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Abstract. Rapidly growing data volumes at light sources demand increasingly automated data collection, distribution, and analysis
processes, in order to enable new scientific discoveries while not overwhelming finite human capabilities. We present here the
case for automating and outsourcing light source science using cloud-hosted data automation and enrichment services, institutional
computing resources, and high- performance computing facilities to provide cost-effective, scalable, and reliable implementations
of such processes. We discuss three specific services that accomplish these goals for data distribution, automation, and transfor-
mation. In the first, Globus cloud-hosted data automation services are used to implement data capture, distribution, and analysis
workflows for Advanced Photon Source and Advanced Light Source beamlines, leveraging institutional storage and computing.
In the second, such services are combined with cloud-hosted data indexing and institutional storage to create a collaborative data
publication, indexing, and discovery service, the Materials Data Facility (MDF), built to support a host of informatics applications
in materials science. The third integrates components of the previous two projects with machine learning capabilities provided
by the Data and Learning Hub for science (DLHub) to enable on-demand access to machine learning models from light source
data capture and analysis workflows, and provides simplified interfaces to train new models on data from sources such as MDF
on leadership scale computing resources. We draw conclusions about best practices for building next-generation data automation
systems for future light sources.

INTRODUCTION

Light source scientists are facing a data crisis as the rate at which new instruments generate data volumes is rapidly
exceeding Moore’s Law [1]. Growing data volumes present new challenges as they overwhelm finite human capa-
bilities, requiring new machine-based solutions to automate and outsource the acquisition, analysis, and distribution
of light science data. Neither humans or computers can cope using current methods. Existing techniques to design
experiments, manage and analyze data, and create and deliver software will not suffice for next generation data rates.
However, these challenges also present new opportunities and offer the potential to create the new automation sys-
tems and enrichment services necessary to utilize instrument advancements. New approaches are required to unburden
scientists from time consuming data munging, management, and dissemination practices, including reliably indexing
and cataloging, pipelining, and transforming results.

Fourth-generation light sources such as the Advanced Photon Source Upgrade (APS-U) [2] will offer exciting
new scientific capabilities to the thousands of scientists who use their many beamlines annually. They also pose
major data and computation challenges, for at least four reasons. First, they will generate massive data. For example,
x-ray photon correlation spectroscopy can already generate 2MB images at 3,000 Hz, for a data rate of 6 GB/s,
comparable to that of the Large Hadron Collider [3]. With APS-U, this data rate is expected to increase by 2-3
orders of magnitude. Second, experiments will increasingly generate complex multi-modal data that needs advanced
computing for interpretation, such as ptychography combined with elemental mapping and visual images as a function
of reaction conditions. Third, it will become increasingly feasible to use advanced theory and modeling to fit and co-
optimize model and experiment. Fourth, as synchrotron light sources mature as instruments, they increasingly serve
more and different users, many with limited or no experience with light sources. Automation is important for such
users [4, 5].

For light science to exploit these advancements the tools and services must transition from an artisanal/cottage
industry to one that builds on automated solutions that are integrated into daily operation of a beamline. Tools to



automatically capture, apply advanced analyses, and autonomically drive experiments are necessary, such as those we
have previously explored [6]. In addition, once data are acquired, scientists must outsource their ongoing manage-
ment and distribution through dedicated, community-oriented storage hubs that make discoverable and accessible the
results of experiments. Storage catalogs, such as the Materials Data Facility [7], provide rich environments to foster
collaboration and increase the value of datasets by disseminating results and in turn, accelerating scientific discovery.
Similarly, nexuses for applying transformations and analyses provide platforms that federate access to cutting edge
analyses, optimized high performance modalities, and remove barriers of entry to leadership computing facilities.

Here we describe our efforts to outsource and automate data distribution, management, and transformation. We
describe how each enables light source scientists to outsource tasks crucial for their science. First, we present data
acquisition and distribution tools and services, describing specifically how the Globus data publication platform can
enable scalable and secure data distribution using powerful data access and discovery capabilities. Second, we outline
a new Globus cloud-hosted data automation service and describe how it can be used to manage sophisticated data
lifecycles. Finally, we explore the data transformation capabilities provided by the Data and Learning Hub for science
(DLHub) to enable simple, yet scalable, training of machine learning models and on-demand access to machine
learning models from light source data capture and analysis workflows.

BACKGROUND/HISTORY

We first experimented with online analysis of APS data in the late 1990s, when we coupled computing microtomog-
raphy [8, 9] and crystallographic [10] experiments to remote computers. In one memorable demonstration in 1998,
we piped microtomography data from APS beamline 2-BM to a 96-node SGI Origin parallel computer at Argonne
for incremental reconstruction via filtered backprojection as an experiment was proceeding, and then streamed visu-
alization data to the Supercomputing conference (SC’98) in Orlando, Florida, for interactive analysis: see Figure 1.
As we noted at the time, “the data rates and compute power required ... are prodigious, easily reaching one gigabit
per second and a teraflop per second [respectively]” [11]—numbers that are dwarfed by today’s requirements. These
demands have since increased tremendously, as illustrated by recent work on near-real-time tomography [12, 13, 14].
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FIGURE 1. The processing pipeline used in the SC’98 demonstration [11]. Data collected at the APS were passed to a super-
computer in Argonne’s Mathematics and Computer Science (MCS) division for incremental reconstruction and visualization, and
results dispatched as a stereoscopic video stream to a remote virtual reality display at APS and in Orlando.
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More recently, we have worked to combine experiment and simulations for diffuse scattering experiments: see
Figure 2. The figure highlights the interactions between experiment, computation, and human expertise at various
timescales. In particular, it shows how simulation and experimental workflows can be combined to enable experiment



steering and rapid validation of experiment results. On the experiment side, diffuse scattering data are obtained using
a beamline. High performance computers are used to reconstruct and analyze the data, often in near real-time to
provide rapid feedback to researchers. Here, data is collected as a sample is rotated 360 degrees in tenth-of-a-degree
increments, yielding 3,600 images. Each image comprises 2048%x2048 32- bit pixels, (i.e., 16 MB), a total of 56 GB.
Images are produced at a rate of 10 per second and thus at a peak rate of 160 MB/s. Following the collection of a
complete 3,600-image dataset, which takes about 10 minutes, either a new sample is inserted or the sample conditions
are changed, and the process is repeated.

On the simulation side, researchers explore a huge range of synthetic structures using various high performance
software packages, and increasingly machine learning methods to create simulated output to be compared with, or
to help guide, experiments. It is important to note, that these experiments and simulations need not be performed by
the same researchers or at the same time. Rather, these simulations are often performed by collaborations that span
institutions and even domains.
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FIGURE 2. Activities involved in a diffuse scattering experiment. Data is acquired via simulation and experimentation, involves
data storage in various locations from beamline computers through to data archives, requires analysis at various scales and coor-
dination between a diverse group of collaborators. powerful knowledge base and simulation capabilities, can create a “discovery
engine” for materials science research.

It is our long history working with light science researchers, experiments, and simulations that informs our belief
that existing methods will not meet the requirements of next generation instruments. Indeed, new approaches are
needed to manage increasing data volumes, design yet more complex experiments, drive acquisition at unprecedented
rates, and apply and integrate advanced analyses. As we will describe, new methods that automate and outsource
crucial data management and manipulation tasks are needed to exploit instrument advancements and advance light
source science outcomes.

MOTIVATION: AUTOMATION AND OUTSOURCING

As the scale and complexity of light-source science continues to grow, so too does the burden on researchers to
manage an increasingly complex ecosystem of data, software, and cyberinfrastructure. Unfortunately, these burdens
are increasingly prohibitive as the workload consumes considerable research time. If we look to other fields, from the
automotive industry to agriculture, the ability to automate common or mundane activities has underpinned massive
advances in terms of productivity and efficiency. Similar advances are required to combine computational and data-
driven science with experiment to speed discovery.

Over the past dozen years Globus [15] has demonstrated the value of outsourcing a myriad of common research
data management activities, including data transfer, synchronization, and sharing. In these cases, researchers benefit
from the ability to outsource activities to a reliable, cloud-hosted service that deals with the complexity of these tasks.
For example, when transferring data, Globus manages credentials required to access storage systems, establishes



and maintains a secure connection between storage systems, optimizes transfer configuration to provide rapid data
movement, validates data integrity, and recovers from errors.

Achieving similar gains in light source sciences will require the use of such services (e.g., those provided by
Globus) as well as development of new services that are able to perform many other operations. We believe there
is potential for widespread impact with such approaches and simultaneously other benefits such as reduced costs
(via economies of scale) and increased reliability (due to professionally hosted services). We observe that many light
source experiments apply a similar foundational processes to the acquisition, analysis, and distribution of data. We
posit that components of the light source science data lifecycle can be reliably outsourced to specialized services,
thus reducing the burden on researchers. Specialized services can be created to service many distributed sources
concurrently, reliably, and efficiently. These services can reliably provide the tools necessary to perform a wide range
of advanced analyses without requiring the scientist to have specialized skills in terms of building, running, and
maintaining analytical tools, and removing the barriers to entry to apply analytical tools across leadership computing
resources. In addition, specialized services to automatically extract metadata and enforce best-practice cataloging and
replication can be deployed such that scientists can simply invoke such a service, rather than creating ad hoc data
management solutions with little reproducibility, adding to the vanguard computing environment that litters many
large-scale experimental science instruments.

Automation provides the second piece to this puzzle allowing for frequent operations to be applied without human
involvement. by further raising the level of abstraction, such that light source scientists may define frequent operations
(or series of operations) to be performed we further reduce the burden on humans while also increasing reliability and
efficiency. Examples of automation include moving data when it is acquired to large storage or analysis resources
and thereby eliminating the need for scientists to monitor storage space and orchestrate the movement of data or
executing data quality control algorithms to automate the detection of errors in data acquisition and thereby eliminate
costly experiment inefficiency. While full automation may be possible in some circumstances, partial automation
via interactions between researchers and the automation processes may find early and more widespread adoption.
Interfaces to facilitate such complex interactions will be critical at many points in the research lifecycle and at various
scales: from direct steering of experiments to the choice of the next experiment and simulation. Human-in-the-loop
interactions are critical to both the design of experiments, analysis of results, correction of errors, supplementation of
training data, and optimization of experiments.

Developing such an ecosystem of services and existing software will support the synthesis of data from simula-
tion and experiment into an evolving and accessible knowledge base. This programatically accessible knowledge base
can then be used to automate analyses, perform machine learning tasks, evaluate data quality, and critically to guide
current and future research direction. Automation of these processes holds the promise of simplifying the processes
used by scientists, improving throughput, and increasing both the quality and accuracy of the results generated.

DATA ACQUISITION AND DISTRIBUTION

Data acquisition and distribution are fundamental to light science. As the rate at which both data are generated from
new instruments and robotic processes are increasingly being used to rapidly manage the analysis of multiple samples,
automated acquisition processes become increasingly necessary. New techniques to manage the entire data lifecycle
in response to their generation are needed.

A range of tools have been developed to simplify the acquisition process. For example, the Data Management
at the APS Imaging Group (DMagic) have worked to automate the collection process and facilitate reliable execution
of data management tasks, such as sharing, indexing, and transfer, in response to data events. DMagic provides an
event-driven system to detect the creation of files and enact actions, such as data movement, in response to samples
being acquired. DMagic uses Globus APIs create a shared endpoint and deposit the data and set permissions. It also
bridges the multiple data sources maintained at the APS, such that given an experiment’s date and time, it can retrieve
user information from the APS scheduler, associate metadata regarding the beamline with the experimental results,
and email the user the location of the shared endpoint for data retrieval. Similarly, ISPyB is a Laboratory Informa-
tion Management System that combines sample tracking and experiment reporting for synchrotrons, in particular for
macromolecular crystallography. ISPyB has been in production for numerous years and is specifically designed to
simplify development and maintenance [16].

In order to enable easy, efficient, secure, reliable distribution of data from beamlines to many locations, platforms
are required to store and distribute data with high performance and accessibility. At Argonne National Laboratory we
have created a purpose built platform for sharing research outcomes underpinned by high performance networks and



the Globus data management platform. This service, called Petrel, provides researchers access to a large, 1.7PB, store
positioned within Argonne’s network with high speed access to the APS. Petrel leverages Globus’ identity manage-
ment to provide researchers access to their data without requiring Argonne-specific credentials. Instead, users can
authenticate with Petrel and access and distribute data world-wide using their own institutes credentials. Petrel pro-
vides cost-effective storage for researchers. Because Petrel is underpinned by Globus services it presents a sustainable
storage model which researchers can rely on to exist and distribute data for prolonged periods of time.

DATA PUBLICATION AND DISCOVERY

The Globus data publication platform [17] provides a collection of loosely coupled services from which arbitrary
publication pipelines can be constructed. These services—data management, persistent identifier management, and
metadata indexing and discovery—can be used individually or collectively to address a wide range of publication
needs. They allow for data to be made discoverable (via metadata search), verifiable (via checksums), and accessible
(via Globus data access interfaces).

Globus data management and access capabilities allow for the “publication” of data in any Globus-accessible
storage system: from local PCs, through to cloud object storage (e.g., Amazon S3), high performance file systems,
and even archival tape storage. Globus data access model allows for user- and group-based access permissions to
be applied to accessible data and for high performance (GridFTP) or web-based (HTTP) access to data. Users may
therefore choose to publish data by moving it to a permanent location for immutable (and perhaps redundant) storage,
or choose to publish data “in place” (where it currently resides).

An important step in data publication is the need to uniquely reference data irrespective of its location. A persis-
tent identifier provides a long-lasting reference which can be resolved (using a resolution service) to locate the current
location of that data. There are a range of persistent identifier schemes commonly used for digital artifacts including
Digital Object Identifiers (DOIs), Archival Resource Keys (ARKs), and Handles. In each case, an identifier provider
is responsible for minting unique identifiers and maintaining minimal metadata about that identifier (e.g., by whom
it was created, when, and where the referenced object may be accessed). The Globus identifiers service provides a
standard way to create and manage persistent identifiers (using various identifier providers) and to associate them with
arbitrary data. Importantly, it also allows users to associate a checksum with identified data such that other users may
subsequently validate the integrity of published data.

Having made data accessible and created a unique reference the final component of the data publication platform
aims to make data discoverable. Globus Search provides a schemaless indexing and discovery model with fine grain
access control. Thus, arbitrary metadata, adhering to any publication or domain- specific schema may be associated
with a publication. Each metadata entry is assigned to a subject, a unique URI or identifier for a particular dataset. Each
entity may also specify a visibility policy which restricts what users are able to view or query that metadata. Globus
Search provides a powerful free-text query model that supports a expression of various query types (substring, range,
wildcard, etc.) to discover matching metadata. Further, it can generate categorical facets and associated frequencies to
intuitively summarize and query data.

THE MATERIALS DATA FACILITY (MDF): DATA PUBLICATION AND INDEXING

The MDF Data Publication service builds upon the Globus data publication service [18] and publication platform to
enable users to publish data through a web user interface or a programmatically accessible API and to group similar
publications into collections [7]. Key features of the deployed service include the capability to publish large datasets
(our largest dataset to date is 1.85 TB); the ability to publish datasets with millions of files (our largest dataset by file
count contains more than one million files); and the ability to publish data on distributed data stores. Each of these
capabilities is coupled with features that allow users to add high-level descriptive metadata to each dataset (e.g., title,
authors, institution, contact), materials-specific metadata following the NIST Materials Resource Vocabulary; and the
ability to associate a permanent identifier with the dataset (e.g., a DOI or Handle) for scholarly citation.

The MDF Data Discovery service enables researchers to discover, query, browse and aggregate data that have
been indexed by MDF. Entries in the MDF search index are comprised of descriptive information, materials-specific
metadata (e.g., composition, crystal structure), and links to data harvested from a number of sources. These sources
include the MDF Data Publication service, and data harvested from databases, services, and other sources from across
the materials community. To date, we indexed 117 sources representing over 3.4M individually discoverable entries.

In order to facilitate usage of the data indexed by MDF, we have released the Forge Python client [19]. Forge
enables users to search for data in MDF using materials-specific facets (e.g., elements, space group number) or general



metadata (e.g., authors, title) and aggregate search result data with only a few lines of code. Forge contains a host of
helper functions that abstract from the user the need to understand the infrastructure in place behind MDF and instead
allow them to focus on their task at hand. For example, users can perform a query and fetch the resultant files locally
or to an analysis cluster with a single function call. These functions support data transfer via both HTTPS and Globus.

PIPELINES AND AUTOMATION

As discussed there is a growing need to automate a range of activities that are frequent, require rapid response, and
require little human intervention. Light source science provides many such examples, consider a common workflow
applied when using the APS: after data acquisition there is a need to apply apply quality control, assign identifiers,
preprocess, move to data to a compute platform and perform analysis, postprocess, extract features, and eventually
publish data to a repository for distribution. While these steps each exhibit need for automation, each presents oppor-
tunities to apply custom tools and locations depending on the beamline, users, and experiment being performed. Thus,
it impractical to create a custom pipeline for every situation. Instead, higher level frameworks are needed that allow
users to define and then outsource the management of such automated pipelines.

To empower scientists to automate their pipelines, it is important that user-friendly interfaces and models are
provided. We believe that Trigger-Action Programming (TAP) provides a suitable intuitive and easy to use model for
defining such pipelines. TAP is increasingly common in areas such as home automation and through online services
such as if-this-then-that (IFTTT) that allow for the connection of online services (e.g., Twitter and Facebook). To
experiment with such approaches we developed a prototype system called Ripple [20]. Ripple is comprised of two
components: an end user agent that monitors a particular file system to capture events, and a cloud-hosted service that
allows for the encoding of TAP rules and then execution of these rules based on events generated by the monitor. We
used Ripple to develop a collection of TAP rules, primarily triggered by the creation of files on various machines,
to perform actions like “move data from APS beamline to compute resources” or “analyze newly created files with
program X.” While this experience demonstrated the promise of such approaches, it also highlighted several short-
comings, including the need to construct complex pipelines of automated actions and to integrate a wide range of
external event sources and action options.

Globus Automate

We have developed a prototype cloud-hosted automation service called Globus Automate that allows for the construc-
tion of robust automation pipelines (called “flows”) that include both machine and human-in-the-loop operations. It
is designed following an extensible, modular architecture via which external event sources and actions can be used
in pipelines. Thus, developers may select a particular event source and type of event for which a pipeline should be
invoked and assemble a series of one or more actions that should then be executed as a result of that event. Globus
Automate is comprised of two core components: a web service that allows for the construction, execution, and sharing
of automation flows; and a user agent that is used to capture data events on remote systems (e.g., file created, deleted,
modified).

Globus Automate exposes a simple, declarative, JSON-based, state machine language for defining flows, based
on the Amazon States Language [21]. This language allows for concise definition of flows comprising multiple actions,
with control logic ranging from simple sequential actions to complex branching and iteration, with simple but powerful
timeout, retry, and recovery capabilities.

An automation flow consists of one or more steps that invoke pre-defined actions. We define a REST API by
which external services can be integrated with Globus Automate to perform actions. Services implementing these
interfaces may be registered and then integrated into flows by any user, subject to service access rights. This API is
similar to the popular if-this-then-that (IFTTT) action service API, with enhancements to accommodate asynchronous
activities and the end-to-end security model provided by Globus Auth. When a flow is executing, Globus Automate
will use the registered action API to invoke the action.

An automation flow can be triggered by a variety of events including data events, external service events, and
periodic timers. We define a REST API that allows any service to produce events and to submit them to Globus
Automate. When creating a flow, users define the type of event to be monitored and simple criteria for filtering events.
In our prototype system we have created a modular event monitoring system that can be deployed on arbitrary storage
systems and which leverages native storage system notification mechanisms to capture data events [20]. We have



demonstrated monitoring via the Linux inotify API [22], and achieved, via a hierarchical approach, ~10,000 events
per second on a 1PB Lustre file system [23].
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FIGURE 3. Globus Automate architecture, showing the cloud service at top, services that it manages below, and the extended
Globus Connect internals at bottom right. Also, a flow comprising (1) an event (data created at instrument), (2) a transfer action,
and (3) an analysis action.

Capturing and responding to events

Globus Automate is reliant on the ability to monitor and receive events from external services. We define a globus_event
REST API to be implemented by any service that wants to produce events for consumption by Globus Automate and
a simple queuing mechanism to reliably deliver events. Our goal is to make it simple for a service to produce and
consume events, while also enabling performant and robust event delivery. The globus_event API, allows for a client
(e.g., Globus Automate) to register with a service (e.g., Globus Connect) to receive events (e.g., file created) that
match event-specific criteria (e.g., all files matching a path expression).

Globus Automate (or any other client) can use the /introspect method on a service to determine what event types
are available from that service—and, for each event type, what parameters can be use to match events. For example,
Globus Connect endpoints could offer events such as “file created” and “file deleted,” each accepting a path matching
expression as a parameter, so that Globus Automate can request notifications when files in a certain directory are
created or deleted. Globus Automate will /register for events matching particular parameters, providing a URL to
which the service should POST the events, along with a globally unique <registration_id> UUID. In the event of
a communication error, Globus Automate can idempotently retry the same /register call, such that if the service
already knows the <registration_id> it can respond as such. When events are no longer needed from a service, Globus
Automate will /cancel the registration using the same <registration_id>.

Invoking and managing actions

The Globus Automate engine invokes an action in an external service to perform a step of an automation flow. Each
external service must implement a simple REST API for introspection, execution, and management. When registering
an external service, the service must define the actions that it supports, for each with a unique name, description,
input and output parameters, and whether it runs synchronously (quickly, blocking) or asynchronously (slowly, non-



blocking). The action API focuses only on the information needed by Globus Automate. It may be implemented
alongside any other REST API offered by a service.

The action model is simple: JSON document in, JSON document out, with a simple protocol to ensure reliable,
once-and-only-once execution. When Globus Automate needs to run an action as part of a flow, it calls the service’s
action /run method with an input JSON document with the appropriate parameters, and a globally unique <action_id>.
If Globus Automate does not receive a response from /run, for example due to a network error, it can repeat the
/run call with the same <action_id>, allowing the service to recognize duplicate requests. In the case of asynchronous
actions, Globus Automate will then periodically call /status to check if the action has completed. If the action has
completed, /status will return the output JSON document with the appropriate parameters.

Once Globus Automate sees that an action has completed, it calls /release so that the service can forget about
the <action_id>. If an action takes longer than a flow step’s configured timeout, Globus Automate may call /cancel. If
a service does not recognize the <action_id> in a /cancel Or /release, it should assume it was previously canceled or
released, and return an appropriate error. After some extended period (e.g., 30 days after completion), a service can
forget any <action_id> that is not canceled or released.

Some actions may require human interaction. For example, as part of the Globus data publication platform we
aim to implement a web-based form entry service, with configurable JSON schema and form configuration. This
service will be used for such purposes as simple user prompts to complex metadata entry and curation. Such services
will be integrated with Globus Automate as asynchronous actions.

The Globus Automate engine.

Globus Automate is responsible for executing end-to-end automation flows reliably, from event registration and pro-
cessing for triggers to flow (i.e., state machine) execution and action invocation. After review of several workflow
models, such as Amazon Simple Workflow Service [24], Netflix’s Conductor [25], and Apache Airflow [26], we
choose to leverage Amazon Step Functions (ASF) [27] for implementing and managing flows. ASF is provided by
AWS as a managed service for reliably and scalably executing state machines (i.e., automation flows); its declarative
and intuitive JSON-based state machine language allows non-experts to define flows and its flexible execution model
allows Globus Automate to execute arbitrary actions.

Globus Automate uses parameterized Lambda functions [28] to execute actions. When creating a flow, Globus
Automate calls /introspect to determine the input and output parameters for an action. It then creates parametrized
Lambda functions for that action. For asynchronous actions multiple Lambda functions are created (i.e., start, moni-
tor). When a user deploys an automation flow, Globus Automate translates the user’s state machine with user-friendly
action and event names into a state machine that invokes the appropriate Lambda functions and manages the flow of
state between actions. Its deployment requires that the user specify both how its execution may be triggered and the
source of the JSON document to be provided as input to the first step of the state machine. (The input JSON document
may contain both static content and dynamic content provided by the trigger.)

Globus Automate wraps all logic for registering and interacting with external event- and action-providing ser-
vices. Currently these capabilities are exposed as a REST API. In the future we intend to enhance the Globus web
interface to make it easy for users to register action and event services, and to deploy, execute, and manage automation
flows.

Automation Use Cases

We present two use cases in which Globus Automate is currently being applied. These use cases highlight the benefits
of automation for analysis and publication activities conducted at light sources.

Neuroanatomy analysis: We applied a prototype version of Globus Automate to support neuroanatomy exper-
iments that rely on X-ray microtomography at the Advanced Photon Source (APS) 32-ID beamline to characterize
the neuroanatomical structure of large (cm) unsectioned brain volumes [29], as shown in FIGURE 4. Datasets, gener-
ated at >20GB per minute, are processed with a complex reconstruction pipeline comprising many machines, tools,
and services. Globus Automate is used to move data from beamline to remote computers, execute Automo [30] and
TomoPy [31] to generate preview images. Simultaneously, machine learning models are applied (automatically) to
estimate the center of rotation. This value and the resulting images are returned to beamline scientists to guide instru-
ment positioning. Once the center value has been verified the flow continues by performing the full reconstruction.
Results are moved to persistent storage for distribution, cataloged with provenance metadata, and precomputed to be
visualized with Neuroglancer [32].
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FIGURE 4. From left to right: Schematic diagram showing data acquisition process; coronal cross section of a reconstructed brain;
and 3D rendering of a reconstructed brain volume using Neuroglancer.

Data publication: We use the prototype system to develop flexible data publication pipelines for MDF that
combine machine and human steps. Our aim here is to provide an automated deposit mechanism in which users define
a dataset to be published (via a reference to a Globus endpoint) and the automation flow manages the steps required
to make that data accessible in MDF. In one example, the workflow will transfer data to an intermediary location for
processing and also to a permanent storage location for publication. That dataset will be processed with a community
code to extract materials-specific metadata from the dataset. This metadata will be used to register the dataset in in
the NIST Materials Resource Registry, Citrination, or other community registries, and also to index the dataset in the
MDF discovery index. Before the data is to be made accessible the flow will notify MDF curators of its arrival and
wait until they have approved the dataset for publication before progressing. A unique identifier will be created for the
dataset, using user-defined and automatically extracted metadata. Finally, access permissions will be modified such
that the metadata is discoverable and the dataset is accessible.

TRANSFORMATION, ANALYSIS, AND VISUALIZATION

The requirement to transform and analyze results is common across light source science. Yet, the specific analyses
and cyberinfrastructure required to support analyses are often developed by beamline scientists and are infrequently
shared amongst researchers working in similar fields. This is clearly inefficient as it requires beamline scientists
to obtain expertise in several unnecessary areas (e.g., developing cyberinfrastructure to support real-time machine
learning analyses) and leads to significant duplication. As scientists increasingly look towards new machine learning
approaches for various tasks (e.g., center finding, error detection, image segmentation), these challenges are likely
to become more significant. To address these challenges we are developing the Data and Learning Hub for Science
(DLHub) which aims to support the deposit and sharing of machine learning models, on-demand inference using these
models, and a high performance computing environment for training models.

DATA AND LEARNING HUB FOR SCIENCE (DLHUB)

DLHub is a service to promote, simplify, and speed the widespread adoption and usage of machine learning and deep
learning techniques by researchers in disciplines ranging from materials science to chemistry, physics, cosmology,
and biology. The co-emergence of large amounts of available datasets, movement towards cohesive data services, and
new machine learning capabilities, creates a unique opportunity to leverage and integrate these data streams to allow
for machine learning techniques to guide and, indeed, lead discovery efforts.

Thus, we are developing DLHub a self-service platform for publishing, applying, and creating new machine
learning models. DLHub will provide: 1) publication capabilities to make models more discoverable, citable, and
reusable; 2) the ability to easily run or test existing models; and 3) links to the data and computing infrastructure to
re-train models for new applications. Users will benefit from DLHub in many ways. Data scientists can publish their
models (i.e., architectures and weights) and methods. Materials scientists can apply existing models to new data with
ease (e.g., by querying a prediction API for a deployed mode) and create new models with state-of-the-art techniques.
Together, these capabilities will lower barriers to employing machine learning, making it easier for researchers to
discover and benefit from the most recent advances in machine learning.



DLHUB ARCHITECTURE

DLHub is operated as a cloud-hosted service that offers a REST API to publish, search, and invoke models. DLHub
serves models and transformation codes across remote execution sites. The REST API is secured with Globus Auth
[33] and offers endpoints for publishing, searching, and invoking models. We provide a Python SDK to simplify use
of the service. In future work, we aim to develop a user interface for many of these tasks. We have defined a simple
metadata schema for describing models. Users who wish to deposit a model must provide this metadata and a container
with their trained model.

When invoking a model, users must first select the specific model to use (discovered via searching the list of
published models) and provide a set of data to be passed to the model. At present, all input data is described in JSON.
DLHub then executes the model for each item in the input JSON and returns JSON-based results to the user.

DLHub relies on the Kubernetes container orchestration system to manage the deployment of containerized
codes and models on an execution site. Models and transformation logic are wrapped in Docker containers for three
primary reasons: 1) to standardize their execution interface, regardless of implementation or language; 2) to enable the
encapsulation of their vastly different software requirements; and 3) to allow them to be scaled by deploying multiple
instances of the containers. In DLHub, a containerized model is referred to as a servable. When a code is published in
DLHub, it is automatically packaged with a custom DLHub Python library to provide a standard execution interface
to facilitate remote invocation. DLHub Servables can be deployed at execution sites and invoked directly through
DLHub. A single servable may serve results for many inference jobs and the same servable may be deployed several
times to meet user demand.

Each execution site is connected to the DLHub service through ZeroMQ (ZMQ) channels, providing a high-
performance and reliable mechanism to transmit jobs. We use the Parsl parallel scripting library [34] to manage the
execution infrastructure by deploying and managing servables. Each site includes a Parsl foreman and a ZMQ receiver.
The ZMQ receiver is used to receive inference jobs from the DLHub service. The Parsl foreman is then responsible
for taking these inference jobs and executing them on one or more servables. This task includes submitting work
to existing servables or deploying new ones if one is not available. Parsl uses IPyParallel and a pilot job model to
perform remote execution within a container. Each container is deployed with an ipengine that connects back to the
Parsl foreman to receive jobs. This two-tier design enables multi-level caching, with both Parsl and cloud-hosted
caches enhancing response time. Requests can also be batched at the cloud level before being transmitted to execution
sites to improve throughput. While the primary mode for execution is via the DLHub service, for low latency jobs
we also allow users to establish a direct connection to the execution site. This model allows for DLHub to be easily
integrated in light source workflows by streaming data from the acquisition machine to DLHub for transformation or
inference.

DLHub USE CASES

We present two separate uses cases of the DLHub service each highlighting key capabilities. DLHub analysis pipelines
were created for these use cases to simplify invocation on PetrelKube and within Amazon Web Services.

Prediction of Metallic Glass Forming Compositions. Metallic glasses are an important class of materials that
promise improved durability, corrosion resistance, and mechanical behavior in harsh environments. However, discov-
ery of metallic glass forming materials is particularly challenging due to the lack of theories that can predict which
alloys can be formed into metallic glasses. Ren et al. trained a machine learning model to predict glass-forming ability
using data from the materials literature, and used it to identify new Co-V-Zr metallic glasses via high-throughput
experiments at Stanford Linear Accelerator Laboratory (SLAC). By adding the SLAC data to the training set of the
model, they found its accuracy improved for many other types of alloys.

The associated machine learning model was contributed to DLHub as a serialized scikit-learn Random Forest
model. Containers were prepared to serve the model, which take a list of elements as inputs return the predicted glass-
forming ability for that alloy system. An example Jupyter notebook was then prepared to use the model in DLHub to
generate ternary plots showing areas of highest metallic glass forming likelihood 5.

Batch Classification of Beamline X-Ray Scattering Data. Classifying streaming data or archived data from
beamlines at national user facilities promises to aide future data discovery, promote data reuse, speed analyses, and
to allow users to receive near real-time feedback on the state of their experiments. For example, if a model is able
to automatically determine that a beam is misaligned, an experimental session may be saved from waste by user
intervention.
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FIGURE 5. Predicting metallic glass forming ability with DLHub. (a) Example code showing instantiation of DLHub Python
client, selection of model, and inference against that model. (b) A user submits a set of three elements and sends to DLHub service
for prediction. User receives the predicted glass-forming ability as an output. (c) Displaying the results of the model for Zr, Co, V
inputs as a ternary diagram.

The classification model here enables the multi-label classification of X-Ray scattering data with 17 potential
labels (e.g., “beam off image,” “FCC,” “BCC,” “polycrystalline,” “high background,” “strong scattering”) [35]. The
classification model is a Tensorflow 1.4 [36] implementation in Python 2.7 of a convolutional neural network following
the ResNet architecture. Original training data comprised simulated data and experimental data tagged by experts
collected at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory as described in Wang
et al. This pretrained model and dataset were contributed to DLHub by Wang and Yager et al.; the source code is
available on Github[37]. Containers were created to serve the model and to transform input image files to the required
input format of 256x256 NumPy arrays.
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FIGURE 6. Tagging X-Ray scattering images with DLHub. (a) User sends pointers to X-Ray scattering images to the DLHub
service. (b) DLHub returns a list of most likely tags for the image.



RELATED WORK

The requirement for automation in science has been well studied studied [38, 39, 20] and many automation systems
have been developed. Coles et al. [40, 41] developed an automated small molecule crystallography service to manage
the end-to-end-flow from sample receipt to results dissemination. The SPOT framework [39] powers similar pipelines
for Lawrence Berkeley National’s Advanced Light Source. The Rapid Experimental Analysis (REXAN) system [14]
developed at Pacific Northwest National Laboratory, pipelines developed at Argonne for high-speed tomography [12,
13] and high energy diffraction microscopy [42], and the high data rate processing and analysis initiative of the
Helmholtz Association [43] are other examples.

Scientific workflow engines, such as Galaxy [44], Parsl [34], Pegasus [45], Swift [46], and Taverna [47], enable
the fault-tolerant and reproducible execution of pipelines comprising various tools and services. While some, such as
Taverna, support Web service composition, these tools are generally designed to facilitate dataflow modeling and the
execution of sequences of tools. In contrast, Automate aims to orchestrate a mix of custom software and human-in-
the-loop tasks.

The need to reliably catalog and publish data has led to the development of several tools [18, 48, 49]. Indeed,
many of these platforms are in widespread use (e.g., Dataverse [50], DuraCloud [51], and figshare [52]). However,
current approaches have limitations with needs of light source science. First, these systems are primarily designed to
support small scale data publication and do not scale to the large data sizes typical in light source science. Second,
these systems are primarily software services and thus they cannot be easily built upon or integrated into existing soft-
ware. Finally, each system is designed for a specific community or data publication scenario and is therefore difficult to
apply to different scenarios (e.g., domain-specific metadata, various standards, data types, and curation requirements).
MDYF, in contrast, provides a generalizable platform that has been shown able to accommodate diverse communities,
datasets, and publication scenarios by outsourcing the tools required to mint identifiers, catalog metadata, and search
over distributed datasets to specialized services.

As machine learning becomes increasingly pervasive there is a growing requirement for services to publish,
share, and serve models [53]. High performance, low latency model serving is necessary to facilitate the integration
of machine learning solutions into everyday tasks. To this end, various model serving platforms have been devel-
oped [54, 55, 56, 57]. Clipper [55] and Tensorflow Serving [56] use RPC-based invocations solutions to minimize the
overhead when invoking models, providing extremely low latency serving solutions. In addition, Tensorflow serving
facilitates extreme-scale deployment of models, enabling integration in large-scale platforms, such as shopping carts.
One limitation of these systems is their strict enforcement of the types of models and transformation logic that can be
served. For example, Tensorflow Serving restrict servable types to be those that can be exported as Tensorflow graphs
and provides minimal support for transformation codes.

Similarly, model publication services, such as Kipoi [58] and ModelHub [59], have been established to publish
models along with their trained weights and metadata describing their inputs and outputs, graph design, training and
validation datasets, accuracy, as well as information relating to citation and authorship. Such tools are necessary to
disseminate machine learning models and make them available to the community.

DLHub differs from these solutions by combining publishing capabilities, model serving functionality, and the
resources required to train and invoke models on-demand. DLHub is designed to accommodate arbitrary models and
servables through containerization, removing the restrictions of serving systems such as Tensorflow Serving. Lever-
aging descriptive metadata, inspired by Kipoi [58], and the Globus Search service, DLHub enables the publication of
models such that users can search and find models, retrain them on specific datasets, and invoke them against data
on-demand.
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