
Deep Neural Networks: a Comparison on Different Computing Platforms

Md Modasshir, Alberto Quattrini Li, and Ioannis Rekleitis

Department of Computer Science and Engineering

University of South Carolina

Columbia, SC, USA

modasshm@email.sc.edu,{albertoq,yiannisr}@cse.sc.edu

Abstract—Deep Neural Networks (DNN) have gained
tremendous popularity over the last years for several computer
vision tasks, including classification and object detection. Such
techniques have been able to achieve human-level performance
in many tasks and have produced results of unprecedented
accuracy. As DNNs have intense computational requirements in
the majority of applications, they utilize a cluster of computers
or a cutting edge Graphical Processing Unit (GPU), often hav-
ing excessive power consumption and generating a lot of heat.
In many robotics applications the above requirements prove
to be a challenge, as there is limited power on-board and heat
dissipation is always a problem. In particular in underwater
robotics with limited space, the above two requirements have
been proven prohibitive. As first of this kind, this paper aims
at analyzing and comparing the performance of several state-
of-the-art DNNs on different platforms. With a focus on the
underwater domain, the capabilities of the Jetson TX2 from
NVIDIA and the Neural Compute Stick from Intel are of
particular interest. Experiments on standard datasets show how
different platforms are usable on an actual robotic system,
providing insights on the current state-of-the-art embedded
systems. Based on such results, we propose some guidelines in
choosing the appropriate platform and network architecture
for a robotic system.

Keywords-Deep Neural Networks; Embedded Systems; Com-
parison

I. INTRODUCTION

The last few years have seen a tremendous increase in

the popularity of the deep learning paradigm. In all the

major computer vision conferences, Convolutional Neural

Networks (CNNs), and their variants, dominate the scene.

Furthermore, very impressive demonstrations of this technol-

ogy appear with high frequency, from near perfect detection

scores (97% accuracy) [1], to tracking of multiple people

in a crowd [2], and to controlling a flying robot without

providing explicit commands [3]. In the field of robotics

while learning approaches have always been used, for the

first time, at IEEE International Conference on Robotics and

Automation (ICRA) 2018, learning was the most common

keyword, followed by planning as the second.

Deep Neural Networks require high computational power

that recently has become available thanks to GPU-

computing [4]. However, such computational power has not

been typically available on embedded systems mounted on

mobile robots, making the deployment of DNNs a challenge.

Figure 1: Computing platforms used in this paper.

In recent years, major companies, such as NVIDIA and Intel,

produced small factor modules that are able to run DNNs.

Differently from other type of analysis, the goal of this

paper is to analyze the current performance of such embed-

ded systems for DNNs for tasks relevant to the robotics field.

In particular, in this paper, we compare different networks

for detection and classification on the computing platforms

shown in Figure 1:

• the Alienware gaming laptop from Dell.

• Jetson TX2 from NVIDIA.

• Neural Compute Stick from Intel.

In the comparison a high-end gaming laptop is included

for two reasons. First of all, most ground robotic platforms,

ranging from the most accessible Turtlebot 21 to the bigger

outdoor units such as the Warthog 2 can easily accommodate

the addition of an extra laptop; especially as it does carry its

own power. Second, quite often during field deployments, it

is not feasible to carry a desktop equipped with a state-of-

the-art GPU to remote locations, in which case a powerful

laptop presents a working alternative. For the above two

reasons, the gaming laptop is an excellent compromise

1http://www.turtlebot.com/turtlebot2/
2https://www.clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/

383

2018 15th Conference on Computer and Robot Vision

978-1-5386-6481-0/18/$31.00 ©2018 IEEE
DOI 10.1109/CRV.2018.00060

enabling training a DNN on-site.

While our interests are with a variety of different robotic

platforms, our focus in this paper is on underwater vehicles,

such as the Aqua2 AUV [5] shown in Figure 2. Such

a platform has several limitations when it comes to the

deployment of a DNN on-line. First of all, the power

available is limited, a restriction that is even more severe

when it comes to aerial vehicles. Secondly, the physical

space inside the vessel is rather confined; prohibiting the

introduction of a standard GPU powered video card. Finally,

even though the vehicle is inside the water, which provides

a natural water cooling system, the heat dissipation inside

the robot does not allow for excessive heat to be generated.

In the analysis presented in this paper we have compared

the different computing platforms using their overall energy

consumption.

For generality sake the comparison is performed on pub-

licly available data sets, in particular ImageNet [6] and PAS-

CAL VOC [7], commonly used as benchmarks for evaluating

DNNs [8]. In addition, the networks have also been tested

in specific datasets pertaining to the marine domain such as

the coral images of MLC dataset [9], and in data collected

over several field trials by the authors; see Figure 3. As part

of the analysis, we provide first a survey and taxonomy of

several DNNs available according to their tasks. The goal

is to provide guidelines based on a comparative evaluation

in order to choose which computing platform suits best for

a specific mobile robot and task. Specifically, the following

insights/guidelines can be derived:

• How different networks perform on different computing

platforms.

• The power required by each network on different com-

puting platforms.

• The effect of different floating point precision.

This paper is structured as follows. The next section

provides a brief overview of the approaches used to evaluate

the different computing platforms and Section III describes

the setting used for our experimental comparison together

with the methods used. Section IV shows the quantitative

results and Section V discusses them. Section VI concludes

the paper and outlines future work.

II. RELATED WORK

While referring to the latest work in Deep Learning, in an

exhaustive manner, is nearly impossible, in this section we

will define two major categories of deep learning approaches

considered highly relevant to perception in robotic tasks. In

each category, the focus will be on representative techniques

which were tested on the different platforms.

Object Classification: The different DNNs focus on

providing a label for a set of objects of interest. Top-

1 error and top-5 error percentage is used to evaluate

the performance of a network. In particular, top-1 error

percentage means how many results with highest confidence

Figure 2: An Aqua underwater robot collecting data over a

shipwreck.

do not match the ground truth with respect to the total size

of the validation set. Top-5 error percentage is calculated

similarly; however, if the ground truth label is within the 5

labels with highest confidence the classification is considered

correct.

Alex Krizhevsky et al. crafted a CNN – AlexNet [10]

– that contains five convolutional and three fully-connected

layers. Such a network was able to achieve at the time top-

1 and top-5 test set error rates of 37.5% and 17.0% on a

subset of ImageNet (lower values are better). Simonyan and

Zisserman proposed VGGNet [11], which has higher depth

than other Convolutional Neural Networks. The architecture

uses small convolutional layers and on ImageNet had 23.7%

and 6.8% as top-1 and top-5 error, respectively. Iandola

et al. presented SqueezeNet [1], a CNN that has 50 times

less parameters than AlexNet. This was achieved by using

smaller filters – i.e, 1 × 1 filters instead of 3 × 3 filters,

decreasing the number of input channels to 3 × 3 filters,

and downsampling deeper in the network. Results showed

accuracy level comparable to that of AlexNet, for less

parameters. GoogLeNet [12] designed by Szegedy et al. is a

deeper network compared to the above mentioned ones that

is able to keep the computational power required bounded.

The main idea is to approximate the local sparse structure by

available dense building blocks and reduce dimensions when

computational requirements are too high. Such a network

was able to achieve a top-5 error of 6.67%. He et al. crafted

a new CNN, called ResNet [13], where stacked layers fit

a residual mapping, instead of an underlying mapping. As

a result, the network can be designed to have more layers,

with a depth reported in the paper up to 152. The top-1

error and top-5 error are 19.38% and 4.49%, respectively,

for a 152-layer ResNet. While all the above mentioned

networks are not considering deployment on embedded

systems, MobileNets [14] is a class of efficient models that

384

Platform Model Architecture Memory Mem. bandwidth CUDA Cores T-FLOPS FP Precision Nominal Power

Dell Alienware 17 NVIDIA GTX1080 Pascal 8GB GDDR5 (dedicated) 320GB/s 2560 9 FP16,FP32 240W

NVIDIA Jetson TX2 Pascal 8GB 128-bit LPDDR4 (shared) 58.3GB/s 256 1.5 FP16,FP32 15W

Intel Movidius Neural Compute Stick Myriad 2 4GB LPDDR3 (dedicated) 400GB/s 0 0.1 FP16 1W

Table I: Computing platforms.

Net Layers Hyper-parameters

AlexNet [10] 8 60M

SqueezeNet [1] 10 0.8M

GoogLeNet [12] 22 4M

ResNet [13] 18 0.27M

SSD [19] 11 -

MobileNet-SSD300 [14] 40 6.8M

Table II: Deep Neural Network Characteristics with the

number of trainable layers and number of hyper-parameters

(’-’ indicates that the paper did not report such details).

Figure 6: Accuracy graph over training iterations for

ResNet18.

with the Alienware vs. 70 FPS from the Jetson and 11 FPS

from the Movidius. Note, however, that different networks

have higher or lower impact on the computational efficiency.

In Table V, power used by the different platforms using

different networks are reported in Watt.

Second, we report results from the object detection task.

Table VI shows the precision of the detection results ob-

tained with the Jetson and Movidius, compared to the results

obtained with the Alienware. Interestingly, the Movidius has

comparable results as the Jetson. Note that Alienware and

Jetson obtain slightly different predictions and/or difference

Jetson Movidius

AlexNet 0.0 0.87

SqueezeNet 0.0 0.62

GoogLeNet 0.00025 0.58

ResNet18 0.0 0.89

Table III: Top-1 error for object classification task.

Alienware Jetson Movidius

AlexNet 463 70 11

SqueezeNet 400 131 34

GoogLeNet 122 29 10

ResNet18 160 46 9

Table IV: FPS of the different platforms for object classifi-

cation task.

Alienware Jetson Movidius

AlexNet 23.1 7.0 1.2

SqueezeNet 20.1 2.3 1.0

GoogLeNet 25.0 6.3 3.1

ResNet18 26.9 8.6 3.7

Table V: Power consumption (Watt) of the different plat-

forms for object classification task.

in confidence, probably because of the difference in floating

point precision.

Jetson Movidius

SSD 0.99 0.94

MobileNet-SSD300 0.90 0.90

Table VI: Precision for object detection task.

Table VII reports results on FPS for the different networks

over the three different platforms. While for SSD the Alien-

ware performs better, for MobileNet-SSD300 the Movidius

is able to be comparable with the other platforms. The

reason is that the optimizations introduced by MobileNet

architecture is not yet efficiently implemented by Caffe.

Alienware Jetson Movidius

SSD 59.8 8.0 1.5

MobileNet-SSD300 4.22 8.5 8.2

Table VII: FPS of the different platforms for object detection

task.

In Table VIII, power used by the different platforms using

different networks are reported in Watt.

V. DISCUSSION

From the results above, some interesting insights can be

drawn, providing some directions of work for researchers

working in deep learning:

• NVIDIA platforms appear to be generally consistent

in terms of prediction quality, especially in object

classification.

• Movidius SDK should be enhanced to include many of

the successful CNNs for robust deployment in mobile

robots.

387

Alienware Jetson Movidius

SSD 15.0 8.0 3.0

MobileNet-SSD300 7.0 3.0 2.2

Table VIII: Power consumption (Watt) of the different plat-

forms for object detection task.

• The choice of the framework might heavily affect the

performance of the network. It is usually advisable to

choose the one that is suggested. A standardization of

the framework might help making the field more united.

• The power consumed is generally higher than the

nominal power reported in the technical sheets. As

such, when analyzing the power requirements for a

robot, the nominal power should be at least doubled.

• The advantage of using a Movidius is that, even if it

is not as efficient as the NVIDIA counterparts, it is

power-bounded by the USB specifications. As such,

bigger networks will not have much effect on the power

consumed, contrarily to the Jetson TX2.

• Among the networks for object classification,

SqueezeNet is the one that is lightweight. Object

detection is a challenging task, where networks are

not very fast.

• At this point, Movidius does not support training. This

limits all applications of on-line learning of the robot.

In general, the new embedded systems are promising,

however, the related SDK should be improved to accom-

modate new operations and networks.

VI. CONCLUSION

In this paper, after presenting a short taxonomy of several

different deep neural network architectures, we evaluated

some of them on three different mobile platforms. The main

focus of our work was the deploy-ability of the different

networks on a variety of robotic platforms, with a special

interest on robots with constrained space, such as underwater

and aerial vehicles.

As part of future work, we are currently running tests

for the scene reconstruction and semantic mapping appli-

cations which have different computational requirements.

Furthermore, in the results presented in this paper the

Caffe framework was used as it was the one more easily

available on all three platforms. We are currently deploying

the same networks on the three platforms utilizing the

TensorFlow framework. Furthermore, we are exploring the

parallelism capability of multiple Intel Movidius Neural

Compute Sticks.

ACKNOWLEDGMENT

The authors would like to thank the National Science

Foundation for its support (NSF 1513203, 1637876).

REFERENCES

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accu-
racy with 50x fewer parameters and <0.5MB model size,”
arXiv:1602.07360, 2016.

[2] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime Multi-
person 2D Pose Estimation Using Part Affinity Fields,” in
Proc. CVPR, July 2017, pp. 1302–1310.

[3] A. Loquercio, A. Maqueda, C. D. Blanco, and D. Scaramuzza,
“DroNet: Learning to Fly by Driving,” IEEE Robot. Autom.
Lett., 2018, accepted.

[4] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[5] G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar,
P. Giguere, A. German, H. Liu, S. Saunderson, A. Ripsman,
S. Simhon, L. A. Torres-Mendez, E. Milios, P. Zhang, and
I. Rekleitis, “A visually guided swimming robot,” in Proc.
IROS, 2005, pp. 1749–1754.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in Proc. CVPR, 2009, pp. 248–255.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The Pascal Visual Object Classes (VOC)
Challenge,” Int. J. Comput. Vision, vol. 88, no. 2, pp. 303–
338, Jun. 2010.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein
et al., “ImageNet large scale visual recognition challenge,”
Int. Journal of Computer Vision, vol. 115, no. 3, pp. 211–
252, 2015.

[9] O. Beijbom, P. J. Edmunds, D. Kline, B. G. Mitchell,
D. Kriegman et al., “Automated annotation of coral reef
survey images,” in Proc. CVPR, 2012, pp. 1170–1177.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv:409.1556,
2014.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proc. CVPR, 2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. CVPR, 2016, pp. 770–778.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets:
Efficient convolutional neural networks for mobile vision
applications,” arXiv:1704.04861, 2017.

388

[15] P. Henderson and V. Ferrari, “End-to-end training of
object class detectors for mean average precision,”
arXiv:1607.03476, 2016.

[16] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-
gus, and Y. LeCun, “OverFeat: Integrated Recognition, Lo-
calization and Detection using Convolutional Networks,”
arXiv:1312.6229, 2013.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:
Towards real-time object detection with region proposal net-
works,” in Advances in neural information processing sys-
tems, 2015, pp. 91–99.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
Only Look Once: Unified, real-time object detection,” in Proc.
CVPR, 2016, pp. 779–788.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in
Proc. ECCV, 2016, pp. 21–37.

[20] A. Tao, J. Barker, and S. Sarathy, “Detectnet: Deep neural net-
work for object detection in DIGITS,” https://devblogs.nvidia.
com/detectnet-deep-neural-network-object-detection-digits/,
2016, accessed on Feb 08, 2018.

[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Proc.
ICML, 2015, pp. 1737–1746.

[22] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep Learning
with Low Precision by Half-Wave Gaussian Quantization,” in
Proc. CVPR, 2017, pp. 5406–5414.

[23] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-
of-the-art deep learning software tools,” arXiv:1608.07249,
2016.

[24] “Benchmarks for popular cnn models,” https://github.com/
jcjohnson/cnn-benchmarks, commit #83d441f.

[25] “Deep learning benchmark for comparing the performance
of dl frameworks, gpus, and single vs half precision,”
https://github.com/u39kun/deep-learning-benchmark, commit
#0364856.

[26] “Deepbench,” https://github.com/baidu-research/DeepBench,
commit #6a50a01.

[27] “Benchmarks of deep neural networks,” https://github.com/
doody1986/DNNMark, commit #fa12f02.

[28] “Benchmarks of deep neural networks,” https://www.
tensorflow.org/performance/benchmarks, accessed on Feb 08,
2018.

[29] F. Amigoni, M. Reggiani, and V. Schiaffonati, “An insightful
comparison between experiments in mobile robotics and in
science,” Auton. Robot., vol. 27, no. 4, pp. 313–325, 2009.

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” arXiv:1408.5093,
2014.

389

