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Abstract— Bearing only cooperative localization has been
used successfully on aerial and ground vehicles. In this paper
we present an extension of the approach to the underwater
domain. The focus is on adapting the technique to handle
the challenging visibility conditions underwater. Furthermore,
data from inertial, magnetic, and depth sensors are utilized
to improve the robustness of the estimation. In addition to
robotic applications, the presented technique can be used for
cave mapping and for marine archeology surveying, both by hu-
man divers. Experimental results from different environments,
including a fresh water, low visibility, lake in South Carolina; a
cavern in Florida; and coral reefs in Barbados during the day
and during the night, validate the robustness and the accuracy
of the proposed approach.

I. INTRODUCTION

The problem of Cooperative Localization (CL) [1] has

received a fair amount of attention in the robotics community

over the years [2]–[7]. It is described as the ability of a

team of robots to utilize inter-robot measurements in order to

estimate the relative pose between vehicles and consequently

constrain the pose uncertainty accumulation during opera-

tion. This is particularly important in applications where

there is neither access to a global positioning system, nor

there is enough information in the environment to enable

localization. More formally, CL is concerned with the pose

estimates of a team of two or more mobile robots which

use sensory data for the purpose of enhanced localization

accuracy compared to individual localization without co-

operation. At the core of CL is the use of a sensor that

provides information about the coordinate transformation

matrix between two robots. CL has been used extensively for

ground, aerial [8], surface [9], even underwater [10] robots.

In this paper we focus on the underwater domain utilizing

vision.

The main motivation of this work derives from work on

underwater cave mapping automation [11]. Cave mapping

traditionally is performed by human divers who survey

relative distances and orientations along segments of cave

line that traverse the explored parts of a cave. The cave line

represents a 1D “roadmap” inside the cave. However, the

line is not located at the Voronoi diagram, also called the

skeleton, or the medial axis [12], of the cave, but where

it was convenient for the cave explorers to attach the line

to a fixed point. Central to this process is the estimation

of the length and orientation of each segment between

attachment points. The developed system can also assist in
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Fig. 1. Underwater cooperative localization in a cavern in Ginnie Springs,
FL, USA.

the underwater archeology domain for surveying submerged

sites. The proposed approach consists of two devices used by

two divers located at two points to record the distance and

orientation between them; similar to the way two robots infer

their relative pose. Two underwater cooperative localization

sensors have been constructed that can robustly produce

relative pose measurements between them. These two devices

can be mounted on underwater vehicles or deployed by

divers. In this paper we describe the development of the two

CL nodes, and the relative-pose estimation algorithm as it

pertains to the underwater domain. The proposed method is

an extension of the 3D bearing only cooperative localization

solution proposed by Dugas et al. [13].

More specifically, the proposed approach employs two

cameras – each equipped with two landmarks – taking

images of each other in a synchronized manner. The im-

age (IA) from camera A contains the landmarks associated

with camera B, and the image from camera B contains

the landmarks associated with camera A. The two detected

landmarks are registered as bearing measurements from each

camera to the other system and an analytical geometry-based

solution provides the full 6DoF relative pose between the two

cameras [13]. The landmarks used in this work are dive LED

lights that can provide adequate illumination to be detected

in a variety of conditions. In Figure 1, Camera A is placed

on the ground and camera B is moved away; the experiment

was conducted inside a cavern with no ambient illumination

and the photo is taken by an outside observer. As can be seen

in Figure 1, underwater there are many challenges related to

the image processing. In particular, in this image the two

landmark lights associated with camera B generate a light

beam and there are reflections on the floor and on the diver.

Additional data are used to assist in the outlier rejection

process.

In order to ensure the feasibility of the proposed approach
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A. Bearing only Cooperative Localization

For a complete treatment of the bearing only CL in 2D

and 3D, please refer to the work of Giguere et al. [32] and

Dugas et al. [13], respectively. For completeness sake, an

outline of the approach will be presented next. The 2D case

is based on the idea that the bearing measurement of the two

landmarks, from camera A (CA) constrains its position on a

circle of fixed radius; the bearing measurement from camera

B (CB) constrains the position on a line; see Figure 4 for

an illustration. For the 3D case, the main observation is that

the collinearity of each camera and its landmarks produces

a line; that line and a point, defined by the other camera,

define a plane. Therefore, two cameras and two landmarks

define a plane, and the 3D pose estimation can be performed

utilizing the 2D constraints. More specifically, the relative

pose between CA and CB can be analytically calculated by

using two images (IA taken by CA and IB taken by CB)

recorded at the same time1; see Figure 4 for the relationship

between the coordinate systems of the two nodes. From these

two images, the following data is obtained. First we extract

two angles α and β:

• from image IB : α = ̂LACBRA, which is the angle

between markers LA and RA about CB ;

• from image IA: β, the angle between the line passing

through the origins of CA and CB relative and the

optical axis of CA, where the locations of LB and RB

are used to approximate the position of CB .

With these two angles α and β and the known distance d

between markers on a robot, a closed-form solution yields

the distance l = |CACB | between the cameras [32]:

|CACB | = l =
d

2 sinα

(

cosα cosβ +

√

1− cos2 α sin
2 β

)

.

(1)

An important fact pertaining to such an approach is that

the majority of the uncertainty in the system will be on this

distance l. This noisy distance estimate can be improved

by performing the same computation described in Eq. (1)

a second time, by extracting α from IA and β from IB ,

and averaging the computed l’s. The relative position [x,y,z]

between cameras is then derived by extending the vector

going from CA to the location of CB in the image frame to

a length of exactly l. Sufficient information is contained in

the two images IA and IB to recover uniquely the relative

orientation between the two vehicles. It corresponds to a

rotation matrix that:

• aligns the perceived plane containing CB , LA and RA

with the perceived plane containing CA, its right marker

RA and the other camera CB ; and

• aligns the perceived vectors
−−−−→
CACB in IA and

−−−−→
CBCA

in IB in opposite directions.

1The devices are synchronized at the beginning of the experiment (before
submerging) by utilizing a Network Time Protocol (NTP) over an ad-hoc
Wi-Fi network, thus making it possible to extract images taken at the same
time.

B. Underwater Vision for Accurate Blob Detection

Vision processing underwater is much more challenging

than in air due to light scattering from suspended plankton

and other matter, which causes blurring and “snow” effects;

loss of contrast; and loss of color information with depth.

Moreover, the visibility conditions change with the time

of the day, and the currents. The proposed approach was

tested in different conditions as can be seen in Section IV

Figure 5(a-d). The influence of underwater conditions such

as color loss [34], blurring, and illumination changes has

been studied by Oliver et al. [35].

We propose a detection method which accounts for the

distortions of light underwater by estimating the positions of

markers from the visible cone of light they produce. Each

image is converted to the HSV color space then thresholded.

The threshold values are custom based on the environment as

can be seen in Figure 5(a-d,i-l) where the lighting conditions

are clearly different. The next step in each binary image is

to identify the different blobs of light. First, morphological

closing is applied and distinct regions are extracted from

the binary image using contour detection. Then at the two

ends of the bounding rectangle of each detected region the

centroids of the brightest pixels are selected and compared to

each other. The brightest side is assumed to be the one closest

to the illuminating landmark. This is also apparent from

observing not only the images presented in Figure 5(a-d,i-l)

but also the external observer view in Figure 1. In the case

that a marker is not distorted significantly, both centroids are

approximately equal to the center of the region. The above

procedure results in a small number of landmark candidates.

In particular during operation inside a cave environment

or during the night where there is no ambient light the

divers carry additional lights, this results in additional blobs

detected; see Figure 5(a), where there are three lights, and

the corresponding Figure 5(e), where there are three blobs

detected. Next the outlier rejection techniques are outlined

which output the most plausible pair of landmarks for each

image. The two pairs are then processed as described in the

previous section and the relative pose is created.

C. Outlier Rejection

A verification test, unique to our approach, is applied to

all candidate pairs of markers in IA and IB . As mentioned

in Section III-A, there are two ways to calculate the distance

d: either by using α from 2 candidate landmarks in IB and β

from the average (mid-point) of 2 marker candidates in IA,

or by doing the converse. The validity of a set of candidate

markers is determined by the difference between the two

estimates of l. Since l in Eq. (1) is a closed-form solution,

its computation time is low (less than 300 ns on a standard

computer).

However, if many outliers are present in the images,

additional data from magnetometer, IMU, and depth sen-

sors are used to eliminate all outliers. Contrary to most

robotic applications where the presence of motors makes the

magnetometer’s measurements unreliable, in the proposed

CL technique, the magnetic field is used to identify the
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Fig. 5. Example images and results of blob detection system. In processed images, white regions are detected markers and red lines represent possible
beacon pairs. Camera A, raw images: (a) Ginnie Springs, Ballroom Cavern (Florida); (b) Night, Bellairs North reef (Barbados) (c) Lake Murray (SC); (d)
Ginnie Springs, spring basin (Florida). Camera A, blob (landmark) detection: (e) Ginnie Springs, Ballroom Cavern (Florida); (f) Night, Bellairs North reef
(Barbados) (g) Lake Murray (SC); (h) Ginnie Springs, spring basin (Florida). Camera B, raw images: (i) Ginnie Springs, Ballroom Cavern (Florida); (j)
Night, Bellairs North reef (Barbados) (k) Lake Murray (SC); (l) Ginnie Springs, spring basin (Florida). Camera B, blob (landmark) detection: (m) Ginnie
Springs, Ballroom Cavern (Florida); (n) Night, Bellairs North reef (Barbados) (o) Lake Murray (SC); (p) Ginnie Springs, spring basin (Florida).

azimuth of each node and to estimate the relative yaw

between the nodes. In addition, the IMU is utilized to infer

the roll and pitch of each device using measurements from

the accelerometers. Lastly, depth sensor data provides an

estimate of the relative depth. The collected measurements

are then used to eliminate erroneous pairs of landmarks that

appear as false positives in the previous processing. See for

example Figure 5(e) where three candidate markers were

identified by the blob detection process, but the correct two

markers were chosen by the outlier rejection system.

IV. EXPERIMENTAL RESULTS

Extensive experiments were conducted in different loca-

tions to ensure the robustness of the system. In the following,

first we present the hardware used and then describe the loca-

tions where the experiments were performed. Experimental

results from different locations are described next and finally,

we present a quantitative study conducted in our lab, using

identical hardware while measuring the ground truth.

A. Experimental Setup

a) Hardware implementation: Two underwater nodes

were constructed using a custom case waterproof case ca-

pable of reaching more than 100m depth. The processing

is based on a Raspberry Pi 3 computer connected to a

Raspberry Pi Camera Module v2, a Pololu MinIMU-9 v3

IMU, and a Bar30 High-Resolution 300m depth sensor.

The design intentionally kept the cost low to ensure the

adoption of the system by the underwater cave exploration

and marine archeology communities. Two aluminum bars

are rigidly attached, and two dive lights are attached on

them; see Figure 6 for the general appearance of the system.
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During experiments, the two landmark lights were kept at

0.88m distance, however, they could be mounted in different

position varying the spacing in between 0.57m and 0.88m.

Fig. 6. Underwater cooperative localization nodes with dive lights.

b) Test environments: In order to verify the versatility

of the developed approach, the system was tested in a wide

range of environments. In line with the primary application,

the ballroom cavern at Ginnie Springs Florida was used to

emulate a cave environment. No ambient light and clear

water characterize this testbed; see Figure 1. The nodes were

tested at a depth of 12m to 15m. Similar conditions were

encountered during tests at a night dive over the coral reefs

of Barbados. The effect of ambient light was tested in three

other scenarios. First, at the high turbidity waters of Lake

Murray in South Carolina. The landmark lights produced

long cones of illumination that needed to be addressed. The

clear waters of Barbados’ coral reefs and the spring fed

waters of the basin outside the cavern at Ginnie Springs, FL,

during the day produced a different set of challenges due to

several false positives produced by the caustic patterns.

B. Underwater Tests

Different trajectories were tested in different environ-

ments. In all experiments, CA was kept stationary and CB

was moved. The magnetic and inertial data are used to set the

attitude of the stationary node. Note that, even though it was

held to the ground, water movement had an effect especially

on the nodes attitude. Figure 7(a) presents a small segment

of a trajectory inside the Ballroom cavern, where CB was

moved back, and then moved in a circle to test different

depths and orientations. The main challenge we observe with

this dataset was the existence of additional light sources and

sometimes reflection at the cave walls. Figure 7(b) displays

a trajectory collected during a night dive over a coral reef in

Barbados. Due to the clear waters, the system was able to

detecting the landmarks and produce the 3D relative pose,

while CB was moved in different patterns. Figure 7(c) has

a short trajectory collected in Lake Murray, SC. While this

was during a bright day, the visibility was really low due to

particulates in the water, thus the landmarks disappeared after

a short distance, even to the human eye. Finally, Figure 7(d)

displays a longer trajectory (approximately 10m) collected

at the basin fed from the clear waters of Ginnie Springs

(just outside the cavern). The challenge here came from the

caustic patterns at the bottom. However, as discussed earlier

the outlier rejection ensures the correct pair of landmarks is

selected.

To verify the effectiveness of using sensors other than

camera for additional outlier rejection, the number of correct

marker selections was counted during both camera-only

rejection and rejection using additional sensor data. During

underwater tests, the camera-only rejection made 72.4%

correct detections while the full system was 84.46% correct.

Because it is difficult to obtain an accurate ground truth

pose estimate underwater, the CL system was compared to

AR tag based cooperative localization [36] for quantitative

validation underwater. Two AR tags were attached to each

node and used for relative pose calculation. The results of

CL are compared to AR tag detection in Figure 8. For tag

size in the same scale as the sensors, the AR tags were

less robust than the CL measurements with many missed

estimates. Several outliers appear in the results of bearing

only CL. This usually occurs when one beacon exits the

camera’s FoV in which case the outlier rejection does not

have enough information to make the correct decision.

C. Ground Truth above water

The identical hardware setup without the lights and depth

sensor has been recreated for testing in the lab while estab-

lishing ground truth; see Figure 9. The different components

have been tested separately, including the IMU parameters

and the performance of the magnetometer. They were placed

apart in fixed positions and the distance between them was

measured using a measuring tape. AR tags were also used

to calculate relative pose as validation. Figure 10 presents

a plot of the error between the calculated distance and the

measured distance as a function of the measured distance

between them for both CL and AR tag based estimation.

The error is bounded within 0.08m when the two nodes

were moved from 1.5m to 4m.

V. CONCLUSIONS

An analytical solution for 3D bearing only cooperative

localization was augmented to operate underwater with

the addition of IMU, magnetometer, and depth sensors.

Challenging underwater conditions highlighted the effect of

particulates in the water. As can be seen in most underwater

images, the lights produced a beam with the brightest part

at the source but with significant brightness all around. In

addition reflections and the presence of other light sources

produced several initial false positive blob detections; how-

ever, the outlier rejection introduced in this paper has been

proven to be robust and ensures accurate pose estimates.

For improved incorporation of IMU, magnetometer, and

depth sensors in the future, the sensor data will be used in

a multi-sensor fusion system rather than simply for filtering

of candidate markers. This will allow a more fluid relative

pose estimate and improve outlier rejection.

We are currently discussing a collaboration with divers

from the Woodville Karst Plain Project (WKPP)2 for de-

2http://www.wkpp.org/
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Fig. 9. Hardware setup for test in our lab for “ground truth” validation.
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