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ABSTRACT

The hybrid memory cube (HMC) is a type of 3D stacked memory

which is promising to overcome the łmemory wallž problem of

the conventional DRAM. However, the operating temperature of

the HMC can be very high thus degrading the performance and

even causing malfunction of the HMC. Therefore, fine-grained

thermal-aware management (TM) techniques for HMCs are gain-

ing increasing research interests. In order to design an efficient

TM technique, a myriad of simulations should be performed at the

early stage. However, current TM simulations for HMCs depend on

complex frameworks which involve different tools. These conven-

tional frameworks are very inefficient due to the heavy workload of

generating and transferring intermediate data. In order to address

this problem, we propose HMCTherm, a cycle-accurate simulator

for the HMC with the integration of detailed power and thermal es-

timation. Compared to the conventional TM simulation framework,

HMCTherm can significantly improve the simulation efficiency by

avoiding redundant interface process.

CCS CONCEPTS

·Computingmethodologies→ Simulation tools; ·Hardware

→ Temperature simulation and estimation; · Software and its en-

gineering → Main memory;
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1 INTRODUCTION

Dynamic random access memory (DRAM) is one of the widely

employed types of main memory in today’s system. After several

years development, the DRAM technology has hit the łmemory

wallž due to the performance bottlenetck and excessive power

consumption [2, 19]. One promising solution to this problem is

to vertically stack DRAM chips and use through silicon vias for

inter-layer connection. For several years, this 3D stacked DRAMhas

been actively studied [2, 3, 10, 12]. A prime example that currently

exists as an industry standard is the Hybrid Memory Cube (HMC)

specification [10]. The HMC is implemented by stacking multiple

DRAM dies over a logic die. The logic die is used to control the
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DRAM banks and connect the HMC with the host CPU/GPU or

other HMCs through high speed serial links (i.e. SerDes interface).

Compared to 2D DRAMs, the HMC can significantly increase the

main memory bandwidth and reduce the power per useful data

transmission.

The benefits of HMCs come with severe thermal problems due

to the increased power density and several layers of dielectrics

that block the heat dissipation path [2]. According to [16], the op-

eration temperature in HMCs can easily exceed 90◦C . In future,

if we stack HMCs on one or multiple layers of processor (i.e. the

stacked-HMC-on-processor structure [21]), the temperature will

be even higher. High temperature will cause malfunction of the

HMC, degrade the memory performance and reliability etc. . Un-

der the high temperature, conventional device-level management

techniques may cause significant waste in energy and reduction

in memory bandwidth [6]. As a result, fine-grained thermal-aware

management methods for HMCs [6, 7, 16, 26] have attracted a lot

research interests. For example, authors of [6, 16] proposed to tune

the refresh rate at DRAM-row-level. In order to design an efficient

TM method, a myriad of simulations should be performed during

the early stage to test and improve the technique. As a result, it is

necessary to develop an accurate and efficient HMC simulator for

fine-grained TM techniques.

For several years, there is no free and publicly accessible HMC

simulators. Therefore, the academia depends on simulators de-

signed for 2D DRAMs (e.g., DRAMSim[20]) [7] to study the ar-

chitecture and function of 3D DRAMs including HMCs. However,

these simulators cannot accurately simulate the function of HMCs

since HMCs have a special communication protocol with the host

processor. Later, a simulator that is designed specialized for HMCs

(known as HMC-Sim) [13] was proposed. However, the function

and power model of this simulator is very coarse, therefore it is

not a good choice for simulating the fine-grained dynamic thermal

management for HMCs. Recently, Jeon et al. developed a new HMC

simulator called CasHMC [11]. Compared to its previous counter-

parts, CasHMC can provide cycle-accurate simulation. However,

this simulator still does not contain a detailed power or thermal

model.

Despite the HMC simulator, current TM simulation frameworks

for DRAMs are very inefficient since they are usually comprised of

different tools/simulators [7, 16, 26]. Each tool performs a typical

type of simulation (e.g., CasHMC for function simulation, DRAM-

Power [4] for power simulation, HotSpot [9] for temperature sim-

ulation etc. ). Therefore, a significant extra effort should be paid

to process the intermediate files. This type of simulation frame-

works may be sufficient for coarse-level simulations due to the small

amount of intermediate data. For example, in 2D DRAMs, the in-

formation of device-level power/temperature is enough since both



the peak temperature and the thermal variance in 2D DRAMs are

not large. In HMCs, however, if we still use the conventional frame-

work to perform simulations of the fine-grained TM techniques

[6, 7, 16, 26], we will encounter great interface cost (since extremely

large amount of intermediate data will be generated, reformatted,

and transferred due to the large spatial/temporal sampling size).

In this paper, we developHMCTherm1, an HMC simulator based

on CasHMC [11] with the integration of the detailed power and

thermal estimation. The main contributions of this paper are as

follows:

(1) We propose a cycle-accurate and DRAM-cell-accurate power

model for the HMC.

(2) We propose to integrate the power model and thermal model

into a cycle-accurate HMC simulator (i.e. CasHMC [11]) such

that the simulator can provide cycle-accurate power and

temperature estimation without redundant process of the

intermediate data.

(3) We propose a simulation framework based on our proposed

HMCTherm to efficiently perform the simulation for a TM

technique for HMCs.

The rest of this paper is organized as follows. Section 2 introduces

the background and motivation of this paper. The architecture of

the proposed HMCTherm simulator is introduced in Section 3. In

Section 4, we build a TM simulation framework based on HMC-

Therm and use it to simulate a thermal-aware refresh management

technique [16]. The results will be discussed in Section 5.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the HMC architecture. Then

we review the existing function and power simulators for HMCs

and traditional DRAMs. The motivation of this work will also be

discussed.

2.1 The HMC Architecture

An HMC is constructed by stacking multiple DRAM layers on a

logic layer (as illustrated by Figure 1) [10]. Each layer is composed

of 16 or 32 partitions where vertically adjacent partitions constitute

a vault. A vault is comprised of up to 16 DRAM banks, resulting in

a maximum of 512 banks per HMC device. Each vault has its own

vault controller implemented on the logic layer which is analogous

to the DIMM controller in 2D DRAMs. Vault controllers and DRAM

banks are connected with through-silicon-vias (TSVs) which can

achieve high-bandwidth and energy-efficient communication inside

the HMC. An HMC device connects host processors or other HMCs

through high-speed serial links which is composed of either 8 or

16 lanes (e.g., implemented using TSVs in the stacked-HMC-on-

processor structure). Each lane of the link enjoys large signaling

rate (up to 15 Gb/s) [10].

In order to access data from the HMC, the host processor sends

packets through the links. The packet is then routed from the link

transceivers to the corresponding vault controllers (whose address

is determined in the packet) through a crossbar network. The vault

controller will then parse the packet and issue low-level DRAM

commands to the corresponding DRAM banks. Compared to 2D

1HMCTherm is available at https://github.com/zyyang1111/HMCTherm.
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Figure 1: Illustration of the hybrid memory cube (HMC)

DRAMs, HMCs can achieve high bandwidth and support process-

in-memory.

Despite the significant improvement in bandwidth, the HMC

suffers from severe thermal problems due to the vertically stacked

structure and the increased power density. According to [16], the

operation temperature of an HMC can reach over 90◦C . The tem-

perature will be even higher if we stack the HMC on a processor

[21]. Such high temperature will degrade the performance and even

cause malfunction of the HMC. Although we can mitigate the ther-

mal problems during the design time, this may cause overdesign

and significant waste of energy. Therefore, thermal-aware manage-

ment methods for HMCs are gaining more interests (e.g., dynamic

refreshment management [6, 7, 16] and thread migration [26] etc.

). In order to design an efficient TM technique, a myriad of sim-

ulations should be performed during the early stage to test and

improve the technique. As a result, it is necessary to develop an

accurate and efficient TM simulator for HMCs.

2.2 Related Work and Motivation

In order to study the functionality of DRAM, several DRAM simula-

tors have been proposed. DRAMSim [20] is one of the most famous

simulators for DDR2/DDR3 memory systems. It can provide cycle-

accurate simulation results. Since the detailed architecture of HMC

is not disclosed, DRAMSim is also used in the simulation of 3D

DRAMs [7]. However, this simulator is not sufficiently accurate

to simulate the function of HMCs due to the unique structure and

memory-processor interface of HMCs. HMC-Sim [13] is a kind of

simulator that targets at HMCs. However, the embedded model

of this simulator is very coarse, thus it cannot provide accurate

cycle-based simulation results. Recently, Jeon et al. proposed a cycle-

accurate HMC simulator called CasHMC [11]. This simulator can

provide cycle-by-cycle simulation of every module in the HMC

and generate analysis results including the number of access, data

bandwidth, and latency etc. . Compared to HMC-Sim, CasHMC has

a much finer model for analyzing the function of the HMC.

The main problem of all existing DRAM/HMC simulators is

that they do not contain detailed power or temperature models.

Therefore, external tools are required to estimate the power and

temperature. For example, DRAMPower [4] is often used to estimate

the power and energy for a wide range of DRAM configurations (i.e.

DDR2, DDR3, and LPDDR etc. ). However, existing DRAM power

simulators do not contain the power model for HMCs. Moreover,

most of such tools do not estimate the detailed physical distribution

of the DRAM power (e.g., the power of each DRAM cell). Therefore,

they cannot meet the requirement of the simulation for fine-grained

TM techniques for HMCs [6, 16]. As for the temperature estimation,

there are various thermal simulators for 3D integrated circuits.

HotSpot [9] is one of the most widely used simulators. However, this
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Figure 2: Illustration of the architecture of HMCTherm

which is built based on CasHMC [11]. The pink blocks in-

dicate new modules of HMCTherm.

thermal simulator is not designed specified to the HMC. Complex

process of the intermediate data is required in order to use HotSpot.

Obviously, this will lead to heavy interface workload if we want to

perform cycle-accurate simulations for the HMC.

In this work, we integrate a detailed power and thermal model

to the HMC simulator and propose HMCTherm. With the proposed

simulator, we can perform cycle-accurate function, power, and tem-

perature simulation without redundant process of the intermediate

data.

3 HMCTHERM

Figure 2 shows the architecture of HMCTherm. Our simulator is

built based on CasHMC [11]. The architecture of CasHMC is de-

veloped to mimic the data/control path of the HMC specification.

The input to CasHMC is a trace of memory requests (i.e. mem-

ory address and memory command type) from the host processor.

CasHMC first parses the request into the packetized request and de-

livers it through the serial link module which simulates the SerDes

host-HMC interface. Following the link module, CasHMC routes

the memory requests to the vault controllers through the cross-

bar switch. The vault controller module decodes the packetized

memory request into the DRAM command which is sent to the cor-

responding DRAMmodule for process. More details of the CasHMC

architecture can be found in [11].

In HMCTherm, we implement power and thermal estimation

modules to the original CasHMC architecture as illustrated by the

pink blocks in Figure 2. Section 3.1 will introduce the power model

used in HMCTherm and the thermal model will be described in

Section 3.2. Besides, HMCTherm provides an interface for user-

defined thermal-aware management modules. Section 4 describes a

TM module integrated to HMCTherm which performs the thermal-

aware refreshment management.

3.1 Power Estimation Module

HMCTherm contains a power model that can estimate the power

of each DRAM cell. Therefore it is able to support the simulation

of fine-grained power and temperature management methods for

operation IDD IDDQ tOP

ACT IDD0 − IDD3N 0 tRAS
PRE IDD0 − IDD2N 0 tRC − tRAS
RD IDD4R − IDD3N IDD4RQ tRD
WR IDD4W − IDD3N IDD4WQ tWR

REF IDD5 − IDD3N 0 tRFC
BACKpre IDD2N 0 tbpre
BACKact IDD3N 0 tbact

Table 1: Datasheet Information of Memory Operations

HMCs. The power of HMCs is modeled in two parts: (1) basic mem-

ory operation power (Section 3.1.1) and (2) logic layer power (Sec-

tion 3.1.2). In Section 3.1.3, we will introduce the power estimation

scheme in the HMCTherm.

3.1.1 Basic Memory Operation Power. Despite the stacked struc-

ture and the serial link interface, the internal memory access of

HMCs basically follows the DDR3 scheme. Therefore, we can use

the same power modeling method for DDR3 to model the basic

memory operation power (e.g., the power of DRAM write/read,

activation etc. ) in the HMC. Currently, the most viable method to

estimate the total power consumption for each DRAM operation is

to use the JEDEC-specified current, voltage and time values from

memory datasheets which are acquired based on real hardware

measurements [3]. The datasheet specifies the supply voltage of the

memory. It also gives the execution time of each memory operation

and the average current the memory consumes during this period of

time. Table 1 lists the datasheet information for seven memory op-

erations: Activate (ACT), Precharge (PRE), Read (RD), Write (WR),

Auto-Refresh (RF), Precharged-mode Background (BACKpre ), and

Active-mode Background (BACKact )
2. In this table, we use tOP to

indicate the period that a memory operation is used. tRAS , tRC and

tRFC are given by the datasheet. tRD and tWR is determined by

the burst-length (BL), and is usually defined as tRD = tWR = BL/2

due to double rate access. tbpre and tbact are the total time period

the HMC spent in the precharged and active modes, respectively.

Given the above information, the average power consumed by the

HMC during a period of time (tTOT ) can be calculated using the

following equation:

P =
1

tTOT
× Enerдy =

1

tTOT

Nop∑

i=1

(I iDD + I
i
DDQ ) ×VDD × t iOP (1)

In this equation, NOP is the total number of memory operations

within tTOT . It should be noted that the accuracy of this model is

determined by the accuracy of values provided by the datasheet.

Since we do not have the detailed specification of HMCs, we can

use the datasheet for DDR3 to calculate the power [4].

Specify the power for each DRAMmat: As described in Sec-

tion 2.2, in 3D stacked memory systems, merely knowing the total

memory power is not sufficient to simulate the fine-grained TM

techniques [6, 16]. Therefore, in HMCTherm, we further evaluate

the power in a much finer granularity. We assume that each layer

of the HMC works similarly to 2D DRAMs, such that it is orga-

nized as an array of DRAM tiles (also known as łmatž in many

2BACKpre and BACKact are classified as two memory operations just for the sim-

plicity of illustration. They actually indicate two states of the background power.
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literature).Mat is the basic organization of modern DRAMs [18, 23].

Each mat has its own supporting circuits (such as decorders, row

buffers, sense amplifiers etc. ) located at the peripheral of the mat.

In this work, we will specify the power of each mat by spreading

the power as evaluated above to the corresponding mats. In order to

achieve this, we first spread the power to specific DRAM cells and

then calculate the power of mats. The power of different memory

operations is spread differently:

• RD, WR. For each Read/Write operation, a set of data is

loaded from/stored to a set of continuous DRAM cells. This

set of DRAM cells is determined by the requestedmemory ad-

dress (i.e. {vault, bank, row, column}) and the number of cells

is determined by the burst length (BL). The power of each

Read/Write operation is spread among the corresponding

cells.

• ACT, PRE, REF. Activate, Precharge, and Auto-Refresh op-

erations are performed for a row of DRAM cells 3. The power

of such operations will be spread across the cells in the cor-

responding row.

• BACKpre , BACKact . The background power of a DRAM

bank is uniformly distributed among all cells within the

bank.

With the above-mentioned method, we can specify the power

for each DRAM cell. Following this, with a user-defined DRAM-cell-

to-mat mapping function (or profile), we can calculate the power

for each mat by summing up the power of DRAM cells within

the mat. Currently, a simple mapping function is built into the

power model and we allow the user to specify the size of mat from

the command line (by specifying the value of Nx and Ny , which

indicates dividing a DRAM bank into Nx × Ny mats, respectively).

Users are also allowed to input their own mapping file.

3.1.2 Logic Layer Power. Compared to the basic DRAM opera-

tion power, the power of the logic layer in the HMC is much harder

to model. This logic layer serves a number of functions such as the

communication between the HMC and the host CPU/GPU through

serial links, the vault controller, and the cross-bar switch between

the links and vault controllers etc. . Since we do not have either the

detailed circuit-level technologies or the measured power values for

the logic layer, it is difficult for us to accurately model the power of

this layer. According to [10], the average power of the logic layer is

around 1.83 times of the power of DRAM layers (i.e. the total basic

memory operation power). Therefore, in this work, after getting

the total power of the DRAM layers, we multiply this power by

1.83 to estimate the total power of the logic layer. And we assume

this power is distributed uniformly in the logic layer.

3.1.3 Power Estimation Diagram. The previous two sections

introduced the power modeling methodology in HMCTherm. In this

section, we will describe how this power model is implemented in

HMCTherm. Figure 3 illustrates the power estimation diagram in our

simulator. In the proposed simulator, the power and temperature

are estimated every power sampling epoch which is defined by the

user in the command line. The HMC power estimation process is

introduced as follows:

3Suppose the distributed refresh scheme (which is the most common scheme in modern
DRAMs [16]) is used
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Figure 3: Diagram of the power estimation in HMCTherm

(isEpoch indicates whether one power sampling epoch is

reached).

When a DRAM operation (i.e. ACT, PRE, RD, WR, RF) is per-

formed, the energy of this operation is calculated using the power

model (Equation 1). Then the energy, the memory address and the

operation type are sent to the location mapping module to spread

the energy to the corresponding DRAM cells (or subarrays). As

for the background energy (i.e. BACKpre or BACKact ), we use a

counter to count the number of cycles that each bank of the HMC

falls in each memory mode (i.e. active or precharged). At the end

of a power sampling epoch, we use this statistic to calculate the

background energy during this period of time and spread this en-

ergy for each bank. The spread background energy is then added to

the energy profile. At this time, the total energy of DRAM layers is

acquired and the energy profile of the logic layer is thus calculated

(Section 3.1.2). Following this, we divide the energy of each DRAM

cell (or subarray of DRAM cells) by the length of the epoch (tTOT )

to get the power profile. This power profile is then fed into the

thermal model (Section 3.2) to get the temperature estimation.

Besides the HMC power, our simulator also provides an interface

such that the user can input the CPU/GPU power. In this way,

our simulator can achieve integrated thermal simulation for the

stacked-HMC-on-processor structure.

3.2 Thermal Estimation Module

3.2.1 Transient Model. One of the most popular thermal models

is the thermal resistance and conductance network (RC-network)

which is analogous to the electrical network [9, 22]. The whole

3D stack is divided into thermal grids. In the current version of

HMCTherm, the thermal grid is the same as the DRAM subarray

defined by the user (as introduced in Section 3.1). The heat flux

(which is the analog of the electrical current source) of each grid

is calculated based on the power distribution of the HMC. The

average temperature of a thermal grid is analogous to the voltage.

The temperature difference between two adjacent thermal grids

is caused by the heat flow between the two grids. The heat con-

duction between two thermal grids is represented by a thermal

resistor which is calculated based on the geometrical dimension

and material properties of the related thermal grids. Analogous to

the electrical capacitance, each thermal grid has a thermal capacitor

which represents the ability of the grid to store the thermal energy.

A Thermal RC-network is illustrated by Figure 4. In the network,

each thermal grid is represented by a node point.

4
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Figure 4: Illustration of the thermal RC network.

The relationship between the temperature and the power is

expressed as follows:

GT = P +C
dT

dt
(2)

In Equation 2, t represents the time. P ∈ RN and T ∈ RN are

vectors containing the power and temperature of each thermal grid,

respectively.G ∈ RN×N is the conductance matrix andC ∈ RN×N

is a diagonal matrix with each element in the diagonal representing

the thermal capacitance of the corresponding thermal grid.G and

C are calculated with thermal parameters determined by the user,

and we assume they are constant during the simulation. Normally,

G andC are sparse matrices.

The transient temperature profile is calculated every power sam-

pling epoch (as introduced in Section 3.1.3). At the end of each

epoch, we estimate the average power profile (i.e. P ) during this

epoch using the method introduced in Section 3.1. The current

temperature is calculated by solving the Equation 2 using explicit

method [27] with the temperature at the end of the previous epoch

as the initial state. Note that, sinceG andC are constant, they are

only calculated once at the beginning of the simulation and are

reused afterwards.

3.2.2 Steady State Model. Sometimes, it is useful to know the

steady state temperature profile after the simulation. Therefore,

we also implement a steady state thermal model which is used to

calculate the temperature at the end of the simulation. The steady

state thermal model only contains the thermal resistors, thereby

Equation 2 is reduced to:

GT = P . (3)

In this equation, P is the profile of the average power during the

period of simulation. In order to solve the linear equation (i.e.T =

G
−1
P ), we use SuperLU [5], which is a library to solve large sparse

linear equations.

3.3 Thermal Model Validation

The proposed thermal model is evaluated against the FEM sim-

ulation results performed with ANSYS Workbench. We use both

methods to estimate the temperature of a one-layer multi-core

processor. The power profile of this processor is generated from

(W)

(° C) (° C)

(a) (b)

(c) (d)

Figure 5: (a) The original power profile, (b) the transient re-

sult for for the peak temperature, (c) the temperature profile

at 1s calculated using our thermal model and (d) the temper-

ature profile at 1s calculated using the FEM method

[17]. The simulation is taken for 1.6s . During the first one second,

the processor power stays constant and the total power equals to

18W. The power profile during this period of time is illustrated

in Figure 5(a). After 1s , the processor is switched to a low-power

mode and the total power is reduced to 4.5W. The transient peak

temperature is shown in Figure 5(b) where the red dots indicating

the FEM simulation results while the blue line indicating the result

of the proposed model. Figure 5(c) and (d) illustrate the tempera-

ture profile at 1s estimated using the proposed model and the FEM

method, respectively. As illustrated by the figure, our proposed

model matches the FEM results accurately in both temporal and

spatial domain. Moreover, our method can estimate the temperature

in a much efficient way. Also note that although we use the proces-

sor power to validate the proposed model, this model is applicable

to the memory temperature estimation.

4 CASE STUDY: THERMAL-AWARE REFRESH
MANAGEMENT

HMCTherm supports cycle-accurate function, power and thermal

simulation, thereby it provides a much more efficient method to

test and develop fine-grained thermal-aware dynamic management

techniques for the HMC. In this section, we will use HMCTherm

to simulate a thermal-aware refreshment management technique

similar to the one introduced in [16].

4.1 Background

Since DRAM cells lose data due to the leak of capacitor charge,

refresh is required to preserve the data integrity. Refresh is a pro-

cess that periodically performs readout and rewrite to DRAM cells

thus causing energy waste and performance degradation [16]. The

overhead of refresh increases as the DRAM capacity increases. In a

5



4GB DRAM, around 30% DRAM energy will be consumed by the

refreshment [16].

The refresh period is determined by the retention time of DRAM

cells. The retention time of a DRAM cell is determined as the time

that a DRAM cell loses data. Since the retention time varies among

DRAM cells, the refreshment period is taken as the shortest reten-

tion time among all DRAM cells. The temperature has significant

impacts on the retention time of DRAM cells. When the tempera-

ture increases, the retention time decreases exponentially [8, 15]. In

2D DRAMs, since temperature is usually not very high, the temper-

ature’s impacts on the refresh period is addressed in a coarse way:

during the normal temperature operation (i.e. below 85◦C), a DRAM

cell is refreshed every 64ms, while the refresh period reduces to

32ms when the temperature exceeds 85◦C but below 95◦C .

Due to the stacked structure, the operation temperature of HMCs

can easily exceed 90◦C . If considering the stacked-HMC-on-processor

structure, this temperature will be even higher. The high tempera-

ture will significantly exacerbate the overhead of DRAM refresh

(e.g., generating more energy). In order to solve this problem, sev-

eral people have proposed run-time management techniques to

tune the refresh rate according to the temperature [7, 16]. These

authors build complicated simulation frameworks to evaluate their

proposed techniques. In this section, we will show how to use

HMCTherm to perform such simulations. In order to demonstrate

this, we build a framework based on HMCTherm to simulate the

thermal-aware refresh management technique introduced in [16].

This refresh management technique is briefly introduced below and

our framework will be described in Section 4.2.

Liu et al. [16] proposed a row-level refresh management tech-

nique based on distributed refresh scheme. The distributed refresh

requires the memory controller to periodically issue an auto-refresh

command to the DRAM which then chooses specific rows to re-

fresh according to an internal counter. The number of rows to

refresh during one auto-refresh command is determined by the

memory capacity. The time between two auto-refresh commands

is indicated by tREF I . Conventionally, all DRAM cells have the

same tREF I which is determined by the shortest retention time

among all DRAM cells. However, authors of [16] discovered that a

significantly large amount of DRAM cells do not need that frequent

refreshment. Therefore, they proposed to allow each row of DRAM

cells to have its own tREF I which is determined by the shortest

retention time of the cells in the row. They adopted three levels

of refresh period: {64ms, 128ms, 256ms}. If the retention time of a

row (i.e. the minimum retention time of DRAM cells in the row)

falls in the range of [128ms, 256ms), this row is refreshed every

128ms. Each row has a counter that determines if the row is ready

to refresh. The temperature’s impact on the retention time is also

considered. They used the model presented in [8] to scale the re-

tention time of each row according to the temperature. However,

the authors depend on external tools to estimate the temperature,

which is very inefficient. In the next section, we will introduce a

framework to simulate the above-mentioned dynamic management

technique.
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Figure 6: Illustration of the (a) RFControlmodule and (b) the

whole simulation framework.

4.2 Simulation Framework

In this section, we will introduce a framework that is built based on

the proposed HMCTherm to implement the thermal-aware refresh

management technique as introduced in [16] on a stacked-HMC-

on-processor structure. We stack a HMC on a multi-core processor.

Our framework includes the architectural-level function and power

simulators of multi-core processors, HMCTherm and the scripts

processing interface data. The whole framework is illustrated in

Figure 6 and is introduced in detail as follows.

4.2.1 Refresh Control Module. The kernel of this framework is

our proposed HMCTherm. By default, the refresh in HMCTherm

follows the distributed refresh scheme. In order to support the re-

fresh management technique, we add a refresh rate control module

(called RFControl) to the original HMCTherm. This module has the

following three functions (as shown in Figure 6(a)):

(1) Initialize the Retention Time. RFControl module reads

the data from a text file which specifies the initial retention

time of each DRAM cell. This file is generated by the user. In

this work, the retention time of each DRAM cell is generated

according to the probability distribution reported in [16].

(2) Row-level Refreshment Counter. RFControl implements

a counter (Row-Counter) for each row of the HMC as intro-

duced in [16] to achieve the row-level management of the

refresh rate. The Row-Counter is initialized with the initial

retention time for each DRAM cell (as introduced above).

(3) Thermal-aware Management. RFControl adjusts the re-

tention time of each row of the HMC (by adjusting the Row-

Counter) according to the temperature profile calculated by

HMCTherm (as introduced in Section 3).

Note that the implementation of RFControl is not difficult. How-

ever, the main benefits of using HMCTherm is that we can get

the power and thermal information of HMCs at fine-grained spa-

tial/temporal granularity without transferring data between the

HMC simulator, power estimator and thermal simulator.

4.2.2 Other Modules in the Framework. The whole framework

is illustrated in Figure 6(b). We use Multi2Sim [24] to perform the

architectural function simulation of a multi-core processor. The

architectural parameters of the processors are defined by the user.

The main memory latency is initialized with a typical value and
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then updated iteratively using the value from the HMCTherm simu-

lation result. The output of Multi2Sim will be a memory trace, the

performance statics (e.g., the number of cycles, the branch hit rate

etc. ). The performance statics are fed into McPAT [14] to calculate

the power of each module in the processor, which is then used

to generate the power profile of the processor according to the

processor’s floorplan specified by the user. We provide a MATLAB

script to help this conversion. The power profile of the processor

layer, the memory trace, and the initial DRAM cell retention time

are then fed into the HMCTherm simulator to perform memory

simulation. HMCTherm simulation will give you the HMC perfor-

mance, power and temperature. The HMC latency is used to update

the corresponding architectural parameter for the CPU simulation.

This is processed in a loop which will stop when the change in

HMC latency is negligible.

5 RESULTS AND ANALYSIS

In this section, we perform simulations with HMCTherm and com-

pare the results with/without using the refresh management tech-

nique introduced in [16]. The baseline case (i.e. Without Man-

agement) is simulated simply with HMCTherm while the łWith

Managementž case is simulated using the framework described in

Section 4.2. For the baseline case, the refresh period for all DRAM

cells is 32ms due to the high operation temperature in the HMC. For

the łWith Managementž case, four levels of refresh period ({32ms,

64ms, 128ms, 256ms}) are applied. The processor layer is imple-

mented with 16 cores. The operating frequency of the processor is

2GHz. Other parameters of the processor are the same as introduced

in [21] except for that we will update the main memory latency

according to the HMCTherm simulation results. The operating fre-

quency of the HMC is 1.25GHz and the power sampling epoch

used in this experiment is 200000 HMC cycles. We run simulations

with three benchmarks from the PARSEC [1] and SPLASH-II [25]

benchmark suits. In Section 5.1 we will introduce the output files of

HMCTherm. The simulation results will be discussed in Section 5.2.

5.1 Output files

When the simulation is over, a setting log file and six output files

containing the information of the performance (i.e. latency, band-

width etc. ), power, and temperature of the HMC are saved to the

user-defined result folder. The setting log file (*_setting.log) and the

performance output file (*_result.log) are the same as introduced

in [11]. The HMCTherm has five CSV files storing the power and

temperature information of the HMC.

• power_trace.csv file stores the power of each power grid for

each power sampling epoch. The format of each line of data

in this CSV file is łepoch ID, layer, x-coordinate, y-coordinate,

powerž.

• temperature_trace.csv file stores the temperature of each ther-

mal grid4 for each power sampling epoch. The format of each

line of data in this CSV file is łepoch ID, layer, x-coordinate,

y-coordinate, temperaturež.

• Average_Power_Profile.csv file stores the average power of

each power grid during the time period of the simulation.

4In the current version, the thermal grid is the same as the power grid.

The format of each line of data in this CSV file is łlayer,

x-coordinate, y-coordinate, powerž.

• static_temperature.csv file stores the static temperature of

each thermal grid at the end of the simulation (Section 3.2.2).

The format of each line of data in this CSV file is łlayer,

x-coordinate, y-coordinate, temperaturež.

• power_statics_trace.csv file stores the power breakdown for

each type of DRAM operation for each power sampling

epoch. The format of each line of data in this CSV file is

łepoch ID, total power, RD power, WR power, ACT power,

RF power, PRE powerž.

5.2 Results for Refresh Management

Figure 7-9 illustrate the simulation results for the LU, FLUIDANI-

MATE, and STREAMCLUSTER benchmark, respectively. In each

figure, (a)-(d) shows the trace of total HMC power, refresh power,

DRAM access power (i.e. RD, WR, ACT and PRE power), and the

HMC transaction latency, respectively. Red lines in the figures illus-

trate the traces of the conventional refreshment technique while the

blue lines show the traces of the case when using the thermal-aware

refresh as introduced in [16]. As demonstrated by the sub-figures

(a) and (b) in Figure 7-9, if the conventional refresh technique is

used, more than half of the HMC power is consumed by the re-

fresh. Frequent fresh will slow down the memory access rate (as

illustrated by the sub-figure (d) in each figure), thus leading to a

relatively small DRAM access power (as shown by the sub-figure

(c) in each figure). According to [16], most of the refreshment is

unnecessary. With the management technique proposed by [16],

the HMC is refreshed less frequently, thereby the total power and

the transaction latency are reduced.

6 CONCLUSION

HMC is a kind of 3D stacked DRAM which can achieve high mem-

ory access bandwidth. However, the thermal problem of HMCs and

the future HMC-on-processor structure necessitates fine-grained

thermal-aware management for HMCs. In this paper, we propose

HMCTherm, a cycle-accurate HMC simulator that is integrated with

detailed power and thermal model. HMCTherm can support simula-

tions of fine-grained thermal-aware management techniques with

higher efficiency compared to traditional simulation frameworks

due to the significant reduction in the workload of generating and

transferring the intermediate data.
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