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ABSTRACT
In order to enable low power and high performance evaluation
of neural network (NN) applications, we investigate new design
methodologies for synthesizing neural network ASICs (NN-ASICs).
An NN-ASIC takes a trained NN and implements a chip with cus-
tomized optimization. Knowing the NN topology and weights al-
lows us to develop unique optimization schemes which are not
available to regular ASICs. In this work, we investigate two types
of value-driven optimized multipliers which exploit the knowledge
of synaptic weights and we develop an algorithm to synthesize
the multiplication of trained NNs using these special multipliers
instead of general ones. The proposed method is evaluated using
several Deep Neural Networks. Experimental results demonstrate
that compared to traditional NNPs, our proposed NN-ASICs can
achieve up to 6.5x and 55x improvement in performance and energy
efficiency (i.e. inverse of Energy-Delay-Product), respectively.
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1 INTRODUCTION
Conventional approaches for implementing neural networks have
relied on CPUs, GPUs and neural network processors (NNPs). NNPs
are neural network (NN) specific programmable implementation
platforms which take advantage of the NN topology which con-
ventional CPUs/GPUs cannot exploit. However, the performance
and energy efficiency of NNPs are restricted by memory access and
computation parallelism. While the cost of memory access (e.g.,
latency, energy etc.) can be reduced using new on-chip memory
technologies (i.e. eDRAM [3]), improving the computation paral-
lelism (thus improving the performance) is often accompanied with
substantial increase in the chip area and energy or degradation of
the NN accuracy [3, 4]. Fast and efficient implementation of NNs
in hardware is still an open problem.

In this work, we target at implementing trained NNs with ASICs.
The ASIC implementation can help substantially improve the per-
formance and energy efficiency compared to conventional NNPs
(and CPUs/GPUs) through customized optimizations. While tradi-
tional synthesis techniques can be used to implement such neural
network ASICs (NN-ASICs), NNs comprise other details that can be
used to further optimize the designs. Since the topology and synap-
tic weights of a trained NN (Figure 1(a)) are known a priori, we
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Figure 1: (a) An illustration of the neural network and (b)
the DianNao [2] architecture (NBin = Input Cache; NBw =
Weight Cache; NBout = Output Cache).

can estimate the typical value each compute unit (e.g., multiplier)
will process before synthesizing the NN-ASIC. Therefore, we can
substantially optimize the design of these compute units beyond
what traditional synthesis can achieve. In this work, we focus on
synthesizing the multiplication with value-driven optimized multi-
pliers (Section 3). Compared to traditional NNPs, the performance
and energy efficiency of the proposed NN-ASICs can be improved
in a threefold manner:

• The size, energy and delay of a single multiplier is reduced
due to the simplified circuit.

• More multipliers can be implemented due to the smaller
size of a single multiplier, which increases the computation
parallelism thus improving the performance.

• By hard coding weights in multipliers, the memory access
cost is reduced due to lesser demand on off-chip memory
access/bandwidth.

In Section 4, we propose an algorithm for synthesizing the mul-
tiplication of NNs with value-driven optimized multipliers such
that the performance and energy efficiency are maximized. Such
value-driven synthesis method does not affect the NN accuracy
since it does not change the topology or the parameter of the NN.
However, we can further improve the efficacy of our technique by
observing that NN models can be trained to have more amenable
weight values (Section 5).

The proposed value-driven synthesized NN-ASIC is evaluated
using a set of Deep Neural Networks (DNNs) [7ś9, 12, 13]. The
baseline case is a DianNao-like NNP [2] implemented with gen-
eral 16-bit Q9.7 fixed-point multipliers. As demonstrated by the
experimental results (Section 6), compared to the baseline case, our
method can achieve up to 6.5x and 55x improvement in performance
and energy efficiency, respectively.

2 PRELIMINARIES AND MOTIVATIONS
Figure 1(a) illustrates an NN which consists of multiple intercon-
nected neurons that perform weighted accumulation of synaptic
signals and then feed the convolved value into non-linear activation
functions. Currently, there is a growing demand of processing NN
applications in NNPs which have better performance and energy
efficiency compared to conventional CPUs and GPUs [2, 3, 6]. A
typical NNP architecture is shown in Figure 1(b). On deploying the
NN, the data (i.e. inputs, weights etc.) are fetched from the main
memory to the on-chip cache, and then are processed through the



Neural Processing Block (NPB). The intermediate results may also
be written back to the main memory. For large NNs, the memory
access may become limited, thus motivating the wide study of tech-
niques that reduce the cost of off-chip memory access. For instance,
we can implement the main memory with eDRAM to achieve faster
access [3]. Another factor that restricts the performance and energy
efficiency of NNPs is the computation parallelism which is deter-
mined by the number of compute units (e.g., multipliers, adders
etc.). While increasing the number of compute units can improve
the performance, this may substantially increase the chip area and
energy. If the chip area or energy is a design constraint, there is lit-
tle room to improve the performance of NNP. In order to solve this
dilemma, some people propose łmultiplier-freež NNPs [4] where
the multiplication is realized using modules (e.g., shifters) with
lesser delay, area and energy than traditional multipliers. In order
to achieve this, the weight of NNs should be rounded to typical
values which may cause significant loss of accuracy when applied
to large NNs. This means we need much extra effort to train the
NN to regain the accuracy.

Contemporary NNPs are designed as general as possible such
that they can be used to process a wide range of NNs. This kind
of NNPs is based on the assumption that we have no knowledge
of NN parameters before fabricating the NNP. However, as the
NN technology becomes mature, for some applications, the NN is
accurate enough with a pre-trained set of weights. For instance,
we have already achieved high accuracy when using the NN to de-
tect the handwritten digit [14]. In this case, after an NN is trained,
there will be a demand of fabricating an NN-ASIC to process this
NN. Then this NN-ASIC can be used as IP cores to build various
systems. Compared to general NNPs, the ASIC implementation
can substantially improve the performance and energy efficiency
through customized optimizations. In this work, we investigate
how the performance and energy efficiency of NN-ASICs are im-
proved by synthesizing the multiplication of NNs with multipliers
optimized according to the synaptic weight. As will be illustrated
in Section 3, this kind of value-driven optimized multipliers has
lesser area, delay and energy compared to general multipliers.

3 VALUE-DRIVEN OPTIMIZATION OF
MULTIPLIERS

Although our work can be applied to NN-ASIC implemented with
any types of multipliers, we will focus on fixed-point multipliers in
this work. From now on, we use łgeneral multiplierž to represent
the 2-input 16-bit fixed-point multiplier designed for the Q9.7 fixed-
point data format (Figure 2(a)). In this section, we will investigate
the property of two value-driven optimized multipliers which can
be used in NN-ASICs: (1) Fixed-weight Multipliers (Section 3.1)
and (2) Varied-weight Multipliers (Section 3.2). Their properties are
compared against the general multiplier. All multipliers are synthe-
sized with 90nm standard cell library using Cadence RTL Compiler
which also performs early timing, power and area analysis.

3.1 Fixed-Weight Multipliers
This kind of multipliers is illustrated in Figure 2(b). One input is
hardwired with a constant value while the other input stays as a
variable. Multipliers with different hard coded input values have
distinct area, energy (i.e. Power-Delay-Product) and delay. In order
to study the property of such multipliers, we randomly choose 300
different values within the range that can be represented by the
signed Q9.7 fixed-point data format and hard code the value to one
input of the multiplier (i.e. the Fixed-Input). Each of these multipli-
ers is then synthesized using Cadence RTL Compiler and the area,
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Figure 2: An illustration of (a) the general 16-bit fixed-point
multiplier, (b) the fixed-weight multiplier (the fixed-input
value is 0010hex), (c) the varied-weightmultiplier and (d) the
short-input multiplier.

energy and delay of each multiplier is analyzed. Figure 3(a)-(c) illus-
trate the distribution of normalized area, energy and delay of the
fixed-weight multiplier, respectively, among the selected samples.
The data (x-axis in Figure 3(a)-(c)) are normalized to the general
multiplier. The results demonstrate that compared to the general
multiplier, the area and energy of the fixed-weight multiplier can
be substantially reduced. The reason of such improvement is that
when one input of the multiplier is fixed, the circuit of multiplier
can be simplified by using fewer gates (and connections). For ex-
ample, if the value of the fixed input is 0010hex (as illustrated in
Figure 2(b), which represents 0.125 in Q9.7 fixed-point data for-
mat), the corresponding fixed-weight multiplier just needs to fulfill
left-shifting Input 1 by 5-bits. This circuit is much simpler than a
general multiplier.

According to this phenomenon, we can use a fixed-weight multi-
plier to perform the multiplication with a specific synaptic weight
(by fixing the value of one input to the synaptic weight). Compared
to merely using the general multiplier, the use of fixed-weight mul-
tipliers can lead to several improvements in the performance and
energy efficiency of NN-ASICs: (1) Compared to general multipliers,
the area of a single fixed-weight multiplier is much smaller, hence
we can implement more multipliers within a certain chip area to
achieve higher computation parallelism. (2) Since the energy of
a single multiplier is substantially smaller, the total computation
energy can be reduced. (3) Since the synaptic weight is hard-coded,
the main memory access for weight can be avoided thus improving
the memory access efficiency.

3.2 Varied-Weight Multipliers
In the extreme case, we can implement a fixed-weight multiplier
dedicated to each multiplication. In reality, this may not be feasible
due to the chip area constraint thus necessitating sharing multipli-
ers between synapses. However, a fixed-weight multiplier can only
be shared by synapses with the same weight. In some cases, this
leads to suboptimal solutions. Considering an NN which contains
100 synapses with weightw0 and five synapses each with weight
w1,w2,w3,w4,w5, respectively. If the area constraint only allows 6
multipliers in total, we can only have one fixed-weight multiplier
for weight w0 and all the 100 synaptic operations are performed
on this multiplier. This leads to 100 cycles to perform all the multi-
plications in this NN (assuming each multiplier only performs one
multiplication in one clock cycle and multipliers execute in parallel).

2
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Figure 3: The distribution of the normalized (a) area (b)
energy (Power-Delay-Product) and (c) delay for the fixed-
weight multiplier. The red and green markers indicate the
property of two multipliers with different fixed-input val-
ues (w1 = 0.3672,w2 = 0.375). (d) The normalized area, energy
and delay for the short-input multiplier with different bit-
length of the short-input. (The data are normalized to the
general multiplier.)

On the other hand, if we can have a Varied-weight Multiplier
such that the synaptic operations with w1,w2,w3,w4,w5 can all
be performed on this multiplier (in totally 5 cycles), we can add
another four fixed-weight multipliers forw0. In this case, the total
number of cycles to perform all the multiplication is reduced to 20.

Figure 2(c) illustrates a varied-weight multiplier. It is composed
of a fixed-weight multiplier and a short-input multiplier (in-
troduced later). The fixed-input value of the fixed-weight multiplier
is the base weight (wb ), while the short-input multiplier is used
to calculate the multiplication between the input and the weight
variance (w −wb as illustrated in Figure 2(d) wherew is the original
weight). The results of the two multipliers are then summed up
in the addition stage. Figure 2(d) illustrates a Short-input Multi-
plier: the bit-length of one input (i.e. the short input) is shortened
to represent the least significant bits of a Q9.7 fixed-point data
while the other input stays as a variable. Figure 3(d) shows the
normalized area, energy and delay of the short-input multiplier
with the short input of different bit-length. According to the result,
as the bit-length decreases, the area/delay/energy of the short-input
multiplier becomes smaller than the general multiplier. Therefore,
it is possible that a varied-weight multiplier has lesser area and
energy than a general multiplier even if it is composed of a fixed-
weight multiplier and a short-input multiplier. For example, in the
varied-weight multiplier illustrated in Figure 2(d), letwb = 0.375. If
we would like to use this multiplier to process synaptic operations
with weights between 0.375 (i.e. 0030hex ) and 0.3984 (i.e. 0033hex ),
the bit-length of the short-input multiplier contained in this varied-
weight multiplier should be 2. Based on the data in Figure 3, the
area and energy of this varied-weight multiplier is only 15% and 4%
of the general multiplier, respectively. Moreover, in this example,
we can use 2 bits to store the weight variance instead of memorizing
the original weight (16 bits) thus reducing the memory access.

Algorithm 1: Multiplication-Synthesis Algorithm

1 Build the library for the value-driven multipliers

2 Implement each multiplication with a dedicated multiplier

3 Estimate the area, Nclk and EDP

4 Insert the initial design into POL

5 Cluster multipliers to meet the chip area constraint

6 Select one design from the POL

7 use one multiplier to perform multiple multiplications

8 estimate the area, Nclk and EDP

9 update POL

4 VALUE-DRIVEN SYNTHESIS OF NN-ASICS
The NN-ASIC is developed based on the popular NN chip architec-
ture (Figure 4(a)) [2]. When the NN is small enough, we can imple-
ment each operation with a compute unit; otherwise, the compute
unit should be reused to meet the chip area constraint. Different
from [2, 3], the multiplication stage in our proposed NN-ASICs is
synthesized using the value-driven optimized multipliers. The
synthesis algorithm will be introduced in this section.

Problem Statement. Given a total multiplier area constraint
(Amult ) and a trained NN, we would like to determine the number
and type of value-driven optimized multipliers as well as the map-
ping of multiplications to these multipliers. The objective would be
to maximize the performance and energy efficiency of the multipli-
cation stage.

4.1 Algorithm for Single-layer NNs
In this subsection, wewill introduce theMultiplication-Synthesis
Algorithm for single-layer NNs (as illustrated in Algorithm 1 and
Figure 4(d)-(h)). This algorithm can be modified to solve the syn-
thesis problem for multiple-layer NNs (Section 4.2).

Given a single-layer NN (e.g., Figure 4(b)), the algorithm first
builds the łlibraryž for fixed-weight and short-input multipliers
using the synthesis tool according to the synaptic weights of the
NN (line 1 in Algorithm 1). Since the number of unique synaptic
weights in most NNs is not large due to the weight-sharing between
synapses, the size of the fixed-weight multiplier library will be finite.
Besides, the size of the short-input multiplier library is limited
by the bit-length of the short-input (thereby the library size is
also finite). After this, the design of the multiplication stage is
initialized by implementing a fixed-weight multiplier dedicated
to each multiplication (as illustrated in Figure 4(d)). Then the
area, execution time and energy efficiency of this initial design are
evaluated. The area is determined by summing up the area of all
multipliers used in the design; the execution time is represented by
the number of clock cycles for performing all the multiplications
in the NN (Nclk ) as shown in Equation 1a; the energy efficiency

is represented by 1/Energy-Delay-Product ( 1
EDP ) where EDP is

estimated using the product of total energy and Nclk (Equation 1b).

Nclk = max
j ∈J

NOPM, j (1a)

EDP = Enerдy × Nclk . (1b)

In Equation 1a, J is the group of all multipliers in the design.

NOPM, j is the number of operations allocated to the jth multi-
plier. Assuming each multiplier only performs one multiplication
in one clock cycle, then we need NOPM, j cycles to perform the

NOPM, j multiplications mapped to the jth multiplier. Therefore,
maxj ∈J NOPM, j indicating the overall clock cycles to process this

3
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Figure 4: (a) The proposed NN-ASIC architecture. (b) A single-layer neural network. (c) The illustration of the Pareto Optimal
List (POL) with ExT representing the execution time, Area representing themultiplication stage area and EDP representing the
Energy-Delay-Product. (d) The initial design of the multiplication stage by implementing a fixed-weight multiplier dedicated
to each multiplication in the neural network shown in Figure 4(b) (each multiplier is represented with a rectangle). (e)(f)
two possible designs after clustering a pair of multiplications in the initial design (note that m4 represents a varied-weight
multiplier which can perform the multiplication with weight equal to w2 and w3). (g) On possible clustering result based on
the design in (e). (h) One possible clustering result based on the design in (g).

NN since eachmultiplier executes in parallel. In Equation 1b, Enerдy
is the total energy.

This initial design has the shortest execution time (and the small-
est EDP) yet the largest area. If the area of this design is smaller than
Amult , it is the final design of the multiplication stage. Otherwise,
we will iteratively cluster two multiplications and allocate them to
a single multiplier to reduce the area at the cost of increasing the
execution time and EDP. On one hand, we can limit to clustering
only those multiplications with the same weight (as illustrated by
Figure 4(d)(e)). On the other hand, we can use a varied-weight mul-
tiplier to perform multiplications with similar weights (as shown in
Figure 4(d)(f)). In either case, the number of multipliers is reduced
(thus the area of the multiplication stage is reduced) while the num-
ber of cycles to perform the multiplication increases (e.g., Nclk = 2
in Figure 4(e)(f)). The clustering process continues until we find a
design whose area is smaller than Amult while the execution time
and EDP are minimized. For the example shown in figure 4, if the
area constraint only allows 4 multipliers, one possible approach of
the clustering process is illustrated by Figure 4(d)→(e)→(g)→(h).

Intuitively, we can go through all the designs with area under
the constraint to find the optimal design (i.e. minimized execution
time and EDP). However, the size of the design space increases
exponentially with the number of synaptic weights, thus making
the brute force search method infeasible. In order to increase the ef-
ficiency of our algorithm, after acquiring the designs resulted from
clustering the initial design, we will only memorize the Pareto
Optimal designs (with respect to area, EDP and execution time)
in the Pareto Optimal List (POL) and discard other designs (line 4 in
Algorithm 1). In the following process, we select the designs in the
POL to further cluster the multipliers and update the POL after a
new design is acquired. Since the size of the POL is almost constant
compared to the whole design space, we can thereby significantly
improve the efficiency of finding the optimal design. In order to
speed up the clustering process, instead of clustering two multi-
pliers in one step, we can use one multiplier to perform multiple
multiplications (line 7 in Algorithm 1).

4.2 Algorithm for Multiple-layer NNs
In reality, an NN often contains several layers and some DNNs
even consist of hundreds of layers [7]. In this case, we initialize
the multiplication stage by implementing a fixed-weight multiplier
dedicated to each multiplication in all layers of the NN. Then we
follow the same framework as introduced in Section 4.1 to cluster
multiplications to reduce the area until we find a design with an
area smaller than Amult . We assume the process of different layers
is not pipelined. Therefore, the execution time of the multiple-layer
NN is the sum of the execution time of all layers in the NN.

4.3 Accounting the Memory Access
The algorithm noted above assumes perfect off-chip memory ac-
cess such that the weights and intermediate data can be accessed
immediately from the main memory without any cost when they
are needed. In reality, this is not possible, hence we need to exploit
the on-chip cache to avoid heavy off-chip memory access. However,
if the total chip area is a constant, there is a competition between
allocating resources for compute units (i.e. multipliers, adders etc.)
and the on-chip cache. Too much cache may cause too few com-
pute units which leads to higher compute latency while too little
cache may force us to have higher main memory access. In this
work, we use binary search method to determine the optimal area
for multipliers and the area for cache (supposing the total chip
area is constant): we first initialize an area for the multiplication
stage (Amult ) and use the method introduced above to design the
multiplication stage. Other compute stages and the on-chip cache
are designed accordingly; then we evaluate the performance and
energy efficiency of the design using an in-house simulator and
update Amult accordingly.

5 SYNTHESIS-DRIVEN OPTIMIZATION OF
WEIGHTS

Since the NN-ASIC is synthesized according to the synaptic weight
of an NN, the value of weights will affect the performance and

4



energy efficiency of the NN-ASIC. For instance, suppose there is a
synapse in the NNwith weight equal to 0.3672 (002fhex). To perform
this multiplication, we can use a fixed-weight multiplier with
the fixed input equal to 0.3672 whose normalized area and energy
are 0.12, 0.038, respectively (as illustrated by w1 in Figure 3(a)(b)
and note that the data are normalized to the general multiplier).
However, if we round this weight to 0.375 (0030hex), we can use a
multiplier with much smaller area and energy as shown byw2 in
Figure 3(a)(b). As shown by this example, if we perturb the weight
to a nearby value such that the multiplication can be performed
by a smaller and more efficient multiplier, we may further improve
the performance and energy efficiency of the NN-ASIC.

The process of perturbing weights might degrade the NN accu-
racy. In order to control the degradation, we select a threshold, R,

for perturbing the weight. If
|w ′−w |
|w |

≤ R (wherew is the original

weight whilew ′ is the new weight), we can perturbw tow ′; oth-
erwise, the perturbing process is forbidden. Given a set of unique
weights in an NN (e.g., {w1,w2, ...,wn }), we assume the multiplica-
tion with each weight is operated using a dedicated fixed-weight
multiplier, hence each weight is associated with a cost (determined
by the area, delay and energy of the multiplier): {c1, c2, ..., cn }. In
order to determine the new value for each weight, we cluster the
weights and map the weights in each cluster to the weight with the
smallest cost in this cluster. For example, if {w1,w2,w3} are clus-
tered, the new value for each of the three weights is the weight with
the smallest cost (min (c1, c2, c3)). In this work, we use a dynamic
programming based method to clustering the given set of weights
and assigning the new weight to each cluster such that the total
cost (i.e. summing up the cost of all weights) is minimized under
the constraint of R. After perturbing the weight, we use the same
method as introduced in Section 4 and 4.3 to synthesize the NN-
ASIC. In Section 6.4, the effect of this weight optimization method
will be studied in detail.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Setup of the Experiment
In this section, we use our value-driven synthesized NN-ASICs
to process several trained DNNs: Lenet[9], AlexNet[8], VGG-16
Net[12], GoogleNet[13] and ResNet[7]. The pre-trained parameters
are taken from the Caffe Model Zoo [1] and we round the parameter
to the Q9.7 fixed-point data format using Ristretto [5]. For each
NN, we use the method introduced in Section 4 and Section 4.3 to
design the NN-ASIC and the total chip area (including compute
units, on-chip caches etc.) is fixed to Achip = 5mm2. Following this
we use the in-house simulator to evaluate the total execution time
and energy. The results are compared against the Baseline Case,
where a general NNP is used to process all the NNs. The NNP
used in the Baseline Case is based on the DianNao architecture
which contains 256 general fixed-point multipliers and 16 16-input
fixed-point adders [2]. The total chip area is also 5mm2 and the
on-chip cache size is 40KB. The clock frequency of each NN-ASIC
and the NNP is identical. We use Cacti [11] to calculate the area of
the on-chip cache (Fully-Associated) for storing one-byte data and
this value is 10.6µm2. The bandwidth of main memory is 250GB/s
while the energy of one byte access is 0.2nJ [2, 3]. The latency and
energy of accessing the on-chip cache is neglected [3].

6.2 Comparison to the Baseline Case
In this section, we report the execution time and energy using our
proposed NN-ASIC (designed following the method introduced in
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Figure 5: (a) The normalized execution time (ExT) and (b) the
normalized total energy for NN-ASICs (all data are normal-
ized to the Baseline Case); the percentage in (c) total execu-
tion time and (d) total energy due to off-chipmemory access.

Section 4 and 4.3) to process the DNNs. The results are compared
against the Baseline Case. Figure 5(a) and (b) show the total ex-
ecution time and energy of NN-ASICs, respectively. In order to
illustrate the improvement of NN-ASICs, the data in the figures
are normalized to the Baseline Case. Figure 5(c) and (d) illustrate
the percentage in total execution time and in energy due to the
off-chip memory access, respectively, in both Baseline Case and
NN-ASICs. As illustrated in Figure 5(a)(b), NN-ASICs can achieve
up to 6.5x faster execution speed and 9.3x lower energy compared
to the Baseline Case. As the result, NN-ASICs can achieve up to 55x

improvement in energy efficiency (i.e. 1
EDP ). This improvement is

mainly due to the use of value-driven optimized multipliers:

• Since each multiplier is much smaller than the general mul-
tiplier, we can implement more multipliers in the multiplica-
tion stage to increase the computation parallelism.

• Since the energy of each value-driven optimized multiplier
is much smaller than the general one, the total computation
energy will be reduced (as illustrated by Figure 5(b)(d)).

• Due to the hardwired weight, the memory space required
for storing the synaptic weight is significantly reduced. In
the Baseline Case, the size of NBw is 32KB, while in NN-
ASICs, we only need an average of 8KB NBw to store the
same amount of weights. As a result, in NN-ASICs, more data
can be stored on chip with less cache area. Therefore, we
can allocate more compute units while the off-chip memory
access is still reduced. In this experiment, the total cache
size for Lenet, AlexNet, GoogleNet, VGG-16 and ResNet are
42KB, 30KB, 36KB, 22KB and 36KB, respectively.

6.3 Trade-off Between On-chip Cache and
Multipliers

As stated in Section 4.3, the value of Amult will affect the execu-
tion time and energy of the NN-ASIC due to the trade-off between
the on-chip cache and multipliers. In order to illustrate this effect,
we synthesize NN-ASICs for Lenet [9] with different Amult (rang-
ing from 0.1mm2 to 2.8mm2). Other settings are the same as in
Section 6.2. The result is illustrated in Figure 6(a) and the data is
normalized to the Baseline Case (i.e. assuming DianNao is used to
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Figure 6: (a) The normalized execution time and energy for
NN-ASICswith differentAmult for Lenet [9]; (b) the trade-off
between the off-chip memory access and compute latency
for different Amult .

process Lenet). Figure 6(b) shows the trade-off between the off-chip
memory access latency and the compute latency with different
Amult and the data is normalized to the minimum memory ac-
cess latency and compute latency among these cases, respectively.
As illustrated by Figure 6(a), there exists an optimal Amult which
leads to the largest performance and energy efficiency. For Lenet
(with the specific parameters used in this experiment), this value
is around 1mm2. If Amult is small, the computation parallelism
degrades thus causing the compute latency to increase (as shown
in Figure 6(b)). On the other hand, large Amult causes the on-chip
cache size to decrease and the increased number of memory access
will degrade the performance of the NN-ASIC (due to the increased
memory latency). However, within a large range of Amult around
the optimal point, our proposed technique can always achieve sub-
stantial reduction in the execution time (over 5x reduction) and
energy (over 2.5x reduction) compared to the Baseline Case.

6.4 Effects of the Weight Optimization
In this section, we will study the impact of perturbing the synap-
tic weight using the method introduced in Section 5. The results
are shown in Table 1. In this table, the execution time (ExT) and
energy are normalized to the Baseline Case as in Section 6.2. łNo
Pertž represents the case where the weight is not perturbed (i.e. the
results shown in Section 6.2); łPerturbž illustrates the results after
perturbing the weight with R = 0.25 (Section 5). The NN accuracy
(Acc) for Lenet is tested using MNIST data set [10] while that for
other NNs is tested using ImageNet data set [8]. For VGG-16 and
ResNet, the top-5 accuracy is used.waffect represents the percent-
age of the number of weights that are affected by the perturbing
method. As shown in the table, for AlexNet, GoogleNet and VGG-16,
thewaffect is very small (<1%), which indicates the original set of
weights is almost optimal with respect to the hardware property.
Therefore, perturbing weights causes negligible reduction in the
execution time and energy. On the other hand, thewaffect for Lenet
and ResNet is relatively large (73.9% and 10% respectively), indi-
cating a large portion of weights are optimized by the perturbing
process (Section 5). As a result, both the execution time and energy
are further reduced. It should be noted that when R = 0.25, the

Table 1: The Effect of the weight optimization method (ExT
= Execution Time; Acc = Neural Network Accuracy;waffect =
the percentage of the number of weights that are affected by
the perturbing method)

Neural Networks ExT Energy Acc waffect

Lenet [9]
No Pert 0.16 0.32 99.1% ś
Perturb 0.1 0.27 99% 73.9%

AlexNet [8]
No Pert 0.17 0.11 55.7% ś
Perturb 0.17 0.11 54.8% ≪0.1%

GoogleNet [13]
No Pert 0.31 0.45 64.3% ś
Perturb 0.3 0.45 63.3% 0.11%

VGG-16 [12]
No Pert 0.19 0.23 89.0% ś
Perturb 0.19 0.23 88.4% 0.3%

ResNet [7]
No Pert 0.29 0.43 88.8% ś
Perturb 0.26 0.42 87.8% 10.0%

accuracy degradation for the NNs is very small which can be easily
improved through retraining (e.g., [5]).

7 CONCLUSIONS
In this work, we target at implementing a specific NN with the NN-
ASIC. Instead of using the general multiplier, we propose to exploit
the value of synaptic weights of the NN during the synthesis of
the NN-ASIC to achieve substantial improvement in performance
and energy efficiency with no impact on the NN accuracy. We
evaluate our proposed value-driven synthesized NN-ASIC with a
set of state-of-the-art DNNs. The experimental results demonstrate
that compared to traditional NNPs with general multipliers, our
proposed method can achieve up to 6.5x and 55x improvement in
performance and energy efficiency, respectively.
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