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Pyrolysis of raw and hydrothermally carbonized (HTC) Chlamydomonas debaryana with and without activated carbon (AC) or
B-zeolite as the catalyst were studied. Monoaromatic hydrocarbon yields from the pyrolysis of raw and HTC treated algae
without a catalyst were relatively low at optimum yields of 11.2% and 12.0% obtained at 600°C, respectively. The maximum
yields of monoaromatic hydrocarbons from the AC catalyzed pyrolysis of raw and HTC treated algae were 43.8% obtained at
600 °C and 43.5% obtained at 800°C, respectively, compared to 32.3% and 32.7% for the maximum yields from the B-zeolite
catalyzed pyrolysis at 500 °C and 600 °C, respectively. However, B-zeolite catalyzed pyrolysis produced higher yields of total
hydrocarbons (aromatic +aliphatic) for raw and HTC algae compared to AC catalyzed pyrolysis. This means while B-zeolite
was more effective in producing total hydrocarbon content, AC was more effective in aromatization of oxygenates. The
combination of HTC pretreatment and catalytic pyrolysis were effective in reducing nitrogen content in bio-oil. The yields of
nitriles and nitrogenous compounds were negligible for the AC catalyzed pyrolysis of HTC treated algae at 600°C, compared

to 8.3% using the B-zeolite at the same temperature. The AC catalyst had a lower tendency towards coking.

1. Introduction

A wide variety of biomass resources such as grass, wood, agricultural crops
and residues, animal waste, municipal solid waste and aquatic plants have been
studied for the production of liquid biofuels [4,5]; Hawash et al. [22,27,34 44].
Microalgae that are one of the most important aquatic organisms have been
considered as a potential biomass source for mass production of liquid biofuels
due to their high growth rate, ability to be cultivated on wastewater without the
use of arable land, and high lipid content [ 1 7]. Furthermore, as microalgae have
a high biological COfixation rate, they can be used to effectively reduce the
industrial CO, emission [9]. Therefore, the cultivation of microalgae and

commonly known as bio-oil [8,12,14,43]. Pyrolysis decomposes dry algal
biomass into condensable vapors under an inert atmosphere at 450-600 °C [14].
Hydrothermal treatment (HTT) involves the application of heat to wet algae in
a closed system to produce an organic hydrophobic phase of oil, water soluble
substances, noncondensable gases and a solid residue [10,39]. HTT removes
nitrogen which can improve the bio-oil quality and quantity towards
downstream processes for diesel-like biofuels [12]. Hydrothermal liquefaction
(HTL) and hydrothermal carbonization (HTC) are two major HTT methods.
HTL is considered as a promising technology to liquefy solid biomass into bio-
oil as a main product at various solid concentrations, a temperature of 300-375
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utilization of microalgae as an energy source would be of great economic and

environment benefits [26].

Various technologies have been developed to convert algal biomass into
liquid fuels [8,13,38]. Pyrolysis and hydrothermal treatment are two widely
studied thermochemical processes to convert algal biomass into liquid fuels

°C and residence time of 5-15 min

[12,14,30,40,36]. HTC occurs at a lower temperature (e.g., 200 °C) and longer
residence time (e.g., several hours) to produce biochar as a main product from
waste sludge [23] and wet microalgae [24]. It was reported that the higher
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heating value (HHV) of hydrochar produced by HTC of microalgae under 200
°C and 20 bar for 1 h was 30 MJ/kg [36].

Heilmann et al. [25] found that most of the fatty acids in microalgaec were
retained in the hydrochar, about 55% of carbon stayed in the char and the
remaining 45% was transferred into the aqueous phase during HTC [36]. As
80% N in algae was reported to be released into the aqueous phase during HTC,
HTC provides an effective approach to recycle the N in the algal biomass into
an aqueous phase for algal cultivation [24,25].

Catalytic pyrolysis using catalysts such as zeolites is one of the promising
technologies for improving the yield and quality of liquid biofuel from
microalgae [2,7,19,42,43]. The catalytic pyrolysis can produce a mixture of
hydrocarbons, mostly aromatic hydrocarbons via the reactions of
deoxygenation, decabonylation and decarboxylation. Zeolites have different
acidities and pore sizes, which can facilitate the production of aromatic
hydrocarbons and promote deoxygenation of bio-oil. Zeolites have been widely
studied in the catalytic pyrolysis of lignocellulosic biomass [31,33,35] and
algae [7,15]. As activated carbon usually has imperfect aromatic sheets of
carbon atoms, incompletely saturated valences and unpaired electrons on its
surface, it has high adsorption capacity for polar or polarizable molecules [45].
The surface functional groups of activated carbon are formed as a result of
thermal or chemical treatments, which influence the acid-base properties of
carbon surface and could be considered as potential active sites for catalysis
[45].

Our previous research showed that Chlamydomonas debaryana (C.
debaryana) is a promising algal species for both swine waste treatment and
biofuel production [48,50,51]. The objective of this study was to evaluate and
compare the yields of aromatic compounds, the potential of de-nitrogenation
and the composition of the bio-oil during catalytic pyrolysis of raw and HTC
treated C. debaryana algae over B- zeolite and activated carbon catalysts at

different temperatures.

2. Materials and methods
2.1. Microalgae characterization

C. debaryana AT24 was isolated from a local swine wastewater lagoon
located at the farm of North Carolina Agricultural and Technical State
University [48]. The C. debaryana was cultured with swine wastewater [50].
The detailed experimental procedure of HTC was described elsewhere [51].
Briefly, C. debaryana slurry with a 5.7 wt% solid concentration was
hydrothermally carbonized in a 75-ml Parr highpressure reactor (Parr
Instrument, Moline, IL, USA). The temperature of the reactor was increased to
200 °C at a heating rate of about 10 °C/min, and was held at 200 °C for 6 h.
The hydrochar was separated from the aqueous fraction by filtration, then dried
and milled to a size less than 150 pm. The hydrochar was kept in an air-tight
container for this study. The yields of hydrochar, aqueous fractions and non-
condensable gases from the HTC of C. debaryana were 28.3%, 68.6% and
3.1%, respectively.

The proximate analysis was conducted to determine the moisture, volatile
matter, fixed carbon and ash content of raw and HTC treated microalgae
according to the ASTM D1762-84. Crude protein analysis was determined by
the Dumas method [28]. Crude fat content was determined gravimetrically via
extraction with 2: 1 chloroform-methanol (v/v) co-solvent [48]. The
carbohydrate content was estimated by subtracting lipid, protein, ash and
moisture contents. Ultimate analysis was carried out to determine the element
contents of C, H, N and S contents using an elemental analyzer (Model 2400,
PerkinElmer). The oxygen content was calculated by subtracting C, H, N, ash
and moisture contents. High heating values (HHV) were calculated according
to the following equation [18]:
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2.2. TGA analysis of the pyrolytic characteristics of raw and HTC treated
microalgae

The pyrolysis experiments of raw and HTC treated microalgae were carried
out in a TGA (SDT-Q600, TA Instruments) under a nitrogen atmosphere
(99.99% N,) at a flow rate of 60 mL min~'. Approximately 10 mg of sample
was heated from 25 to 800 °C at heating rates of 10, 20, 30 °C min~".

2.3. Catalytic pyrolysis of raw and HTC treated microalgae

Fast pyrolysis of raw and teated microalgal samples with and without a
catalyst was conducted in a multi shot pyrolyzer system (EGA/PY-3030D,
Frontier Laboratories Ltd, Japan) connected with a gas chromatography-mass
spectrometry (GC/MS) (Model: 7890A GC and 5978MSD, Agilent
Technologies, CA USA). Approximately 3 mm of quartz wool was first placed
at the bottom of a stainless steel sample cup (Eco-cup LF) with 8 mm length
and 4 mm diameter to hold powder sample and catalyst. Approximately 0.3 mg
of microalgae and 3 mg catalyst were then placed into the sample cup in series.
Another 3 mm of quartz wool was placed at the top of the catalyst layer. The
sample cup was dropped into the preheated furnace using the double-shot
sampler connected to the top of the multi shot pyrolyzer. The sample
temperature was instantly increased to a given final pyrolysis temperature at a
heating rate of approximately 1000 °C/s.

The temperatue of the valve connected between the pyrolyzer and the GC,
and the temperature of the GC front inlet were maintained at 300 °C to prevent
the condensation of product volitales. The temperature of the GC oven was
initially set at 40 °C and held at 40 °C for 2 min, then ramped to 220 °C at a
rate of 5 °C/min and held at 220 °C for 15 min. Helium at a flow rate of 1
mL/min was used as a carrier gas with a split ratio of 50:1. MS detection was
carried out under electronimpact (EI) ionization conditions in full scan from
m/z 30-400 with a threshold at 300. This enabled the detection of the major
products of primary and secondary pyrolysis reactions. The yields of
compounds were semi-quantified as the area determined by the MS profile per
unit mass of the sample (area/pg of microalgae).

Non-catalytic flash pyrolysis of raw and HTC treated C. debaryana was
performed at a heating rate of approximately 1000 °C/s, temperatures of 300,
400, 500, 600, 700 and 800 °C and at a residence time of 20 s.

Two different catalysts of P-zeolite in anhydrous powder (Zeolyst
International) and activated carbon (Sigma Aldrich) were employed for
catalytic pyrolysis. The B-zeolite has a Si/Al ratio of 38 and surface area of 710
m?/g and activated carbon has a 100 mesh particle size and surface area of 600
m?/g. The zeolite catalyst was initially activated to its protonated form in a
furnace at 400 °C in air for 5 h. It was reported that there was a significant
increase in aromatic hydrocarbon yield when a zeolite catalyst to biomass ratio
was increased from 1:1 to 10:1 [7] Therefore, a catalyst to biomass ratio of 10:1
was used in this study. The samples were catalytically pyrolyzed at four
different temperatures of 500 °C, 600 °C, 700 °C and 800 °C with a heating rate
of 1000 °C/s and held at the final temperature for 30 s. All experiments were
done in duplicate.

2.4. Analysis of the bio-o0il compositions

A semi-quantitative procedure was used to determine the yields of
individual bio-oil compounds [43]. The concentration (wt%) of each identified
bio-oil compound was calculated as:

Yew,= (w Wi ) x 100 ©)
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where w; is the estimate weight of a single identified bio-oil compound
calculated by integrating the mass chromatogram of the selection ion (SIM)
peak area at the characteristic mass-to-charge ratio (m z/ ) as:

wi=Aisl, M 3)

where 4; s, i is the peak area of an identified bio-o0il compound. W is the total
amount of bio-oil calculated by integrating all the detected MS peaks in a total
ion current as

W=A o1 “

where 4, is the summed area of all compounds in TIC mode. Overall yield of
pyrolysis products Y was calculated as

Y=Ww/ sample (5)

where Wyampe is the initial weight of a sample.

2.5. Estimating total hydrocarbon yield, carbon yield and higher heating value
of pyrolysate from catalytic pyrolysis

The pyrolysates from the catalytic pyrolysis of untreated and HTC treated
C. debaryana were assumed to form the fuel. The elemental composition (C, H,
O and N) of the fuel was determined by the chemical formula of each compound
identified in the GC-MS peaks. The total hydrocarbon content was estimated as
the sum of aromatic and aliphatic hydrocarbon while the carbon yield was
calculated from the carbon composition of the simulated fuel yield from
catalytic pyrolysis of untreated and HTC treated C. debaryana. Higher Heating
Value (HHV) was estimated from elemental composition of simulated fuel
using Eq. (1) shown in Section 2.1

3. Results and discussion
3.1. Chemical and elemental compositions of raw and HTC treated microalgae

C. debaryana is composed of mainly protein, carbohydrates, lipids and ash.
As given in Table 1, C. debaryana used in this study has a protein content of
59.4 wt% and a carbohydrate content of 10.1 wt%. The nitrogen content in C.
debaryana was 9.5 wt%, which is much higher than that of most lignocellulosic
biomass such as 0.5% in sugar cane bagasse, 0.3% in corn cob, 0.6% in corn
stover and 0.62% in Eucalyptus grandis [7]. HTC of C. debaryana at 200 °C
increased the carbon content from 50.8 wt% in raw C. debaryana to 72.7 wt%
and decreased the nitrogen content from 9.5 wt% in raw C. debaryana to 5.2
wt%. The increase in carbon of HTC treated C. debaryana algae is a
consequence of carbonization resulting from the removal of oxygen by
dehydration and decarboxylation which also resulted in increased HHV [14].
The decrease in the nitrogen content can be explained by the hydrolysis of
proteins and nucleic acids while the nitrogen remaining in the pretreated algae
could be from hydrophobic peptides, amino acids or Maillard reaction products,
as the pretreated algae had a rich dark brown color. The ash content of HTC
treated C. debaryana was 13.5 wt % compared to 7.9 wt% for raw C. debaryana.
Biomass with a high ash content can generally lower decomposition
temperatures of

Table 1
Chemical and elemental compositions of raw and HTC treated C. debaryana algae.

Raw C. debaryana algae HTC C. debaryana algae

Carbon (wt%) 51.2 72.7
Hydrogen (wt%) 72 9.7
Nitrogen (wt%) 9.5 52
Sulfur (wt%) 1.1 0.2
Oxygen (Wt%) 31 12.2
HHV 21.9 353
Moisture (Wt%) 2.7 -
Carbohydrates (wt%) 10.1 -
Protein (Wt%) 59.4 -
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Lipids (wt%) 19.9 -
Ash 7.9 13.5
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Fig. 1. (a) TG and DTG of raw and HTC algae at heating rate 10 °C (b) DTG of raw algae
at different heating rates (c) DTG curves for HTC treated algae at different heating rates
for non-catalytic pyrolysis of C. debaryana microalgae.

polysaccharides in the biomass but may cause corrosion and slag formation
[29].

3.2. Thermogravimetric characteristics of raw and HTC teated C. debaryana
during pyrolysis
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Fig. 1(a) shows the TG and DTG pyrolysis curves of raw and HTC treated
C. debaryana. As seen in Fig. 1(a), the pyrolysis process occurs mainly in three
stages of dehydration, volatilization and decomposition, which have also been
reported in literature [6,37]. The first stage starts from an ambient temperature
to a temperature around 110 °C to mainly vaporize bound moisture and small
fraction of lipids in the microalgae which ends at a temperature of 190 °C. The
second stage from 110 to 550 °C volatilizes carbohydrates and protein into
different condensable and non-condensable gases. In the third stage from 550
to 800 °C, remaining lipids and non-volatile matter vaporize into CO and CO,.
The third stage shows a gradual mass loss by the slow decomposition of lipids
which finally leads to char formation [32]. There was significant difference in
the TGA curves between the raw and HTC treated C. debaryana. The active

decomposition of raw algae started at a much lower temperature at 220 °C (Fig.
Table 2
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components produced during the pyrolysis of raw and HTC treated algae. In the
range of the pyrolysis temperature from 300 °C to 800 °C, aliphatic
hydrocarbons were from 11.8% to
22.2% of the overall volatiles for the raw algae and from 13.6% to 32.9% for
the HTC treated algae. The carboxylic acids were dominant compounds in the
volatiles obtained from the pyrolysis of both raw and HTC treated algae at 300
°C, which were 61.0%. When the pyrolysis temperature increased to 800 °C,
the carboxylic acid content was decreased to 18.1% and 0.3% in the bio-oil
produced from the pyrolysis of raw and HTC treated algae, respectively.
Microalgae grown in wastewater usually have a high content of proteins,
which generate undesirable nitriles and nitrogenous compounds in the bio-oil
during pyrolysis. The pyrolysis of algae with an HTC treatment might
significantly reduce the formation of nitriles and nitrogenous compounds. The

Maximum mass loss rates and corresponding temperatures during non-catalytic pyrolysis of raw and HTC treated C. debaryana algae.

Heating rate (°C/min) Zone 1 Temperature (°C) DTG (max.) (%/min) Zone 2 Temperature (°C) DTG (max.) (%/min) Zone 3 Temperature (°C) DTG (max.) (%/min)
Raw algae

10 280 3.62 410 1.69 680 0.17

20 300 7.67 420 3.35 690 0.57

30 330 10.8 420 4.88 730 1.09

HTC treated algae

10 370 5.47 430 2.25 750 0.17

20 380 11.02 440 3.95 710 0.82

30 390 17.16 440 6.55 740 2.39

la) than the decomposition of HTC treated algae at 300 °C (Fig. la).
Additionally, the decomposition of the HTC treated algae showed two distinct
peaks representing the decomposition of carbohydrates and proteins as a main
peak and the decomposition of lipids as a shoulder peak while the
decomposition of raw algae only generated single broad peak showing slight
distinction between carbohydrates, proteins and lipids as shown in Fig. la. The
DTG profiles of the pyrolysis of raw and HTC treated C. debaryana at different
heating rates are shown in Fig. 1(b) and (c), respectively. The pattern of the
curves was not affected by the increase of heating rate during pyrolysis.
However, the peaks obviously were shifted to higher temperatures for both raw
and HTC treated C. debaryana algae when the heating rate was increased. The
maximum mass loss rate (% weight loss/min) increased with the heating rate
for raw and HTC treated C. debaryana. It can also be seen that the maximum
mass loss rate and its corresponding temperature of the HTC treated algae were
slightly higher than those of the raw algae as given in Table 2.

3.3. Effects of pyrolytic conditions on the compositions of bio-oil produced
from raw and HTC treated C. debaryana algae

Effects of pyrolytic temperatures of 300, 400, 500, 600, 700 and 800 °C and
HTC treatment on the yield and composition of bio-oil produced from C.
debaryana were analyzed. The volatiles that were detected by the GC-MS
include various organic compounds and CO,, but not including any other non-
condensable gases such as H, and CO. The yields of the volatiles were
quantified as their MS peak areas per unit mass of microalgae as shown in Fig.
2(a) and (c). For the simplicity, we assumed all detected volatile compounds
excluding CO, to be the hypothetical bio-oil. The yields of detectable volatiles
increased when the temperature increased from 300 °C to 500 °C during the
pyrolysis of raw C. debaryana and from 300 °C to 600 °C during the pyrolysis
of HTC treated C. debaryana. However, when the temperature was further
increased to 800 °C, the yields of detected volatiles started to decrease for the
pyrolysis of both raw and HTC treated algae, which might be caused by the
decrease of detectable volatile compounds and the increase of no-detectable
gases such as H,and CO at a very high temperature,

Fig. 2(b) and (d) show the distribution of the major pyrolysates produced at
different pyrolysis temperatures. Aliphatic hydrocarbons (Cs—Cj), carboxylic
acids, nitriles and nitrogenous compounds were identified as the major

contents of the nitriles and nitrogenous compounds were reduced to from 0.2%
to 11.6% for the pyrolysis of HTC treated algae at a temperature from 300 °C
to 800 °C, compared with 10.7% to 32.4% in the bio-oil for the raw algae
pyrolysis. When comparing at the same pyrolysis temperature of 500 °C, the
contents of the nitriles and nitrogenous compounds in the bio-oil from the
pyrolysis of the HTC treated algae and the raw algae were 10.2% and 21.5%,
respectively. The content of the nitriles and nitrogenous compounds could be
further reduced to 0.2% for the HTC treated algae when the temperature was
further increased to 800 °C. A similar trend for nitrogenous compounds during
the pyrolysis of Spirulina had been reported in the literature [7].

The content of the monoaromatics and cyclic organic compounds increased
with temperature for the pyrolysis of both raw and HTC treated algae. The
contents of the monoaromatics in the bio-oil from the pyrolysis of raw and HTC
treated algae at 800 °C were 10.8% and 10.0%, respectively, compared to
traceable amount for both raw and HTC treated algae at 300 °C.

The content of polyaromatic hydrocarbons (PAHs) were negligible for the
pyrolysis of both raw and HTC treated algae at the temperature from 300 °C to
800 °C. The HTC treatment increased the content of sugars and anhydrosugars
with a maximum content of 4.6% obtained at 500 °C, compared to a traceable
amount in bio-oil from the pyrolysis of the raw algae.

3.4. Catalytic pyrolysis of raw and HTC treated C. debaryana algae

The HTC treatment prior to pyrolysis significantly could reduce the content
of nitrogenous compounds in the bio-oil produced from algae. On the other
hand, the content of aromatic hydrocarbons from the noncatalytic pyrolysis of
algae, which are very important high-value chemicals, was very low as
discussed in Section 3.3. A catalytic pyrolysis process using B-zeolite and
activated carbon as catalysts was thus studied to improve the quality of the bio-
oil by further reducing the nitrogen content and increasing the aromatic
hydrocarbon content in the bio-oil produced from raw and HTC treated C.
debaryana algae.

3.4.1. Influence of catalysts and pyrolysis temperature on bio-oil yields

Fig. 3. Shows the semi-quantified yields (represented by the MS peak areas)
of'total volatiles, bio-oil and CO, from non-catalytic, and B zeolite and activated
carbon catalyzed pyrolysis of raw and HTC treated C. debaryana algae at
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different temperatures. As shown in Fig. 3(a), the overal yields of the volatiles
from the pyrolysis of raw C. debaryana algae over both B-zeolite and activated
carbon increased when the temperature increased from 500 to 800 °C.

As shown in Fig. 3(b), the catalytic pyrolysis of HTC treated C. debaryana
over the activated carbon also increased the yields of volatiles as temperature
increased. However, the maximum yield of volatiles during the catalytic
pyrolysis of HTC treated C. debaryana over B-zeolite was obtained at 600 °C
and the yield of the volatiles then declined as the temperature further increased
higher than 600 °C. As shown in Fig. 3(c) and (d), for both raw and HTC treated
algae, the hypothetical

_ 8.00E+06
@
a  700e+06 | (a)
D . 6.O0E+6
% & 5.00E+06
f_’g 4.00E+06
o
© © 3.00E+06
L]
2 3 200e+06
§ 1.00E+06
a 0.00E+00
300 400 500 600 700 800
Pyrolysis temperature (°C)
3.00E+06

E (c)
@  250E+06
O
8 8 2.00E+06
=522
=
O . 150E+06
>0
(o]
m?_ 1.00E+06
g o

(@)
< 2 s00e+05
(]
& 0.00E+00

300 400 500 600 700 800

Pyrolysis temperature (°C)

Fuel 228 (2018) 234-242
catalytic pyrolysis

3.4.2. Influence of HTC treatment on major hydrocarbons and nitrogenous
compounds from catalytic pyrolysis

3.4.2.1. Aliphatic hydrocarbons. Aliphatic hydrocarbons in this study consisted
of the total contributions of all Csto Cj straight and branched chain alkanes,
alkenes and alkynes. As shown in Fig. 4(a) and (b), the non-catalytic pyrolysis
of raw and HTC treated C. debaryana at 500 °C produced 20.2% and 23.8% of
aliphatic hydrocarbons in the volatiles, respectively. At 500 °C, the B-zeolite
catalytic pyrolysis slightly increased the contents of aliphatic hydrocarbons to
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Fig. 2. Semi-quantified yields (MS peak area) of total volatiles and contents of selected volatile compounds from the non-catalytic pyrolysis of raw and HTC treated C. debaryana algae at
different temperatures (°C). (a) Yield of volatiles for raw algae (b) Contents of selected volatile compounds for raw algae (c) Yield of volatiles for HTC treated algae (d) Contents of

selected volatile compounds for HTC treated algae.
bio-oil fraction in the volatiles from the pyrolysis over PB-zeolite was

comparable to that of the non-catalytic pyrolysis but about 5% to 20% higher
than that over activated carbon depending on the temperature.

As shown in Fig. 3(e) and (f), the the activated carbon catalyzed pyrolysis
of both raw and HTC treated algae significantly increased the fraction of CO,,
compared to the non-catalytic pyrolysis. The B-zeolite catalyzed pyrolysis of
raw algae significantly increased the fraction of CO,, compared to the non-
catalytic pyrolysis. However, the B-zeolite catalyzed pyrolysis of the HTC
treated algae significantly decreased the fraction of CO, at a temperature below
700 °C, compared to the non-

24.5% for the raw algae and 24.1% for the HTC treated algae. At 500 °C, the
activated carbon catalyzed pyrolysis significantly decreased the content of
aliphatic hydrocarbons to 0.5% for the raw algae and 1.9% for the HTC treated
algae. The maximum contents of aliphatic hydrocarbons were 13.2% for the
catalytic pyrolysis of raw C. debaryana algae over activated carbon obtained at
600 °C, and 20.4% for HTC treated C. debaryana obtained at 700 °C. If the
temperature increased further, the contents of aliphatic hydrocarbons decreased
in both B-zeolite and activated carbon catalyzed pyrolysis. A similar trend of
temperature effect on aliphatic hydrocarbons has been reported for catalytic
pyrolysis of biomass over a zeolite [46] and activated carbon [11].
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3.4.2.2. Monoaromatic hydrocarbons. As shown in Fig. 4(c) and (d), the
monoaromatic hydrocarbon contents from the non-catalytic pyrolysis of raw
and HTC treated C. debaryana were very low. Their maximum contents were
11.2% for the raw algae and 12.0% for the HTC algae obtained at 600 °C. The
catalytic pyrolysis increased the monoaromatic hydrocarbon content. It was
also observed that the aromatization in activated carbon catalyzed pyrolysis was
higher than that of the Bzeolite catalyzed pyrolysis for both raw and HTC

treated algae. For the
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temperature increased to 800 °C. A similar trend has been reported in the
literature [41,49]. The HTC pretreatment had no significant effect on
monoaromatic hydrocarbon content.

3.4.2.3. Nitriles and nitrogenous compounds. As shown in the appendix, several
nitrogen-containing compounds were found in bio-oil including amides,
nitriles, and aromatic amines. HTC treatment of C. debaryana algae
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Fig. 3. Semi-quantified yields (MS peak areas) of total volatiles, and contents of bio-oil compunds and COz in the volatiles from the pyrolysis of raw and HTC treated C. debaryana algae
at different temperatures. (a) Yield of total volatiles from raw algae (b) Yield of total volatiles from HTC treated algae (c) Content of bio-oil compounds in the volatiles from raw algae
(d) Content of bio-oil compounds in the volatiles from HTC treated algae (e) Content of CO2 in the volatiles from raw algae

(f) Content of CO2 in the volatiles from HTC treated algae.

catalytic pyrolysis of raw algae over the activated carbon, the maximum content
was 43.8% that was obtained at 600 °C. If the temperature increased to 800 °C,
the content decreased to 31.6%. The B-zeolite catalytic pyrolysis of the raw
algae produced a maximum content of monoaromatic hydrocarbon of 32.3%
that was obtained at 500 °C and the content decreased to 21.2% if the

significantly reduced nitriles and nitrogenous compounds in the bio-oil during
the subsequent pyrolysis. This suggests that many nitriles and nitrogenous
compounds were released in the aquous fraction during HTC treatment.
During catalytic pyrolysis of raw and HTC treated C. debaryana algae, the
contents of nitriles and nitrogenous compounds generally decreased in both B-
zeolite and activated carbon catalyzed pyrolysis at a high temperature as seen
from Fig. 4(e) and (f). However, as shown in Fig. 4(f), we saw an increasing
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content of nitriles and nitrogenous compounds for activated carbon catalyzed
pyrolysis of HTC treated algae as the temperature increased, and the maximum
content of nitriles and nitrogenous compounds was 5.2% that was obtained at

800 °C.

The B-zeolite was more effective in reducing the nitriles and

nitrogenous compounds during the catalytic pyrolysis of raw C. debaryana
algae than activated carbon as seen in Fig. 4(e). For the HTC
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treated C. debaryana algae, activated carbon was better than B-zeolite in
reducing nitriles and nitrogenous compounds at rather lower temperatures of
500 °C and 600 °C as shown in Fig. 4(f).

3.4.2.4. Polyaromatic hydrocarbons (PAH’s). PAHs are compounds with large
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Fig. 4. Semi-quantified contents (peak area%) of selected compounds in the bio-oil obtained from the pyrolysis of raw and HTC treated C. debaryana algae at different temperatures. (a)
Aliphatic hydrocarbons for raw algae (b) Aliphatic hydrocarbons for HTC treated algae (c) Monoaromatic hydrocarbons for raw algae (d) Monoaromatic hydrocarbons for HTC treated
algae (¢) N compounds for raw algae (f) N compounds for HTC treated algae (g) PAH’s for raw algae (h) PAH's for HTC

treated algae.

molecular weights formed during catalytic pyrolysis. As shown in the appendix,
some examples of PAH compounds are the napthalenes, alkyl naphthalenes,
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indenes, alkyl indenes, flourenes, anthracene, phenanthrenes. Polyaromatics are
commonly viewed as indicators of coke formation that may lead to catalyst
deactivation during catalytic fast pyrolysis [47]. As seen from Fig. 4(g) and (h),
the activated carbon catalyst showed lower selectivity towards polyaromatic

hydrocarbons

100 50
]
M 90 45
53 80 I 40
c 70 n 8o
[ k=g
o 60 30 <
=1 50 25 =
3] =
3 40 20 2
g2 30 15 T
§§ 20 10
S 8 | <
m @ 10 5
v
<] 0 0
2 C a2 G C o2 o G U C o2 U2
z S 7 i R S0 o S Sl S
= AN e AN e EANR P AN 2
E SN SN SN @R
o &* & * & @ e @ B

500°C 600°C 700°C 800°C
s Hydrocarbonyield mmmm Carbon yield HHV

Fig. 5. Total hydrocarbon content, carbon yields and heating value of bio-oil from catalytic
pyrolysis of raw and HTC treated C. debaryana algae.

than the B-zeolite catalyst, i.e., the activated carbon catalysts had a lower
tendency towards coking. The lower catalytic reactivity of activated carbon
than B-zeolite could be attributed to its lower acidity. HTC treatment did not
significantly affect the generation of PAHs during the catalytic pyrolysis of
algae. However, if the temperature increased, the content of PAHs decreased in
both Bzeolite and activated carbon catalyzed pyrolysis, which means that more
large molecules such as PAHs were cracked at high temperatures.

3.5. Comparison of hydrocarbon yield and heating value of raw and HTC
algae during catalytic pyrolysis

The maximum total hydrocarbon (aromatic and aliphatic) content and
carbon yield were obtained by the catalytic pyrolysis of raw and HTC treated
algae at 600 °C and 700 °C, respectively, and then decreased at 800 °C (Fig. 5).
Higher temperatures generally tend to decrease the total hydrocarbon yields [3].
It probably occurred due to the fact that high temperatures are more suitable for
the formation of noncondensable gases such as CO and CO, via the
deoxygenation process. Also, it can be seen that total hydrocarbon content and
carbon yield for the pyrolysis of C. debaryana algae over B zeolite were
generally higher than the pyrolysis of C. debaryana over activated carbon. This
means that the B zeolite catalyst was more effective in producing total
hydrocarbons (aromatic and aliphatic) than the activated carbon catalyst. In
terms of energy content, greater values of HHV for bio-oil occurred at the
optimum yields of total hydrocarbons (Fig. 5). It can be seen from Fig. 5 that B
zeolite produced bio-oil with greater HHV than the AC for the pyrolysis of
HTC algae. Similar trend of greater HHV for B zeolite compared to AC was
observed for raw algae at temperatures from 600 to 800 °C while at 500 °C, the
AC pyrolysis of raw algae produced greater HHV compared to B zeolite
pyrolysis.

3.6. Reaction mechanism during catalytic pyrolysis of C. debaryana algae

Due to the complex structure of the microalgae, a wide range of complex
organics were produced at various temperatures. To properly evaluate the
pyrolytic products, the organic products were classified into functional groups
based on chemical structure and chemical property. During catalytic pyrolysis
of C. debaryana microalgae, light organics, including alcohols, acids and
carbonyls from carbohydrates fraction of the algae are cracked and
deoxygenated into C2-C6 olefins. These olefins undergo aromatization at the

Fuel 228 (2018) 234-242

acive sites of the catalyst to produce benzene followed by alkylation and
isomerization to produce other aromatics [1,20,21]). Similarly, the catalytic
pyrolysis of lipids produce heavy oxygenated hydrocarbons, such as long chain
fatty acids, ketones, esters, etc., which are then converted to heavy
hydrocarbons by deoxygenation, cracked to olefins, which subsequently
undergo a series of oligomerization, cyclization and aromatization to form
aromatics [1,20,21]. Catalytic pyrolysis of some amines from protein fraction
of microalgae produces olefins through deamination reactions which can
subsequently undergo aromatization. Indole derivatives are relatively stable
and they are not considered as the major source of aromatics [16].

4. Conclusions

The active pyrolysis of HTC treated algae started at 300 °C which was much
higher than 220 °C for that of the raw algae. The maximum mass loss rate and
its corresponding temperature for the pyrolysis of HTC treated algae were
slightly higher than those for raw algae. The yields of volatiles from the
pyrolysis of both raw and HTC treated C. debaryana increased with temperature
and reached optimum at 500 °C and 600 °C respectively. The carboxylic acids
were maximum at 61.0% in the bio-oil obtained from the pyrolysis of both raw
and HTC treated algae at 300 °C, and decreased to 0.3% and 18.1% respectively
as temperature increased to 800 °C. The monoaromatic hydrocarbon contents
from the non-catalytic pyrolysis of raw and HTC treated C. debaryana were
very low and its maximum content were 11.2% and 12.0% obtained at 600 °C,
respectively. The catalytic pyrolysis could significantly increase the content of
total hydrocarbon (aliphatic and aromatic). The activated carbon could achieve
higher aromatization than the B-zeolite for the pyrolysis of both raw and HTC
treated algae while B-zeolite catalyzed pyrolysis produced higher yields of total
hydrocarbons (aliphatic +aromatic) than the AC catalyzed pyrolysis. The
combination of hydrothermal carbonization and catalytic pyrolysis were
effective in reducing nitrogen content in the bio-oil. The activated carbon was
better than the B-zeolite in reducing nitriles and nitrogenous compounds during
the catalytic pyrolysis of the HTC treated algae at low temperatures of 500 °C
and 600 °C. As the activated carbon catalyst showed lower selectivity towards
polyaromatic hydrocarbons than the B-zeolite catalyst, the activated carbon
catalyst had a lower tendency towards coking.
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