screen that were captured by a bare image
sensor. In [38], the location of a vertical bar was estimated
using a lensless imaging system with a mask containing a
phase grating. To the best of our knowledge, our work is the
first to perform face detection and verification with a lensless
camera and also the first to perform an inference task on a
real captured dataset of natural images.

Reconstructing lensless images is an inverse problem in
imaging, and there have been works that propose deep learning
methods for solving such inverse problems [39]–[45]. In our
work, we do not use deep learning methods to perform
the image reconstruction but use them on the reconstructed
images themselves. We do this for multiple reasons. First,
the method we use to reconstruct FlatCam images is much
more computationally simple. Second, FlatCam devices with
different masks can yield very different measurements for the
same scene, but their reconstructed images are quite similar.
Thus, performing inference directly on the measurements may
require training on each device individually, but performing
inference on the reconstructed images only requires training
on reconstructed images provided by one device (as verified
in the Supplementary Material).

III. LENSLESS IMAGING WITH FLATCAM

The key idea we use to reduce the size and cost of an
imaging system is to exclude the lens completely. In this work,
we used a prototype of FlatCam, which was introduced in
[2], [6]. In this section, we provide a brief description on
how FlatCam produces images. For more detailed explanation,

Fig. 3: Images from the LFW dataset (top) were displayed
on a screen and then captured and reconstructed (bottom)
by FlatCam. The lensless reconstructions feature artifacts and
non-idealities that are not present in standard camera images.

see the above papers. In the remainder of this paper, we will
refer to images captured with FlatCam as “lensless images”
and images captured with a conventional lens-based camera
as “standard images”.

Our FlatCam prototype consists of a Point Grey Flea3
camera with 1.3 MP e2v EV76C560 CMOS sensor with a pixel
size of 5.3 µm. We placed an amplitude mask ≈ 1.2mm above
the sensor using chrome (opaque features) on glass (apertures).
The pattern of the amplitude mask is a crop of a modified
uniformly redundant array (MURA) [46] of length 1277, with
smallest apertures of 20 µm × 20 µm.

To understand how FlatCam works, consider imaging a
point source, like an LED. Light from this point source enters
the image sensor only through the apertures on the mask, and
thus the system’s point spread function (PSF) is a shadow of
the mask pattern. Capturing a more complex scene then results
in a sensor measurement that is a superposition of shifted mask
patterns of different intensities. If the mask pattern is the outer
product of two vectors, then FlatCam can be approximately
modeled using a separable linear transform [2], [35]:

Y = ΦLXΦT
R +N, (1)

where the matrix Y represents the two-dimensional (2D)
sensor measurements, the matrix X represents the scene
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Fig. 4: Sample images of different subjects from the FlatCam Face Dataset (FCFD). The images contain variations in expression,
lighting, angle, scale, and background.

irradiance from the plane of interest, N represents additive
noise, and ΦL and ΦR encode the PSFs that form the linear
model. We refer to this as the “FlatCam forward model”. In
our design, we use a 500 × 620 portion of the sensor (i.e.
dimensions of Y ) for each color channel and we calibrate to
reconstruct a scene X of size 256 × 256. We obtain ΦL and
ΦR using the calibration scheme described by [2].

Given the measurements Y , we reconstruct the scene X by
solving the following regularized least squares problem:

X = arg min
X

||Y − ΦLXΦT
R||2F + λ||X||2F (2)

for each color channel individually. Here ‖ · ‖F denotes the
Frobenius norm. The regularization enables the reconstruction
algorithm to function even when ΦL and ΦR are not well con-
ditioned. [2] derive the closed form solution of this problem:

X̂ = VL[(ΣT
LU

T
L Y URΣR)./(σLσ

T
R + λ11T )]V T

R , (3)

where ΦL = ULΣLV
T
L and ΦR = URΣRV

T
R are the singular

value decompositions of ΦL and ΦR, respectively, σL and σR
are vectors containing the values on the diagonals of Σ2

L and
Σ2

R, and where ./ denotes elementwise division.
In this paper, we use λ = 3 × 10−4 for all color channels

based on the visual quality of a few reconstructed images.
Fig. 2 details the operation pipeline of FlatCam, as well as
an example of a FlatCam measurement and its corresponding
reconstruction. Samples of reconstructed FlatCam images of
a screen projecting face images are shown in Fig. 3.

FlatCam’s reconstruction procedure involves a few small
matrix multiplications, and thus it is computationally inex-
pensive. Although the scene images could be reconstructed
by employing more sophisticated optimization techniques, the
images produced by the above method have a sufficient level of
quality for reasonable face detection and verification accuracy.

Compared with conventional lens-based cameras, imag-
ing with lensless cameras has several drawbacks. First, the
transmission of light may not exactly follow the separable
linear model due to factors such as diffraction, resulting in

reconstruction errors. Second, since light from an object in
the scene reaches multiple (if not all) pixels on the sensor,
the dynamic range will be lower than that of a conventional
camera; in particular, one bright object can saturate the en-
tire sensor instead of just a small number of pixels. Third,
reconstructed images will lower resolution due to the very
small distance between the mask and the sensor, which causes
small movements of a point source to yield very similar
measurements. It is therefore an open question as to whether
thin lensless imaging systems are up to the tasks of face
detection and verification.

IV. FLATCAM FACE DATASET

For an inference task, a large enough test dataset is required
for a meaningful evaluation. There exists no such dataset of
lensless camera images. Therefore, we acquired the first (to the
best of our knowledge) real face dataset taken using a lensless
imaging device. The FlatCam Face Dataset (FCFD) contains
24,112 images of 88 subjects (274 images per subject), which
we use to evaluate face verification performance.

Generally speaking, there are two types of face verification
datasets: “controlled” datasets and “in the wild” datasets. In
both, it is important to have multiple variations in the images
such as different lighting conditions, angles, facial expressions,
etc. Such diversity is needed to test algorithms and methods
that will be deployed in real-life settings where such variations
naturally occur.

In a “controlled” dataset, subjects come to a lab or studio
to have their images taken. Since this can seem like an artifi-
cial setting, researchers deliberately add variations by having
different types of illumination devices, asking the subjects
to make different facial expressions, etc. Examples of such
datasets are listed in Table I (note: this list is not exhaustive).
In an “in the wild” dataset, images are obtained from public
sources, such as the world wide web. Such photos are generally
captured in natural settings and hence already contain natural
variations such as different backgrounds, different lighting
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TABLE I: Commonly used controlled face datasets and the intra-class variations they contain. “Expressions” refers to the
number of different facial expressions per subject, “Lighting” refers to the number of lighting conditions used, “Angles” refers
to different viewpoints of the face, “Time between sessions” refers to the amount of time in between different capture sessions
for the same subject, and “Occlusions” refers to the use of scarves, sunglasses, or other occluding accessories. Our dataset
contains most of the intra-class variations included in other datasets.

Dataset Subjects Total images Expressions Lighting Angles Time between sessions Occlusions
FERET [47] 1199 14126 2 2 5 1 year None
AR Face Database [48] 126 4026 4 4 1 2 weeks Sunglasses, scarf
FRGC Data Set [49] 466 51433 4 2 1 1 year None
ORL Database 40 400 Up to 10 Up to 10 10 Unspecified None
Yale Face [50] 15 165 6 3 1 1 session only Glasses
Yale Face B [51] 10 5760 1 65 9 1 session only None
CMU Multi-PIE [52] 68 41368 6 19 15 Unspecified None
FCFD (this paper) 88 24112 9 10 11 2 weeks Sunglasses

conditions, and different facial expressions. Examples of these
datasets are the Labeled Faces in the Wild (LFW) dataset [53],
[54], the VGG face database [19], CASIA-WebFace [55], and
the megaface benchmark [56].

Since there are few FlatCam face images publicly available
on the web, the FCFD is, by necessity, a controlled dataset.
As such, we incorporated multiple variations in the face
images. To build the FCFD, we captured images of subjects
sitting 23—38cm from the FlatCam while using 10 different
lighting conditions. For each lighting condition, we captured
10 expressions: neutral, smiling, angry, screaming, closed
eyes, sad, sleepy, surprised, winking, and wearing sunglasses
(for occlusion). For each lighting condition, we also captured
8 angles; the participant looks at 8 uniformly spread locations
on a circle such that the angle their direction makes with
the camera is approximately 35◦. For each of the lighting
conditions, neutral and smiling images were also captured
for when the participant is closer (approximately 15cm) to
the camera for scale variation. At least two weeks after the
first session, participants had their images captured again with
6 of the lighting conditions, 4 of the angles, and 5 of the
expressions. More details on the variations can be found in
the supplementary material. In each image, the subject is
sitting in front of a television screen displaying a random
faceless background image from the ImageNet database. While
backgrounds in real scenarios are not planar like a television
screen, it has been shown that for large enough distances
(> 30cm), differences in scene depths yield small differences
for FlatCam measurements [57]. We compare the variations we
included in our dataset with those contained in other popular
controlled face datasets in Table I. Sample images from the
FCFD can be found in Fig. 4. Each image in the dataset was
also captured with a Logitech C930e webcam for a lens-based
comparison to the lensless images.

V. OBTAINING LENSLESS TRAINING IMAGES

While the comprehensive FCFD is key to testing our face
detection/verification system, the training process of the sys-
tem’s deep networks needs to be fueled by a large amount
of training data. Many face datasets, such as the WIDER
face dataset [58], the Annotated Facial Landmarks in the
Wild (AFLW) dataset [59], and the VGG face dataset [19],
are available for training algorithms for face detection and

(a) Standard (Webcam) (b) Lensless Capture

(c) Display-captured (d) Simulated

Fig. 5: The three different types of training images we explored
in this work compared to a real FlatCam capture. (a) A subject
captured with a webcam. (b) The same subject captured
with an actual FlatCam. (c) FlatCam capture of a screen
projecting the webcam image. (d) Simulated lensless camera
image obtained by applying Eq. 1 to the webcam image and
reconstructing with Eq. 3.

verification. They contain a large number of images and
include many natural variations. However, these images are
captured by lens-based cameras and do not reflect the unique
characteristics of lensless images. It would take a long time
to physically capture and annotate an equivalent lensless face
training dataset (for example, the VGG face dataset contains
more than 2 million images), and thus, it would be more
convenient to quickly obtain a lensless version of existing
standard face datasets.

In this work, we propose a method of converting a standard
(lens-based) face training dataset into a lensless one by dis-
playing the images on a monitor and capturing them using a
FlatCam prototype. The images are real in that they come
from a physical lensless camera, but they are still simply
projected images rather than images of real physical faces. We
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scale the standard images on the monitor such that the larger
dimension fills the field of view of FlatCam while keeping
the same aspect ratio. Thus, the bounding box information
for the training images can be preserved by scaling to the
dimension of the reconstructed FlatCam images. We refer to
a dataset generated this way as “display-captured”. Indeed
display-captured images have a mismatch compared to true
lensless images of real human faces, but our experiments show
that using these training data can achieve reasonable results for
face detection and verification on real lensless images.

Some disadvantages of the display-captured method are that
it is time-consuming and that it requires a physical setup, and
so we also explore digitally simulating the dataset entirely
using the FlatCam forward model in Eq. 1. In particular,
we transform a standard image X into Y = ΦLXΦR + N ,
where ΦL and ΦR are obtained through the calibration scheme
described by [2], and then we reconstruct using Eq. 3 with
λ = 8×10−4 to obtain the simulated FlatCam image. We add
zero-mean Gaussian random noise N such that ||ΦLXΦR||

||N || =
10, which we found closely models our true lensless images.
Such a method is computationally simple and requires no real
lensless images. However, its images will suffer from greater
mismatches between the FlatCam forward model and reality.
We refer to this approach to creating a dataset of lensless
images as “simulated”.

To visualize the images generated by the different methods,
we captured an image of a subject with both a webcam and the
FlatCam, as well as display-captured and simulated versions
from the webcam capture (Fig. 5). The best training image
would be one that most closely resembles the true FlatCam
capture.

VI. COMPUTATIONAL ARCHITECTURE FOR FACE
DETECTION/VERIFICATION

After training data has been prepared, the next key ingre-
dient is the computational architecture. To perform face de-
tection and verification, we exploit recent methods from deep
learning that have achieved excellent performance on standard
test protocols. When choosing the deep learning techniques
for face detection and verification, we focused on algorithms
that are accessible and simple in both implementation and
principle, so that our results are not exclusive to very specific
techniques. We perform the two tasks separately and briefly
describe the method we used for each task. Fig. 6 outlines the
computational pipeline for our system.

A. Face Detection with Faster R-CNN

Apart from the detection networks specifically designed for
faces, there has also been work on general object detection
using deep learning such as YOLO [60], Faster R-CNN [15],
and SSD [61]. A simple approach for face detection is to
identify a method that has been successful for general object
detection and apply it to detect faces. One recent method that
achieves high accuracy for object detection is Faster R-CNN,
which features an end-to-end convolutional neural network
(CNN) method with efficient operation [15]. [11] performed
face detection using Faster R-CNN and demonstrated very

high accuracy. We deployed Faster R-CNN for lensless face
detection based on code made available by [15] and [11].

Faster R-CNN comprises two main components: a Region
Proposal Network (RPN) and a detection network. The RPN
produces region proposals that are likely to contain objects
of interest, while the detection network based on Fast R-CNN
[62] classifies the proposals and regresses their bounding boxes
to more precise locations and scales.

We train our Faster R-CNN model using the WIDER face
dataset [58], which contains more than 12,000 training images,
and the Annotated Facial Landmarks in the Wild (AFLW)
dataset [59], which contains more than 25,000 training images
of faces with multiple variations, as well as the bounding boxes
for these faces. We train three different networks: one trained
with the standard WIDER dataset (we found that including
the AFLW dataset for standard images did not improve per-
formance), one trained with display-captured lensless WIDER
and AFLW datasets, and one trained with simulated lensless
WIDER and AFLW datasets, allowing us to evaluate the
performance difference of the various training datasets. Since
our prototype FlatCam has a resolution (256 × 256 pixels)
lower than many of the images in the WIDER dataset, for
images containing very small faces, we use crops of the image
instead of the entire image. We use the VGG16 network pre-
trained on the ImageNet dataset and the approximate joint
training method described by [15]. The learning rate is set to
0.001 for the first 50k iterations and decreases to 0.0001 for
30k more iterations.2

B. Face Verification Through Classification CNN

One simple technique for face verification trains a CNN to
perform a face inference task (such as identity classification),
removes the final task-specific layers, and then treats the
trained network as a feature extractor [19], [63], [64]. Since
the network was trained for a face inference task, the extracted
deep features should contain discriminative information on the
original face images. After extracting deep features for two
images, we predict whether they belong to the same identity or
not by applying a threshold to a similarity measure calculated
on the features. For simplicity, we use the negative `2 distance
between two images’ feature vectors as the similarity measure.
This has been shown to achieve strong performance for face
verification [19], [65].

We follow the method and architecture of [19] and use the
16-layer configuration-D CNN architecture from [66], which
yields excellent results on the Imagenet challenge. For our
training data, we use a subset of the cropped VGG face
dataset introduced by [19], which contains approximately
900,000 out of the original 2.6M images of faces belonging to
2,622 identities. We initialize the CNN weights using a zero-
mean random Gaussian distribution with a standard deviation
of 10−2 and initialize the biases to zero. We perform the
optimization using stochastic gradient descent with a batch
size of 32 images and momentum coefficient of 0.9. We also
apply batch normalization after every convolutional layer. We

2We used the implementation made available by [11]:
https://github.com/playerkk/face-py-faster-rcnn
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Fig. 6: Computational pipeline for our face detection and verification system. After capturing and reconstructing the face with
FlatCam, face detection is performed using Faster-RCNN [15]. For face verification, we send the face region detected by
Faster-RCNN to a convolutional neural network to yield a feature vector. To verify whether two faces have the same identity,
we apply a threshold to the computed similarity between their two feature vectors.

set the initial learning rate to 10−2 and decrease it by a factor
of 10 when the validation score is no longer decreasing, with
the last learning rate being 10−4. The training images are all
of size 256 × 256, of which the center 224 × 224 cropped
patches are sent through the network. We train the network
to minimize the softmax loss for classification with the 2,622
classes using MatConvNet [67]. Similar to the method for face
detection, we train three different verification networks using
three different versions of the VGG training dataset (standard,
display-captured, and simulated). After training, we remove
the last classification layer such that given an image input, the
CNN now outputs a 4096-dimensional feature vector.

To perform face verification given two images, we first pre-
process the images by passing them through the Faster R-
CNN face detector described above to obtain tight bounding
boxes on the face regions. We then make these bounding boxes
square by extending their shorter sides to match the longer
sides, and we crop the resulting face patches out. The two
cropped images are then resized to 256 × 256, and for each
image, five 224 × 224 crops, one from each corner and one
from the center patch, are passed through the CNN to obtain
output vectors. The feature vector for an image is the average
of its five output vectors, which we then normalize to have unit
`2 norm. The similarity score of the two images is computed
as the negative value of their feature vectors’ `2 distance. If the
similarity score is above a certain threshold, then the images
are deemed to belong to the same identity. This method shares
similarities with that proposed by [19].

VII. EXPERIMENTS

We evaluate the performance of our lensless camera face de-
tection and verification system on our captured FCFD dataset
as well as on two common benchmark datasets used for face

TABLE II: Summary of FCFD experiments.

Experiment Property
of interest

Comparisons made

FE1 Most effective
training data

Performance of networks
trained by display-captured,

simulated, and standard images
FE2 Effectiveness of

face detection
Performance on uncropped
images vs. images cropped
via lensless face detection

FE3 Lens-based vs.
lensless tradeoff

Performance on webcam
images vs. FlatCam images

FE3 Robustness across
different variations

Performance for different
variations (including same-day

vs. different-day images)
FE3 Particularly

difficult variations
Performance on “Easy”
set vs. “Complete” set.

detection and face verification: the Face Detection Data Set
and Benchmark (FDDB) [68] and Labeled Faces in the Wild
(LFW) [53], [54] datasets.

A. Face Verification on FCFD

We perform three experiments on the FCFD to answer a
number of questions regarding the performance of face verifi-
cation on FlatCam images. A summary of these experiments
are listed in Table II.

1) FCFD Testing Procedure: For each experiment, we build
two different sets of images: the probe and gallery sets. We
then perform face verification on all possible pairs of images
between these two sets. The gallery set can be interpreted as
saved template images for different subjects, and the probe
set can be interpreted as the test images presented to the
verification system in deployment. We perform both “Same
Day” experiments and “Different Day” experiments, which
indicate whether the images from the probe set were captured
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Fig. 7: Sample images of one subject from the FlatCam Face Dataset (FCFD). When testing on this dataset, we perform face
verification by comparing one gallery image (top, yellow border) per subject with images from probe sets. From the dataset,
we build two different probe sets: we use a subset containing simpler expressions, angles, and lighting (“Easy”, green border),
as well as the complete dataset (“Complete”, red border). The probe sets include images acquired with variations in lighting,
expressions, angles, and scale. It also contains images captured on a different day (“Time”) from the gallery image.

on the same day or a different day (set apart by at least 2
weeks) from the gallery images. While the FCFD is ultimately
designed for face verification, the images first pass through our
display-captured Faster R-CNN face detector to crop the face
region out for input to the verification algorithm. Thus, face
detection is also an important component in this test.

The FCFD contains a number of natural variations, and
we noticed in our experiments that some of these variations
are more difficult to deal with than others in lensless face
verification. Excluding these variations from the test can
dramatically change the results. Generally, these variations are
those where the subject is (a) looking down, (b) making a
dramatic face expression (such as screaming or surprised), or
(c) when there is no diffuse light source in front of the face.
Given this, we generate two different test sets. The “Easy” test
set excludes these tougher variations while the “Complete” test
set contains all images of all variations. Examples of images
for these variations for one subject are shown in Fig. 7. For
our experiments, we build the gallery set by including one
image per subject: a neutral expression facing the camera in
a well-lit environment.

We report the results in two ways. The first way is by re-
porting the receiver operating characteristic (ROC) curve [69].
Particularly, by varying the threshold applied to the similarity
values of the images’ features, we obtain different pairs of

True Positive Rates (TPR), the percentage of same-identity
pairs correctly verified, and False Positive Rates (FPR), the
percentage of different-identity pairs incorrectly verified as
the same identity. The second way we report our results is
by presenting the TPR given a fixed FPR. This is helpful for
applications with stringent constraints on the FPR value.

2) FE1: Effect of Training Data: We first study the perfor-
mance of the three different CNN models we have obtained
using the three types of training data. For this, we use all
images in the “Easy” set as the probe set. The results are
reported in Table III and Fig. 8.

We observe that the best results are obtained by using
display-captured images for the training set, followed by using
simulated images, and finally by using standard images. This
confirms the benefit of acquiring lensless training images for
lensless face verification. The lower accuracy given by the
simulated images compared to the display-captured images
implies the model mismatch from Eq. 1, which is not very
surprising, since such a model was built to have the recon-
struction be computationally tractable rather than physically
exact. The separable linear transformation may not accurately
account for some intricacies of the physical lensless imaging
process such as diffraction. However, simulating training data
is still a method to achieve reasonable performance at low cost.
All following FCFD experiments will use the CNN trained on
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TABLE III: TPR with fixed FPR on the FCFD “Easy” dataset
using the three CNN models trained with different types of
training data.

Training Images FPR=1% FPR=0.1%
Standard 78.76% 47.45%

Display-captured 82.64% 55.25%
Simulated 80.66% 54.25%
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Fig. 8: ROC curves on the FCFD “Easy” dataset (Same Day)
using the three CNN models trained with different types of
training data. Display-captured training images yield the best
results.

display-captured images.
3) FE2: Effect of Face Detection: The first step to face

verification is to run the images through our Faster R-CNN
detector to crop the face regions out. In this experiment, we
evaluate the effect of this step by running face verification
on both the original (uncropped) FCFD images and on the
cropped facial regions identified by our detector on the “Easy”
test set. The results, presented in Fig. 9 and Table IV, show that
cropping the face regions achieves a significant improvement
in accuracy, which verifies the success of our detector in
locating the faces in lensless images.

4) FE3: Variations: Next, we experiment in more detail
with the different variations present in the FCFD. To perform
the experiment for one variation, we build a probe set whose
images differ from the gallery set by only that variation.
For example, to perform the “Lighting” test, we choose a
probe set containing all images where the subject is facing
the camera with a neutral expression (i.e. same angles and
expressions as the gallery) but with different lighting settings.
The only exception to this is the “Scales” experiment, which
is similar to our “Lighting” experiment except that the images
in the probe set are captured when the subject is closer to the
camera (≈ 15cm) than in the gallery set (23–38cm). Details
on the variations included in each experiment are listed in
the Supplementary Material. Table V lists the number of test
images per subject for each experiment. Note that “All” also
includes images that simultaneously have multiple variations
(such as a different expression in a different lighting setting),

TABLE IV: TPR with fixed FPR using the display-captured
CNN on the FCFD “Easy” Dataset for both cropped and
uncropped images.

Images Same Day Different Days
FPR=1% FPR=0.1% FPR=1% FPR=0.1%

Cropped 82.64% 55.25% 73.94% 43.48%
Uncropped 62.32% 34.11% 47.46% 21.99%
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Fig. 9: ROC curves on FCFD test sets containing cropped
face regions and original uncropped images. Cropped faces are
located using the Faster R-CNN detector trained on display-
captured images, which greatly improves accuracy and proves
the effectiveness of our detector for detecting faces in lensless
images.

which may not appear in the other experiments with only
one variation. We also evaluate the results on the webcam
(lens-based) captures of the FCFD using the CNN trained on
standard images to allow comparison on lens-based vs. lensless
face verification. Our results are shown in Fig. 10 and in Table
VI.

The results first show that there is a performance decrease
when using the lensless FlatCam compared to a lens-based
webcam. This reveals the current tradeoff in lensless face
verification: decreased performance for a much cheaper and
thinner hardware system. However, the lensless face verifica-
tion accuracies reported here may still be sufficient for many
applications.

Next, the results show that the easiest variation the FlatCam
handles is expression while the toughest is angle. The dramatic

TABLE V: Number of test images per subject for each FCFD
experiment. All test images were tested both against a probe
from the same day and a probe from a different day.

Experiment Number of Images per Subject
Easy Complete

Lighting 4 14
Expression 8 13

Angles 8 12
Scales 3 10

All 58 252



10

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Easy - Lighting

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Complete - Lighting

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Easy - Expressions

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Complete - Expressions

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Easy - Angles

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
T

ru
e

 P
o

s
it
iv

e
 R

a
te
Complete - Angles

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Easy - Scales

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Complete - Scales

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Easy - All

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Complete - All

Webcam (same day)

Webcam (different days)

FlatCam (same day)

FlatCam (different days)

Fig. 10: ROC curves for verification results on the FCFD dataset for different scenarios
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TABLE VI: True positive rates for the different FCFD test scenarios at fixed false positive rates.

Set Variation
Same Day Different Days

Webcam FlatCam Webcam FlatCam
FPR=1% FPR=0.1% FPR=1% FPR=0.1% FPR=1% FPR=0.1% FPR=1% FPR=0.1%

Easy Lighting 99.72% 98.01% 94.03% 77.27% 99.43% 94.89% 86.74% 63.26%
Easy Expression 99.57% 96.59% 96.02% 85.37% 98.41% 92.50% 87.95% 66.36%
Easy Angles 99.01% 89.06% 83.66% 57.67% 96.16% 83.81% 72.02% 40.77%
Easy Scales 99.62% 98.11% 92.42% 78.41% 99.62% 95.45% 83.33% 59.47%
Easy All 98.02% 89.81% 82.64% 55.25% 95.74% 83.94% 73.94% 43.48%

Complete Lighting 96.72% 86.11% 79.80% 57.83% 95.34% 84.43% 74.77% 42.39%
Complete Expression 93.18% 87.33% 86.45% 73.25% 91.82% 84.17% 78.26% 57.20%
Complete Angles 95.64% 83.81% 79.45% 51.61% 93.28% 78.12% 69.22% 38.35%
Complete Scales 94.43% 83.52% 70.68% 47.73% 93.75% 84.20% 72.39% 37.61%
Complete All 87.74% 69.53% 61.38% 34.09% 85.79% 65.18% 57.16% 27.53%

Fig. 11: Original elliptical annotations for the FDDB dataset
(top) and sample bounding boxes detected by the Faster R-
CNN detector on its lensless counterpart (bottom).

difference between the accuracies in the Easy and Complete
sets for the FlatCam also highlight how subjects looking down,
dramatic facial expressions, and the lack of a frontal light
source (variations only included in the complete set) greatly
hurt the performance of lensless face verification. This may be
because the lack of a frontal light source, as well as looking
down (when most light sources are above the head), cause
shadowed regions on the face, which the FlatCam may not
effectively sense due to its lower dynamic range as described
in section III. Dramatic expressions, on the other hand, also
have a big effect on standard face verification, which means
it is tough for face verification in general. The large decrease
in performance between the Easy and Complete tests for the
Scale variation may be because bringing the subject closer to
the camera sharpened the angles of the side lamps used in the
Complete set.

B. Experiments on Standard Face Datasets

We also run experiments on lensless versions of the Face
Detection Data Set and Benchmark (FDDB) dataset [68] and
the Labeled Faces in the Wild (LFW) dataset [53], [54], two
benchmark test datasets, which we obtain by displaying the
images of these datasets on a screen and capturing them
with our lensless system. While these are not images of
real physical faces, results from these experiments can be
compared with those reported in other works for face detection
and verification on these datasets. For these experiments, the
simulated training images were simulated with noise N such
that ||ΦLXΦR||

||N || = 20 in Eq. 1 and with λ = 3 × 10−4 in Eq.
3.
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Fig. 12: Discrete ROC for detection on FDDB. Using a
lensless imaging system generally decreases the accuracy by
around 13% when trained on screen captured images. Training
on simulated images further decreases the accuracy by around
3%. Training on standard images when testing on lensless
images yields much lower accuracy rates.

1) Face Detection on FDDB: For detection, we test on
FDDB using the provided evaluation code. This dataset con-
tains elliptical annotations for 5171 faces in 2845 images
and is commonly used as a test dataset for face detection
algorithms. In addition to testing the models trained on the
different types of training data on the lensless version of
FDDB, we also test the model trained on standard images
on the standard FDDB for comparison.

We report the discrete results [68] for FDDB, as shown
in Fig. 12. The results are consistent with those from the
FCFD tests. Again, it is necessary to train Faster R-CNN on
lensless images, whether display-captured or simulated, when
testing on lensless images. Doing so increases the accuracy by
approximately 26% compared to using a model trained simply
on standard images. Second, we show that generally, detection
on the lensless images yields about a 13% decrease in accuracy
compared to performing detection on standard images. Lastly,
using screen captured images provides an increased accuracy
of around 3% compared to simulated images. The results
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TABLE VII: Accuracy rates for different training and test
schemes on the LFW dataset.

Training Images Test Images Accuracy Rate
Standard Standard 0.9758 ± 0.0033
Standard Lensless 0.8882 ± 0.0034

Display-captured Lensless 0.9380 ± 0.0036
Simulated Lensless 0.9183 ± 0.0046

suggest that one can still attain reasonable accuracy for face
detection on lensless images as long as one trains the system
on lensless images. Sample bounding boxes identified by the
display-captured detector are shown in Fig. 11.

2) Face Verification on LFW: For face verification, we
run experiments on the LFW dataset, which contains 13,233
images of 5749 subjects [53], [54]. As with detection, we
test the three CNN models trained with the different types
of training data and also test on the standard LFW dataset.
For the pre-processing step of cropping the face patches, we
use the bounding boxes obtained using the standard Faster R-
CNN detector on standard LFW images for both standard and
lensless LFW images for a fair comparison.

Since the CNNs we use for face verification are trained
on data outside of the LFW dataset, we operate in LFW’s
“unrestricted with labeled outside data” protocol [54]. The
standard way of reporting results in this protocol is to present
accuracy rates on their provided 10-fold cross validation sets.
We use the 9 folds to determine the best threshold to apply
on the feature distances and apply this threshold on the 10th
fold. Our results are reported in Table VII.

Similar to detection, there is a small performance decrease
(around 3.8%) when using lensless images instead of standard
images. The importance of training with lensless images is
once again highlighted in this experiment, and using simulated
images again slightly decreases the accuracy compared to
using display-captured images.

C. Discussion

From all three test datasets, there is the common trend
that, when testing on lensless images, training on standard
images yields poor accuracy and training on display-captured
lensless images yields much improved accuracy. Using sim-
ulated images gives lower accuracy than display-captured
images, which we note may be due to our current simulation
procedure. A more accurate simulation may improve these
results. However, currently, simulating training images still
achieves better performance than using standard images. If
one cannot obtain display-captured images due to physical or
time constraints, simulating training data is a tractable and
efficient choice to obtain reasonable performance.

The results on our captured FCFD are the most accurate
indicators for real applications, since it is the only dataset
with lensless images of real human faces. From our results,
we observe that we obtain the best verification accuracy when
the subjects are generally facing towards the camera in a
well-lit environment. The ideal lighting condition is when the
illumination is sufficiently diffuse or if there is a source of
lighting from the front of the subject’s face (to minimize the

effects of shadows). Given these two scenarios, the subject
can make changes in facial expressions without decreasing
the performance greatly. On the other hand, faces angled
downwards are very difficult for lensless verification. These
statements are also true for lens-based cameras, but the effect
is much more dramatic for lensless cameras possibly since
they are more sensitive to angles and lighting due to their
lower dynamic range.

In the Supplementary Material, we show that the networks
we train using one FlatCam device can be used on im-
ages captured by other FlatCam devices (with different mask
patterns and mask misalignments) without any decrease in
performance. This shows the generalizability of face detection
and verification with FlatCam across devices.

Other recent methods for performing face detection and
verification include specific and sophisticated techniques such
as using facial landmarks or using a larger number of CNNs.
However, we choose more general deep learning methods to
show that one does not need heavy machinery to achieve
reasonable performance. Of course, additional tactics can be
incorporated into the general methods to better fit a specific
application or further improve the performance reported here.

While performing face detection and verification on lensless
images yields lower performance than on standard images,
lensless imaging systems, such as FlatCam, can have a much
lower cost and thinner form factor. This may be an attractive
tradeoff in application scenarios with stringent geometric, size,
and cost constraints, in which standard lens-based cameras
need to be replaced with lensless systems.

Moreover, some applications may have simpler settings and
less variations than those present in our FCFD dataset, which
might lead to much higher accuracy of lensless systems in
those scenarios. In addition, this is also the first-ever study
on lensless face verification, and as has been seen in the
field of computer vision, additional research may soon provide
much greater accuracy for face detection and verification with
lensless cameras.

VIII. CONCLUSIONS

In this work, we have evaluated the performance of face
detection and face verification algorithms on images captured
by FlatCam to study whether these tasks can be performed
with a lensless imaging system rather than a conventional
camera. We have observed that, despite the minor drop in
performance when using lensless images, the accuracy may
still be sufficient for many applications. Many of the methods
we used were rather simple, and researchers are continuously
developing more sophisticated methods to improve results for
these tasks. Thus, it is possible to transfer those complex
methods to lensless imaging to improve our results. Ultimately,
shrinking the performance gap between lensless and lens-
based inference is now an open problem. We also note that,
while the lensless imaging community is working to make
imaging systems thinner and cheaper, there is also ongoing
work by other researchers in making deep learning more
efficient and scalable [70], [71]. Such work will culminate in
small, efficient, and inexpensive devices that offer an attractive
performance tradeoff.
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Face detection and verification are only two examples in
a rich list of interesting inference tasks in computer vision.
Now that we have proved that lensless cameras can succeed
on these tasks, it appears likely that they will also succeed on
other tasks such as object detection, gesture recognition, and
beyond.

We invite researchers to test their face verification algo-
rithms on our FlatCam Face Dataset (FCFD), which will aid
in evaluating the generalizability of existing algorithms to
another image domain and facilitate applications with thin
lensless imaging systems. However, we do note that the FCFD
is only based on the FlatCam, one type of lensless imager,
which has characteristics that may be different from other
types of lensless imaging systems. We also recommend that
users who are interested in performing face detection and
verification under stringent cost or size constraints consider
performing these tasks with thin lensless imaging systems as
we have.
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