Main Memory Latency Simulation: The Missing Link

Rommel Sanchez Verdejo
rommel.sanchez@bsc.es
Barcelona Supercomputing Center (BSC)
Universitat Politécnica de Catalunya (UPC)
Barcelona, Spain

Milan Radulovic
milan.radulovic@bsc.es
Barcelona Supercomputing Center (BSC)
Universitat Politécnica de Catalunya (UPC)
Barcelona, Spain

Eduard Ayguadé
eduard.ayguade@bsc.es
Barcelona Supercomputing Center (BSC)
Universitat Politécnica de Catalunya (UPC)
Barcelona, Spain

ABSTRACT

The community accepted the need for a detailed simulation of main
memory. Currently, the CPU simulators are usually coupled with
the cycle-accurate main memory simulators. However, coupling
CPU and memory simulators is not a straight-forward task be-
cause some pieces of the circuitry between the last level cache and
the memory DIMMs could be easily overlooked and therefore not
accounted for.

In this paper, we take an approach to quantify the missing cycles
in the main memory simulation. To that end, we execute a memory
intensive microbenchmark to validate a simulation infrastructure
based on ZSim and DRAMsim2 modeling an Intel Sandy Bridge E5-
2670 system. We execute the same microbenchmark on a real Sandy
Bridge E5-2670 machine identifying a missing 20 ns in the simulator
measurements. This is a huge difference that, in the system under
study, corresponds to one-third of the overall main memory latency.
We propose multiple schemes to add an extra delay in the simulation
model to account for the missing cycles. Furthermore, we validate
the proposals using the SPEC CPU2006 benchmarks. Finally, we
repeat the main memory latency measurements on seven main-
stream and emerging computing platforms. Our results show that
latency between the Last Level Cache (LLC) and the main memory
ranges between tens and hundreds of nanoseconds, so we empha-
size on properly adjust and validate these parameters in system
simulators before any measurements are performed. Overall, we
believe this study would improve main memory simulation leading

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6475-1/18/10...$15.00
https://doi.org/10.1145/3240302.3240317

Kazi Asifuzzaman
kazi.asifuzzaman@bsc.es
Barcelona Supercomputing Center (BSC)
Universitat Politécnica de Catalunya (UPC)
Barcelona, Spain

Petar Radojkovic¢
petar.radojkovic@bsc.es
Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Bruce Jacob
blj@umd.edu
University of Maryland
College Park, Maryland, USA

to the better overall system analysis and explorations performed in
the computer architecture community.

CCS CONCEPTS

« Computer systems organization — Processors and memory
architectures; « Computing methodologies — Massively parallel
and high-performance simulations;

KEYWORDS

Main memory, DRAM, Simulation, High Performance Computing.

ACM Reference Format:

Rommel Sanchez Verdejo, Kazi Asifuzzaman, Milan Radulovic, Petar Rado-
jkovié, Eduard Ayguadé, and Bruce Jacob. 2018. Main Memory Latency
Simulation: The Missing Link. In The International Symposium on Memory
Systems (MEMSYS), October 1-4, 2018, Old Town Alexandria, VA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3240302.3240317

1 INTRODUCTION

CPU and memory simulators are inseparable parts of today’s com-
puter architecture research; they are extensively used to prototype
hardware systems and to estimate performance and energy of a par-
ticular design. System simulators were initially focused solely on the
CPUs whereas the memory systems were emulated with very simple
models, e.g., the fixed latency of the main memory access. However,
work of Jacob et al. [7, 11] showed that simplistic DRAM modeling
can lead to significant simulation errors. The authors advocated for
the detailed timing simulation of the main memory and released
DRAMsim [27] the first cycle-accurate DRAM simulator, followed
by DRAMsim2 [21]. The community accepted the need for a detailed
simulation of main memory, and currently, the CPU simulators are
usually coupled with the cycle-accurate main memory simulators
such as DRAMsim2 [21], Ramulator [13] or NVMain [20].

The CPUs and main memory are clearly separate devices, with
different functionalities and typically manufactured by different

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

CPU pipeline Bus-Interface ~ Memory Memory Memory modules

Unit Controller bus (DIMMs)
g [l] {5 [=
il HE00Oooo0
|
b Y j}%(—’i\ v 4

CPU simulators No man'’s land Memory simulators
Figure 1: When CPU and memory simulators are coupled,
the timings of the memory request between the LLC and the

memory controller could be easily overlooked.

companies. However, decoupling their functionalities in total sys-
tem simulation is not straight-forward. In particular, the DRAM
DIMMs are passive devices managed by the memory controller
which is a part of the CPU. This functionality includes schedul-
ing, reordering and queuing of the memory requests as well as the
detailed DRAM commands, such as PRECHARGE, ACTIVATE, READ,
WRITE, etc. Since the memory simulators mimic the functionality
of the main memory, they also simulate the functionality and the
timings of the memory controller (see Figure 1). CPU simulators, on
the other hand, typically perform functional and timing simulation
of the memory request only until the LLC.

This means that by coupling CPU and a main memory simulators,
all the delays of the memory request of the Bus-Interface Unit
(BIU) between the LLC and the memory controller could be easily
overlooked, and therefore not accounted for, as we illustrate in
Figure 1. The BIU overhead is that of: (1) the request traversing
the NoC to the memory controller (longer for writes, due to the
data); (2) the request arbitrating for the right to be enqueued in
the memory controller’s request queue; (3) the request potentially
stalling if that queue is full; (4) at the end of a read request, the
multi-cycle cost of transferring the data over the NoC between the
core and the memory controller.

In this paper, we take an approach to quantify the missing cycles
in the main memory simulation. To that end, we execute a memory
intensive microbenchmark to validate a simulation infrastructure
based on ZSim [23] and DRAMsim2 [27] modeling an Intel Sandy
Bridge E5-2670 system. We execute the same microbenchmark on
a real Sandy Bridge E5-2670 machine identifying 20 ns missed in
the simulator measurements. This is a huge difference that, in the
system under study, corresponds to one-third of the overall main
memory latency. We also propose multiple schemes to add an extra
delay in the simulation model to account for the missing cycles.
Then, we execute applications from the SPEC CPU2006 benchmark
suite to validate the approach of adding an extra latency to achieve
better simulation accuracy. Finally, we quantify the LLC to memory
latency for various high-end and emerging platforms and we show
its significant range, between 30 ns (POWERS) and 277 ns (Knights
Landing); therefore, it is really important to properly adjust and
validate this parameter in system simulators before any measure-
ments are performed. Overall, we believe that the issues addressed
in this paper would help researchers of the computer architecture
community to improve main memory system simulation.

The rest of the paper is organized as follows. Section 2 explains
simulation environment and evaluates main memory latency with

R. Sanchez Verdejo et al.

Table 1: Cache parameters of the Sandy Bridge EP class pro-
cessor used in the study.

L1-D L2 L3
Size 32KiB 256KiB 20 MiB
Latency (in CPU cycles) 4 8 28
Cache line size 64B 64B 64B
Set associativity 8-way 8-way 20-way

a microbenchmark for real and simulated systems. This section also
proposes approaches to fix the deviation identified between real and
simulated main memory latency measurements. Section 3 details
the validation of the proposed approaches with SPEC CPU2006
benchmarks, while Section 4 discusses LLC to main memory latency
of various high-end and emerging High Performance Computing
(HPC) platforms. Section 5 analyzes the validation procedure of
state-of-the-art system and memory simulators. Finally, Section 6
presents the conclusions of the study.

2 MAIN MEMORY LATENCY EVALUATION
AND SIMULATION ENHANCEMENTS

In this section, we detail the methodology used to model a targeted
system into a simulation infrastructure and we describe the mi-
crobenchmarks used to discover the main memory access latency.
The targeted system we aimed to model is an Intel Xeon E5-2670
Sandy Bridge-EP processor [9] operating at 3.0 GHz. Sandy Bridge
is a micro-architecture that is still in use, specially in smaller Tier-1
systems [24] as in the Barcelona Supercomputing Center (BSC)
where we conduct our experiments. The main memory comprises
four 4 GiB DIMMs devices [22] connected to the processor using
four DDR3-1600 channels. Each processor comprises eight cores
where the hyper-threading feature has been disabled like in most
HPC systems [5].

2.1 Simulation environment

The simulator infrastructure we chose to use is an integration of
two simulators: ZSim [23] as CPU simulator and DRAMsim2 [21]
as main memory simulator.

ZSim is a user-level, execution-driven CPU simulator widely used
in the computer architecture research community. Developed by
researchers from MIT and Stanford University, ZSim is designed for
simulation of large-scale systems. However, ZSim was originally de-
veloped to simulate Intel Westmere architecture which is no longer
being used in HPC domain. One of the tasks that we had to perform
was to upgrade and validate ZSim for Intel Sandy Bridge processor.
The work to upgrade ZSim consisted of the following steps: First,
we adjusted the simulator by updating the instruction latencies
obtained through the execution of CPU microbenchmarks [25] in
the real hardware; Second, we improved the micro-operation fusion
and we increased the number of entries in the Reorder Buffer (ROB)
from 128 (Westmere) to 168 (Sandy Bridge); Third, we configured
the cache hierarchy according to the Intel documentation [9] for a
Sandy Bridge-EP Class, summarized in Table 1. Finally, we updated
the L3 caching mechanism implementing the hashing function
described in work by Maurice et al. [15].

Main Memory Latency Simulation: The Missing Link

i

Values of array elements
(initialized at compile time)

Position in
the array

N oo o=
NS|ojos|w(v|=]o

Figure 2: Illustration of pointer a chasing memory access
pattern used in the microbenchmark.

ZSim is easily integrated with a main memory simulator such
as DRAMsim2 . DRAMsim2 is a cycle-accurate simulator validated
against Verilog models for memory devices. We configured DRAM-
sim2 following manufacturer’s documentation with specific timings
for the memory device part [22].

2.2 Memory latency microbenchmark

State-of-the-art memory benchmarks such as LMbench [17], stream
[16] and Intel’s Memory Latency Checker (imlc) [26] can be used
for main memory latency measurements. However, they are not a
good fit for our study because it is very difficult to use them in ZSim
simulation. LMbench and stream rely on compiler’s optimization
and, imlc is a binary-only distributed program so no tailored anal-
ysis nor modification to the code could be made. Therefore, as none
of the open source existing benchmarks was appropriate for our
analysis, we had to design a specific microbenchmark to use for
our experiments.

Our microbenchmark is designed to stress the caches and main
memory implementing the concept of pointer chasing. Because
the microbenchmarks are designed to run on top of an Operat-
ing System (OS), a C program wraps all functionality outside the
microbenchmark objective as: memory initialization, metrics col-
lection, and program cleanup. By doing so, the microarchitectural
implications of running on top of an OS are diminished.

In the microbenchmarks prologue, we allocate a contiguous sec-
tion of memory that stores an array of pointers. The elements
on the array are initialized as a circular linked list that follows a
pointer chase pattern. Figure 2 portrays an example of such order-
ing. Our design goals for the microbenchmarks are summarized
as: (1) iteratively traverse the whole array; (2) for every memory
request, different cache lines must be reached; (3) the memory ac-
cesses should have a random pattern, preventing the operation of
hardware prefetchers .

The microbenchmarks kernel is written directly in x86 assembly
to meticulously craft the x86 instruction sequence and avoid com-
piler optimizations. Table 2 lists the pseudo code for the main mem-
ory latency microbenchmarks. Its behavior is explained as follows.
(1) The microbenchmark core loop is wrapped-up by the C program
which is shown from line 1 to line 5. (2) In line 3, the register used as
a loop iteration counter (ecx) is initialized. (3) In line 4, we summa-
rized the operation to read the contents of a previously generated
file containing information about the array size and the random ac-
cess pattern trough the function call getPointerChasePattern().
(4) In line 5, the initial address of the array is assigned to a variable

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

Table 2: Pseudo-code: structure of the memory latency mi-
crobenchmark.

Line Source code Explanation
0001 register struct cache_line struct cache_line abstracts
*first asm("rbx"); the pointer chase data structure
register int .
0002 1 Wy L ecx is the loop counter
oop_counter asm("ecx");

0003 loop_counter = 1000000; initialization of the loop counter

0004 first = getPointerChasePattern(); first holds a pointer to front address
of the pointer chase accesses

0005 first = ptr->next; first indirect memory access

0006 core_loop: microbenchmark kernel

0007 mov (%rbx), %rbx indirect load instruction

0008 mov (%rbx), %rbx indirect load instruction

10009 mov (%rbx), %rbx indirect load instruction

10010 dec %ecx decrement loop counter

100011 jnz core_loop jump to core_loop

which content is passed as input parameter to the assembly code.
(5) From line 5 onwards the assembly is listed: the main part of the
benchmark is a sequence of indirect load instructions (mov (%rbx),
%rbx) that traverse the memory access pattern. (6) The sequence
of target instructions is finalized with the decrement of the loop
counter register and an exit condition or jump to the beginning of
the iteration.

By setting the array size, we target a given level of the mem-
ory hierarchy: L1, L2, L3 or the main memory. Since there is a
dependency between every two consecutive instructions (pointer
chasing), the instructions are executed in-order. Therefore, we can
compute the latency of each instruction as

Microbenchmark execution time

Memory instruction latency = Number of instructions

There are two modes for the C program to wrap the microbench-
mark core, one for the execution on top of the simulator, and other
for the execution in the real machine. The difference between the
two modes relies only on the way to collect the number of instruc-
tions and cycles. On the real system, the measurements are collected
via system calls to the Linux perf subsystem. The calls are made
just before entering the main loop and intermediately after the loop
is finished. On the simulator, we use a ZSim feature that allows
to enable and disable fast-forwarding up to a specific point in the
program execution; the points in the program simulation are set,
as in real machine, just before entering the microbenchmark core
and as soon as the microbenchmark core is done.

2.3 Methodology

To measure the latency of different levels of memory hierarchy, we
vary the array size from 4 KiB up to 3.52 GiB, as shown in Table 3. At
each level of memory hierarchy, L1, L2, L3 cache and main memory,
we select the array sizes to have equidistant measurements.

ZSim does not model the effects of the address translation nor the
impact of Translation Look-aside Buffer (TLB) misses. To mitigate
the address translation overheads in the real system, we used the
4 x 1 GiB Huge Pages available in the Sandy Bridge architecture [10]
and allocate a contiguous memory space up to 3.52 GiB so few
memory pages fit into the TLB !.

!We also quantified the address translation overheads when standard memory pages
(4KiB) are used, but this analysis exceeds the scope of this paper.

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

Table 3: By setting the microbenchmark array size can we
measure the latency of different level in the Intel Xeon E5-
2670 Sandy Bridge-EP memory hierarchy. We traverse each
memory level with various measurement for array sizes.

Size of each Microbenchmark Number of

memory level array size & stride size measurements
L1 cache: 32KiB 4KiB to 32KiB,3.5KiB 8
L2 cache: 256 KiB 60 KiB to 256 KiB,24.5KiB 8
L3 cache: 20 MiB 2.71 MiB to 20 MiB,2.46 MiB 8
Main memory, 16 GiB 532 MiB to 3.52 GiB,512 MiB 7

80 I I T

—_ = Intel Xeon E5-2670

2 70 H ZSimn (mem.lat = 100) + y

— *""* DRAMSim2 (Delay Queue = 0)

& 60 F =

3

& 50 _ .

8 40 F -

3

a 30 -

5 20

§

s 10 h

0 i |
L1 | L2 L3 Main memory
32 KiB 256 KiB 20 MiB 4 GiB

Microbenchmark array size

Figure 3: When using default configuration parameters,
there is a missing memory latency of 20 ns between the real
system and the integration of ZSim + DRAMsim2.

2.4 Evaluation

In this section, we investigate main memory access latency devia-
tion from the real system versus the simulation infrastructure using
microbenchmarks. We also propose multiple schemes to mitigate
this discrepancy.

In Figure 3, the comparison between the real system and the
ZSim + DRAMsim2 simulators for caches and main memory laten-
cies is depicted. The X-axis of the figure represents the size of the
traversed array, while the Y-axis shows the memory latency in ns.
In Figure 3, the four steps of the memory hierarchy are distinguish-
able, each one corresponding to three levels of processor caches
and main memory. For the three cache levels (L1, L2, L3), there is a
scarcely difference between the two systems, meaning that ZSim’s
cache contention model accurately represents the real system. Nev-
ertheless, for the memory latency, the difference is noticeable. The
main memory access latency of the real system is approximately
66 ns while the ZSim + DRAMsim2 simulate the latency of 46 ns.
As we discussed in Section 1, it is not difficult to find an explana-
tion for the missing 20 ns from the main memory access latency.
While the ZSim provides timings up to LLC, DRAMsim2 models
timings from the memory controller, meaning that the latency of
BIU between the LLC and the memory controller is not accounted.

R. Sanchez Verdejo et al.

2.5 Potential enhancements

To account for the missing cycles in the main memory access latency
as identified in Figure 3, we propose three approaches by adjusting
two parameters from ZSim and DRAMsim2.

2.5.1 ZSim enhancement: the mem. latency parameter. To inter-
pret the function of this parameter, it is essential to understand
how ZSim is operated. ZSim is driven by a two-phase algorithm:
the Bound and Weave phases. In the Bound phase every core is
simulated as they were isolated and for every memory request, a
fixed latency is assumed. This fixed latency is configured trough the
mem.latency configuration parameter. Then, on the Weave phase
latencies of memory requests from the Bound phase are updated
with their corrected values; i.e., if DRAMsim2 is integrated, CPU
cycles are added up from DRAM simulation for each memory trans-
action and thus, constitutes the total memory access latency. The
mem. latency is a ZSim configuration parameter which value is
set in the CPU cycle domain. In the current ZSim distribution, the
default mem. latency value is set to 100 CPU cycles, that in our
environment with a 3.0 GHz CPU clock corresponds to the 33 ns.

2.5.2 DRAMSsim2 enhancement: Delay Queue. An extensive
approach to add latency to the main memory requests would be
to enhance the memory controller simulated in the DRAMsim2.
In particular, we upgraded DRAMsim2 memory controller with
a Delay Queue structure. The purpose of the Delay Queue is to
insert delay cycles for all main memory transactions to adjust the
latency deviation identified from the real system measurements. We
implement the Delay Queue into DRAMsim2 memory controller
using the following design:

(1) The queue has an unlimited size

(2) When a transaction arrives at the memory controller, it is
immediately redirected to the queue.

(3) Each element (transaction) that joined the queue, is bound
to a counter holding the configured delayed.

(4) On each update to the memory controller clock, all the ele-
ments on the queue are visited getting their corresponding
counter decreased by one.

(5) When an element counter reaches 0, the memory controller
fires the transaction to the main memory and deletes the
element from the queue.

Since the Delay Queue is part of the DRAMsim2 simulator, its
value corresponds to the added latency in the DRAM clock cycles.

2.5.3 Selected configurations. In this paper, we select and ana-
lyze three approaches for the main memory latency adjustments:

(1) Adjusting only mem. latency parameter.
(2) Adjusting only Delay Queue parameter.
(3) Adjusting both parameters.

Figure 4 portrays the results from the proposed approaches. The
X-axis of the figure lists the array size, essentially characterizing
different level of caches and main memory, while the Y-axis shows
the corresponding memory access latency. We can conclude that
all three approaches fix the main memory latency gap between the

Main Memory Latency Simulation: The Missing Link

80 I I T
— = Intel Xeon E5-2670
2 70 H .0 ZSim (mem.lat = 100) +
— DRAMSim2 (Delay Queue = 0)
5” 60 { ZSim (mem.lat = 170) + 1
% """ DRAMSim2 (Delay Queue = 0)
w® 50 H ZSim (mem.lat = 170) + »
; XX DRAMSim2 (Delay Queue = 24)
$ 40 H ZSim (mem.lat = 100) + : N
S """ DRAMSim2 (Delay Queue = 96)
a 30 .
y
o 20]
: —
s 10 1
0 _ e ®E S |
L1 | L2 L3 | Main memory
32 KiB 256 KiB 20 MiB 4 GiB

Microbenchmark array size

Figure 4: Memory latency for the real system, the default
integration of ZSim + DRAMsim2 and three proposed con-
figurations to match the simulator infrastructure with the
targeted system.

simulators and the real systems with slight margin?, while having
no impact on the on-chip cache latencies.

Fixing the simulator’s memory latency required the following
parameter values:

(1) mem.latency=170, instead of default 100.
(2) mem.latency=100 and Delay Queue latency=96.
(3) mem.latency=170 and Delay Queue latency=24.

However, we should not forget that these measurements are
taken for a simple microbenchmark. In the following sections, we
investigate the impact of the simulator enhancements on more
complex workloads as the SPEC CPU2006 benchmark suite [8].

3 EVALUATION: SPEC CPU2006
BENCHMARKS

In the previous section, we analyzed and validated various ways
to fix the main memory latency gap between the simulators and
the real system. In this section, we investigate the impact of these
enhancements on the SPEC CPU2006 benchmark performance and
behavior. We execute and evaluate the simulator enhancements
on a set of eleven integer and fourteen floating point benchmarks
from the SPEC CPU2006 suite [8]. Table 4 lists the benchmarks
with their application areas used for the study.

3.1 System performance

For each SPEC CPU2006 benchmark, as it is validated in ZSim
main paper [23], we configure the execution to last for the first 50
billion instructions. Then, we compare the three versions of the
enhanced simulators versus the default configuration (baseline).
The simulators are compared based on the performance difference,

2For the microbenchmarks, main memory access latency in real system was measured
to be 210 CPU cycles, in the worst case. Among this 210 cycles, 40 cycles correspond
to LLC latency. Therefore, mem.latency was updated with the remaining 170 cycles.

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

Table 4: SPEC CPU2006 benchmarks used in the study

Benchmark Application Area Language
bzip2 Compression C
gce C Language Optimizing Compiler C
bwaves Fluid Dynamics Fortran
gamess Quantum Chemistry Fortran
mcf Combinatorial optimization C
milc Quantum Chromodynamics C
gromacs Molecular Dynamics C,Fortran
cactusADM General Relativity C,Fortran
leslie3d Fluid Dynamics Fortran
namd Molecular Dynamics C++
gobmk Artificial Intelligence C
dealll Finite Element Analysis C++
soplex Simplex Linear Program Solver C++
calculix Structural Mechanics C,Fortran
hmmer Gene Sequence Analysis C
sjeng Artificial Intelligence C
GemsFDTD Computational Electromagnetics Fortran
libquantum Quantum Computing C
h264ref Video Compression C
tonto Quantum Chemistry Fortran
Ibm Fluid Dynamics C
omnetpp Discrete Event Simulation C++
astar Path-finding Algorithm C++
sphinx3 Speech Recognition C Fortran
xalancbmk XML Processing C++

calculated as:

IPCEnhanced Sim. — IPCDefaull Sim.

IPCrelativedif ference TPChefants S,
Results are presented in Figure 5. Negative values on the perfor-
mance difference indicate that the default simulators configuration
(baseline) estimates better performance, i.e., higher Instruction per
Cycle (IPC) with respect to to the enhanced simulators. This is
an expected outcome because all three simulator enhancements
increase the main memory access time which leads to performance
loss. The first and the third simulator enhancement approaches,
mem.latency = 170 and mem.latency = 170 & Delay Queue
latency = 24, show similar performance, very close to the default
simulator configuration. The significant differences are detected
only for milc and libquantum, that reach up to 20 % of the perfor-
mance difference. The second approach, adjusting the Delay Queue
parameter to 96 DRAM cycles, leads to significant differences that,
e.g., exceed 50 % for the milc and 1ibquantum benchmarks.
Overall, we can conclude that, although all three simulator en-
hancements lead to the same main memory latency of the mem-
ory stressing microbenchmarks, their performance impact on the
SPEC CPU2006 workloads may differ significantly.

3.2 System behavior
To identify the differences in the benchmark behavior on different
systems under test, we use the Top-Down method [29].

3.2.1 Top-Down method: Overview. The Top-Down is designed
to understand the application behavior and identify bottlenecks in

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

401.bzip2
410.bwaves
437 .leslie3d
444 namd
445 gobmk

429 .mcf
433.milc

403.gcc
-‘ 435.gromacs

4 416.gamess

(e}
N

[
—
o

T

| | |
= W N
o O O
T T T
KSSSSSSSSSSSSSY 436.cactusADM
SSSSSSSY

|
w
=)
T

447 dealll

R. Sanchez Verdejo et al.

450.soplex

454 calculix
458.sjeng
459.GemsFDTD
462 libquantum
464.h264ref
465.tonto
471.omnetpp
473.astar
482.sphinx3
483.xalancbmk

s
9]
1S
£

<

e

)

<

DN
N
DN

ASNSNNNSNSNSNSSSSNN NN N

IPC relative difference (%)

|
=)
S

ZSim (mem.lat = 170)
— DRAMSim2 (Delay Queue = 0)

ZSim (mem.lat = 100)
DRAMSim2 (Delay Queue = 100)

ZSim (mem.lat = 170)
- DRAMSim2 (Delay Queue = 24)

Figure 5: Although all three simulator enhancements lead to the same main memory latency of the memory stressing mi-
crobenchmarks, their performance impact on the SPEC CPU2006 workloads may differ significantly.

modern Out of Order (OoO) processors. The model conceptually
breaks the CPU engine into two major portions: frontend and back-
end. The frontend is in charge of decoding instructions from mem-
ory and translating them into micro-operations, while the backend
executes and retires the work generated as the outcome of sched-
uling the micro-operations. The place where the frontend feeds
the backend with micro-operations is the issue point. In the Sandy
Bridge micro-architecture, the issue point is 4-slot wide, meaning
that it can deliver to the backend up to four micro-operation per
cycle. The Top-Down method categorizes application performance
in four main groups: frontend bound, bad speculation, retiring, and
backend bound. The issued micro-operations that are retired at
the end of the pipeline are the ones that correspond to the useful
pipeline work; the Top-Down classify these issue slots as retiring.
However, some issued micro-operations are not retired, e.g., be-
cause they are part of the mispredicted branch path. These slots
are categorized as bad speculation. The issue slot can also be empty
because the CPU frontend is unable to fill them; these slots are
categorized as frontend bound. If the frontend is ready to deliver
a new micro-operation in the issue point, but there are no avail-
able slots because the backend has not freed them from previous
micro-operations, the slots are categorized as backend bound.

Top-Down go further building a hierarchical tree with other
subcategories beneath this four main groups. For example, backend
category spawns a tree over two other main categories: Core Bound
and Memory Bound where the latter further breaks into stores, L1,
L2, L3 and main memory.

Top-Down was designed by Intel, implemented targeting the
Ivy Bridge microarchitecture. The authors had given a conceptual
approach for each category and the real system, also a list of hard-
ware counters they used to determine each one of the mentioned
categories. From the conceptual description and with the hardware
counter definition, we have applied the method not only to obtain
measurements from the Sandy Bridge micro-architecture but to
implement an approximation of this features into the simulator to

export the corresponding data. Nevertheless, we just did it for the
main four categories. In the simulator used in the study, implemen-
tation of the hardware counters required for more detailed analysis,
e.g., core, L1, L2, L3 and main memory, would require significant
effort. Sandy Bridge processor used in the study has just a subset
of the hardware counters available in the Ivy Bridge architecture
used for the Top-Down development. Therefore, for the processor
under study, it is unfeasible to perform Top-Down analysis that we
provide more details from the one that we presented in this paper.

3.2.2 Top-Down method: Analysis. Figure 6 shows the Top-Down
analysis for each benchmark. We plot five bars that are shown in
the following order, from left to right:

(1) mem.latency = 100 (Default configuration)

) mem.latency = 170

(3) mem.latency = 170 and Delay Queue latency =24
(4) mem.latency = 100 and Delay Queue latency =96
(5) Real system measurements.

Each bar shows a Top-Down issue slot breakdown between the
four main categories: retiring, bad speculation, frontend bound, and
backend bound.

For the real system measurements, the right-most bar for each
benchmark in Figure 6, we use the standard Top-Down representa-
tion in which the sum of all issue slot is scaled to 1. The Top-Down
comparison of different systems, however, is not trivial. Scaling
Top-Down bars of all the systems to 1 is confusing because im-
provement of one component, e.g., reduction of the empty issues
slots due to the main memory access could be seen as deteriorating
of another. Therefore, Top-Down comparison of different systems
requires a reference point that will enable meaningful presentation
and analysis of the results. Since in all the configuration, we execute
the same code for the same number of instructions, our reference
point is the number of retiring micro-operations. This means that,
for a given benchmark, the height of the retiring bar is the same for
the real system and all the simulator configurations. For each bar,

Main Memory Latency Simulation: The Missing Link

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

I I
[Frontend Bound
[Backend Bound

I
/Il Retirement
{1 Bad Speculation

O = N W ks O

6 783 ' ' ' [7.157
5 —
A _
3
2 _
) 0AR. _al
0 llllﬂ_lii i il
° > NS % > o>
\S&@ ((\9 @ (o,bo ?9® \\83 'b&
2 » Q & & N
o° o% el & & AY DPP‘
> w b’;’gy 194 NS
ol
™

8.15T7 T T

27’\\\ Q\ej' \§\+ &Q (\&0 <& . (\-{3’
b o) N\ <<0 <9 Q Y
(,)Q{a b‘ .(”b &9 vb(") ' s\ q/‘?q
> ¥ o W
2
™

Figure 6: TopDown analysis. For memory intensive benchmarks, simulator enhancements based on the changes in
the mem.latency ZSim parameter (2"? and 3"¢ bar for each benchmark) show moderate changes w.r.t. to the default
ZSim+DRAMSim2 configuration (1°! bar). The simulator enhancements based on the Delay Queue in the DRAMSim2 (4° h bar),
show much larger differences. We also detect a huge difference in the Backend bound issues stalls between the real platform

(5'" bar) and the all simulator configurations.

i.e., each benchmark and simulator configuration, other Top-Down
components, are scaled relative to the retiring category. This en-
ables direct visual comparison of different benchmark Top-Down
categories in different configurations.

The results are summarized in Figure 6. First, we will focus on
the comparison of the different simulator configurations, that is the
first four bars for each benchmark. For most of the benchmarks,
there is a low to moderate difference between the different simu-
lator configurations. This comes mainly from the fact that these
benchmarks have low memory usage [30], so any memory-related
configuration has a low impact on the overall application behavior.
For the benchmarks with high stress to the main memory, such
as the libquantum, bwaves, milc, leslie3d, soplex, GemsFDTD,
and 1bm [30]; the behavior depends significantly on the approach
used to correct the latency of the memory requests. The simulator
enhancements based on the changes in the mem.latency ZSim’s
parameter, plotted as the second and the third bar for each bench-
mark, show moderate changes with respect to the default ZSim +
DRAMsim2 configuration. The simulator enhancements based on
the Delay Queue in the DRAMsim2, show much larger differences.

Overall, it is interesting to detect that different simulator en-
hancements led to practically the same main memory latency of the
microbenchmarks (see Figure 4), can lead to significantly different
performance and behavior of more complex benchmarks, as shown
in Figures 5 and 6.

This opens a question on which out of proposed simulator en-
hancements should be used to adjust the main memory latency. To
address this question, in Figure 6 we also plot the Top-Down break-
down of the Sandy Bridge platform used in the study. However, the
most important finding of the presented results is a huge difference
in the backend bound issues stalls between the real platform and the
all simulator configurations for all memory intensive benchmarks.

We analyzed this difference by extensive benchmark profiling
(hardware counters) and analysis of the main differences between
the simulator and the simulated platform. Our conclusion is that
the difference comes mainly from the fact that the data prefetching
incorporated in the Sandy Bridge platform leads to significant per-
formance improvements, while the ZSim simulator incorporates
no data prefetcher. This makes a huge difference in performance
and behavior of the memory intensive benchmarks. Until the data
prefetching gap is removed or at least mitigated, we could conclude
which out of the proposed simulator enhancements is the closest
match to the real system behavior.

4 OTHER SYSTEMS

Up to now, our study focused on the analysis of the main memory
latency and the missing cycles in the main memory simulation
for the Intel Sandy Bridge E5-2670 processor. In this section, we
analyze the LLC to main memory latency on other HPC platforms,
including two mainstream HPC architectures which have been

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA
Table 5: Details memory hierarchy for main memory la-
tency measurements

Mainstream architectures Emerging architectures

% -
g -2 2 ® © a- N
= o - = 8 3 5] 2
Platforms B ER oo 'g 2 = 13} o)
S 13 BN] 3 E]] o
S n N ~ = T 7
Z R oot} = = > »
Manuf. Intel Intel Intel IBM Cavium APM APM
Arch. Nehalem Haswell MIC POWER8 ARMv8-A ARMv8-A ARMv8-A
Released 2009 2014 2016 2014 2014 2015 2013
Sockets 2 2 1 2 2 1 1
Cores per
Socket 4 16 68 10 48 8 8
CPU freq.
GHz 2.8 23 1.4 3.49 1.8 2.4 2.4
Out-of-order| Yes Yes Yes Yes No Yes Yes
DP Flops,
per cycle, 4 16 32 8 2 2 2
per core
L1i 32KiB 32KiB 32KiB 32KiB 48KiB 32KiB 32KiB
L1d 32KiB 32KiB 32KiB 64KiB 32KiB 32KiB 32KiB
L2 256 KiB 256 KiB 1MiB 512KiB 16 MiB 256KiB 256 KiB
L3 8 MiB 40 MiB / 80 MiB / 8 MiB 8 MiB
8 ch.
a
Memory 3 ch. 4 ch. MCD*_RAM 4 ch. 4 ch. 4 ch. 4 ch.
conf. DDR3 DDR4 6ch DMI DDR3 DDR3 DDR3
per socket 1333 2133 DDR4 28.8GBps 1600 1600 1600
2400
16 GiB
Memory (MCDRAM)
capacity 24GiB 128 GiB + 256GiB 128GiB 128GiB 64 GiB
per node 192 GiB
(DDR4)

2 KNL system has been set to flat mode, therefore both memories, MCDRAM and DDR4, are exposed
as separate NUMA nodes, and the user can choose in which memory the workload executes.
predominantly used in HPC systems so far, Nehalem X5560 and
Haswell E5-2698v3, as well as five emerging ones: Knights Landing,
POWERS, ThunderX, X-Gene 1 and X-Gene 2. The most important
features and the memory hierarchy of the architectures used in this
part of the study are summarized in Table 5.

To quantify access latencies to different levels of the memory
hierarchy, we used one of the benchmarks from the LMbench bench-
mark suite [17]. It is a suite of simple, portable benchmarks, which
compare different performance characteristics of Unix-like systems.
It comprises both bandwidth benchmarks (cached file read, memory
read/write, pipe, etc.) and latency benchmarks (context switching,
various networking latencies, memory read latency, etc.). We used
the memory read latency benchmark, with random-access reads
in order to mitigate the impact of the data prefetching. By varying
input dataset size, we could measure access latency to all memory
hierarchy levels. The measured latency comprises the latency of the
hardware components (caches, memory controller, main memory),
but also the latency of the system software, and virtual to physical
memory translation.

Our experiments show significant range in the main memory
access latency. In this paper, we focused on the latency between the
LLC and the main memory, so in Figure 7 we plot these measure-
ments for the platforms under study. The POWERS platform has the
lowest LLC to main memory latency of 30 ns, followed by the main-
stream x86 platforms, Haswell (73 ns) and Nehalem (71 ns), and
emerging Arm-based servers Thunder X (82 ns) and XGene 2 (81 ns).
The XGene 1 latency is slightly higher, 124 ns, KNL latency reaches
245 ns and 277 ns for DDR4 and MCDRAM memory, respectively.

Overall, we see that the latency between the LLC and the main
memory can vary significantly between different platforms. Since

R. Sanchez Verdejo et al.

its value ranges between tens and hundreds of nanoseconds, it is
really important to properly adjust and validate this latency in the
system simulators before any measurements are performed.

5 STATE OF THE ART

5.1 Main memory simulators

DRAMsim [27] is the first cycle-accurate DRAM system simula-
tor. Developed with the intention to explore different parameters
to achieve optimal memory system performance, authors have
abstracted several timing models for technologies like SDRAM,
DDR, DDR2, DRDRAM and, FB-DIMMs. Limitations mentioned by
Wang et al. in DRAMsim original work, were addressed in 2011 by
Rosenfeld et al. in DRAMsim2 [21] proposal. DRAMsim2 provides
a detailed timing simulation of main memory following DDR2 and
DDR3 standards. DRAMsim and DRAMsim2 had been validated
against Micron’s DDR3 DRAM Verilog models [18] where no viola-
tion of timing constraints were detected.

Ramulator [13], released in 2016, is another publicly-available
DRAM simulator. It provides faster main-memory simulation and
enables simulation of the high-end DRAM standards and products
such as GDDR5 or HBM. Ramulator DDR3 timings were validated
against Micron’s DDR3 DRAM Verilog models [18], and no timing
constrains violations were detected. An important remark is that
Ramulator’s correctness was not validated for the memories other
than DDR3. Lastly, Ramulator claims to be up to 3 times faster than
other state-of-the-art main memory simulators. On ISCA 2012 edi-
tion, winners of the Memory Scheduling Championship presented
USIMM [6]: a trace-based simulation infrastructure for DRAM de-
vices focusing on memory controller scheduling algorithms. In the
same year, Jeong et al. [12] have proposed DrSim: a stand-alone
traced-based DRAM simulator with the possibility to run in execu-
tion mode with a specific version of gem5. To our best knowledge
neither USIMM or DrSim had been validated against real models,
and unfortunately, both simulators are no longer maintained.

5.2 CPU simulators

gem5 [2] is the most widely used system simulator. It originated
as a merge of the M5 simulator [3] of the CPU pipeline (validated
against an Alpha machine) and the memory hierarchy inherited
from GEMS [14]. The gem5 can be easily configured to simulate
various platforms, and since 2002, more than a hundred of publica-
tions are referred to be improving, extending or simply using this
simulator. Validation of the simulator versus the actual hardware is
delegated to the gem5 users.

Sniper [4] is an enhancement of the Graphite parallel simula-
tion infrastructure [19]. The simulator models the main memory
accesses trough a fixed latency with the option to add a normal
distribution on top of it. Sniper is validated against an Intel Xeon
X5550 processor (Nehalem architecture) with a set of the SPLASH-2
benchmarks [28]. The validation results show that the Sniper IPC
error with respect to the actual hardware is below 25 %.

ZSim [23] simulator is built upon the Dynamic Binary Trans-
lation Technique. Currently, it is the fastest simulator capable to
perform the simulations up to 300 MIPS of over a thousand cores.

The reason for ZSim’s speed is that it partitions the simulation
in two phases, Bound and Weave phases, as described in Section 2.5.

Main Memory Latency Simulation: The Missing Link

g 300 277 .
§f2\ 245
oo
,:]) 8 200_ =
o6 124
5% 100} 73 71 82 81 -
x® 30
e 0
A= A =m o © N
2s 2z Tz k3 B 0} ¢ %
X< XA~ 2] i) w -]] [}
o a jofe) o 2 c ©} ©]
o) TA [T} 3 >< 4
o = 4 o <
s w e F

Figure 7: LLC to main memory latency can span over a wide
range for various high-end and emerging HPC platforms

In the Bound phase, each core is simulated as they were isolated,
with no interaction with other cores. This enables fast parallel sim-
ulation. Then, in the Weave phase, the simulation is corrected to
account for a potential collision between concurrent events from
different cores such as hitting the same address for main memory
accesses. ZSim supports different alternatives for the main memory
simulation two of which are: an internal memory model based on
the M/D/1 queue contention, and a software interface to use DRAM-
sim2. ZSim with the internal M/D/1 memory model is validated with
an actual Intel Xeon L5640 machine (Nehalem architecture) running
SPEC CPU2006 and PARSEC [1] benchmarks. The authors report
the IPC errors of below 10 %. Furthermore, ZSim authors clarified
that using DRAMsim?2 restricts the simulation to 3 MIPS, landing
outside their design goals. Thus, validation with DRAMsim?2 it is
not performed in the original paper.

6 CONCLUSIONS

In this paper, we take an approach to quantify the missing cycles in
the main memory simulation, and we show that significant latency
can be overlooked when CPU and memory simulators are merged
without considering delays of all the circuitries that resides between
LLC and main memory. In particular, we validate a simulation
infrastructure based on ZSim and DRAMsim2 modeling Intel Sandy
Bridge E5-2670. Our experiments identify that, in comparison to the
real machine measurements, approximately one-third of total main
memory latency is not taken into account in the simulated system.
Such deviation in main memory latency estimation could place the
reliability of a simulation infrastructure in question. We propose
multiple schemes to add an extra delay in the simulation model
to account for these missing cycles, and validate the approaches
using the SPEC CPU2006 benchmarks. Moreover, we measured
main memory latency on seven mainstream and emerging compute
platforms; the results show a huge range of values for main memory
latency between the LLC and main memory devices. Therefore, it is
really important to properly adjust and validate related parameters
in system simulators before any measurements are performed. We
strongly believe, this study identifies an important issue in main
memory latency simulation and the approaches proposed in the
work will certainly improve main memory simulation techniques.

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

ACKNOWLEDGMENTS

This work was supported by the collaboration agreement between
Samsung Electronics Co., Ltd. and the Barcelona Supercomputing
Center (BSC); Spanish Ministry of Science and Technology (project
TIN2015-65316-P); Generalitat de Catalunya (contracts 2014-SGR-
1051 and 2014-SGR-1272); the Severo Ochoa Programme (SEV-2015-
0493) of the Spanish Government; the U.S. Department of Defense
under Contract FA8075-14-D-0002-0007, TAT 15-1158; and the U.S.
National Science Foundation under Award 1642424.

REFERENCES

[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT '08). ACM, New York, NY, USA, 72-81. https:
//doi.org/10.1145/1454115.1454128

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SSGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1-7. https://doi.org/10.1145/2024716.2024718

[3] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi,
and Steven K. Reinhardt. 2006. The M5 Simulator: Modeling Networked Systems.
IEEE Micro 26, 4 (July 2006), 52-60. https://doi.org/10.1109/MM.2006.82

[4] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulations.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 52:1-52:12.

[5] O.Celebioglu, A. Saify, T. Leng, J. Hsieh, V. Mashayekhi, and R. Rooholamini. 2004.
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings. 250~. https://doi.org/10.1109/IPDPS.2004.1303311

[6] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth H.
Pugsley, Aniruddha N. Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and
Zeshan Chishti. 2012. USIMM: the Utah SImulated Memory Module A Simulation
Infrastructure for the JWAC Memory Scheduling Championship. (2012).

[7] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. 1999. A Perfor-
mance Comparison of Contemporary DRAM Architectures. In Proceedings of
the 26th Annual International Symposium on Computer Architecture (ISCA 99).
IEEE Computer Society, Washington, DC, USA, 222-233. https://doi.org/10.1145/
300979.300998

[8] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1-17. https://doi.org/10.1145/1186736.
1186737

[9] Intel Corporation 2016. Intel Product Specification site. (2016). Retrieved May,
2018 from https://ark.intel.com/

[10] Intel Corporation 2016. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation. Reference Number: 248966-033.
[11] Jacob, Bruce and Ng, Spencer and Wang, David. 2007. Memory Systems: Cache,
DRAM, Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Min Kyu Jeong, Doe Hyun Yoon, and Mattan Erez. 2012. DrSim: A Platform for
Flexible DRAM System Research. http://Iph.ece.utexas.edu/public/DrSim. (2012).
[13] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM
Simulator. IEEE Computer Architecture Letters 15, 1 (Jan 2016), 45-49. https:
//doi.org/10.1109/LCA.2015.2414456
Milo M. K. Martin, Daniel]J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
2005. Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. SIGARCH Comput. Archit. News 33, 4 (Nov. 2005), 92-99. https://doi.
org/10.1145/1105734.1105747
Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. 2015. Reverse Engineering Intel Last-Level Cache Com-
plex Addressing Using Performance Counters. In Proc. of the 18th Int. Symp. on
Res. in Attacks, Intrusions and Defenses (RAID’15).
[16] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19-25.
Larry McVoy and Carl Staelin. 1996. Lmbench: Portable Tools for Performance
Analysis. In Proceedings of the 1996 Annual Conference on USENIX Annual Technical
Conference (ATEC *96). USENIX Association, Berkeley, CA, USA, 23-23. http:
//dlL.acm.org/citation.cfm?id=1268299.1268322
Micron Technology, Inc. 2018. Micron DDR3 SDRAM Verilog Model.
(2018). Retrieved Apr 2018 from https://www.micron.com/resource-details/

(12

(14

[15

[17

[18

MEMSYS, October 1-4, 2018, Old Town Alexandria, VA, USA

[19]

[20]

[21

[22

[23

[24

[25

]

3caf8e7e-ace6-4a7c-bf04-e374d9c08564

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep,
and A. Agarwal. 2010. Graphite: A distributed parallel simulator for multicores.
In HPCA - 16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture. 1-12. https://doi.org/10.1109/HPCA.2010.5416635

M. Poremba and Y. Xie. 2012. NVMain: An Architectural-Level Main Memory
Simulator for Emerging Non-volatile Memories. In 2012 IEEE Computer Society
Annual Symposium on VLSL

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate
Memory System Simulator. IEEE Computer Architecture Letters 10, 1 (Jan 2011),
16-19. https://doi.org/10.1109/L-CA.2011.4

Samsung Electronics Co., Ltd. 2011. 240pin Registered DIMM based on 2Gb D-die.
M393B5273DHO0 Datasheet.

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 475-486. https://doi.org/10.1145/2485922.2485963

Top500 Main site 2018. Top 500 Supercomputer sites. (2018). https://www.
top500.0rg/

R. S. Verdejo and P. Radojkovi¢. 2017. Microbenchmarks for Detailed Validation
and Tuning of Hardware Simulators. In 2017 International Conference on High
Performance Computing Simulation (HPCS). 881-883. https://doi.org/10.1109/

[26

[27

[28

[29

[30

R. Sanchez Verdejo et al.

HPCS.2017.135

Viswanathan, Vish and Kumar, Karthik and Willhalm, Thomas and Lu, Patrick and
Filipiak, Blazej and Sakthivelu, Sri. 2018. Intel MLC. (2018). Retrieved Apr 2018
from https://software.intel.com/en-us/articles/intelr-memory-latency-checker
David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. 2005. DRAMsim: A Memory System Simulator. SSGARCH
Comput. Archit. News 33, 4 (Nov. 2005), 100-107. https://doi.org/10.1145/1105734.
1105748

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22Nd Annual International Sym-
posium on Computer Architecture (ISCA ’95). ACM, New York, NY, USA, 24-36.
https://doi.org/10.1145/223982.223990

A. Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 35-44. https://doi.org/10.1109/ISPASS.2014.
6844459

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2013. MemGuard: Memory
bandwidth reservation system for efficient performance isolation in multi-core
platforms. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 55-64. https://doi.org/10.1109/RTAS.2013.6531079

