
Main Memory Latency Simulation: The Missing Link

Rommel Sánchez Verdejo
rommel.sanchez@bsc.es

Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Kazi Asifuzzaman
kazi.asifuzzaman@bsc.es

Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Milan Radulovic
milan.radulovic@bsc.es

Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Petar Radojković
petar.radojkovic@bsc.es

Barcelona Supercomputing Center (BSC)

Barcelona, Spain

Eduard Ayguadé
eduard.ayguade@bsc.es

Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Bruce Jacob
blj@umd.edu

University of Maryland

College Park, Maryland, USA

ABSTRACT

The community accepted the need for a detailed simulation of main

memory. Currently, the CPU simulators are usually coupled with

the cycle-accurate main memory simulators. However, coupling

CPU and memory simulators is not a straight-forward task be-

cause some pieces of the circuitry between the last level cache and

the memory DIMMs could be easily overlooked and therefore not

accounted for.

In this paper, we take an approach to quantify the missing cycles

in the main memory simulation. To that end, we execute a memory

intensive microbenchmark to validate a simulation infrastructure

based on ZSim and DRAMsim2 modeling an Intel Sandy Bridge E5-

2670 system. We execute the same microbenchmark on a real Sandy

Bridge E5-2670 machine identifying a missing 20 ns in the simulator

measurements. This is a huge difference that, in the system under

study, corresponds to one-third of the overall main memory latency.

We proposemultiple schemes to add an extra delay in the simulation

model to account for the missing cycles. Furthermore, we validate

the proposals using the SPEC CPU2006 benchmarks. Finally, we

repeat the main memory latency measurements on seven main-

stream and emerging computing platforms. Our results show that

latency between the Last Level Cache (LLC) and the main memory

ranges between tens and hundreds of nanoseconds, so we empha-

size on properly adjust and validate these parameters in system

simulators before any measurements are performed. Overall, we

believe this study would improve main memory simulation leading

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

MEMSYS, October 1ś4, 2018, Old Town Alexandria, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6475-1/18/10. . . $15.00
https://doi.org/10.1145/3240302.3240317

to the better overall system analysis and explorations performed in

the computer architecture community.

CCS CONCEPTS

· Computer systems organization → Processors and memory

architectures; · Computing methodologies→Massively parallel

and high-performance simulations;

KEYWORDS

Main memory, DRAM, Simulation, High Performance Computing.

ACM Reference Format:

Rommel Sánchez Verdejo, Kazi Asifuzzaman, Milan Radulovic, Petar Rado-

jković, Eduard Ayguadé, and Bruce Jacob. 2018. Main Memory Latency

Simulation: The Missing Link. In The International Symposium on Memory

Systems (MEMSYS), October 1ś4, 2018, Old Town Alexandria, VA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3240302.3240317

1 INTRODUCTION

CPU and memory simulators are inseparable parts of today’s com-

puter architecture research; they are extensively used to prototype

hardware systems and to estimate performance and energy of a par-

ticular design. System simulators were initially focused solely on the

CPUswhereas thememory systemswere emulatedwith very simple

models, e.g., the fixed latency of the main memory access. However,

work of Jacob et al. [7, 11] showed that simplistic DRAM modeling

can lead to significant simulation errors. The authors advocated for

the detailed timing simulation of the main memory and released

DRAMsim [27] the first cycle-accurate DRAM simulator, followed

byDRAMsim2 [21]. The community accepted the need for a detailed

simulation of main memory, and currently, the CPU simulators are

usually coupled with the cycle-accurate main memory simulators

such as DRAMsim2 [21], Ramulator [13] or NVMain [20].

The CPUs and main memory are clearly separate devices, with

different functionalities and typically manufactured by different

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA R. Sánchez Verdejo et al.

Figure 1: When CPU and memory simulators are coupled,

the timings of thememory request between the LLC and the

memory controller could be easily overlooked.

companies. However, decoupling their functionalities in total sys-

tem simulation is not straight-forward. In particular, the DRAM

DIMMs are passive devices managed by the memory controller

which is a part of the CPU. This functionality includes schedul-

ing, reordering and queuing of the memory requests as well as the

detailed DRAM commands, such as PRECHARGE, ACTIVATE, READ,

WRITE, etc. Since the memory simulators mimic the functionality

of the main memory, they also simulate the functionality and the

timings of the memory controller (see Figure 1). CPU simulators, on

the other hand, typically perform functional and timing simulation

of the memory request only until the LLC.

This means that by coupling CPU and amainmemory simulators,

all the delays of the memory request of the Bus-Interface Unit

(BIU) between the LLC and the memory controller could be easily

overlooked, and therefore not accounted for, as we illustrate in

Figure 1. The BIU overhead is that of: (1) the request traversing

the NoC to the memory controller (longer for writes, due to the

data); (2) the request arbitrating for the right to be enqueued in

the memory controller’s request queue; (3) the request potentially

stalling if that queue is full; (4) at the end of a read request, the

multi-cycle cost of transferring the data over the NoC between the

core and the memory controller.

In this paper, we take an approach to quantify the missing cycles

in the main memory simulation. To that end, we execute a memory

intensive microbenchmark to validate a simulation infrastructure

based on ZSim [23] and DRAMsim2 [27] modeling an Intel Sandy

Bridge E5-2670 system. We execute the same microbenchmark on

a real Sandy Bridge E5-2670 machine identifying 20 ns missed in

the simulator measurements. This is a huge difference that, in the

system under study, corresponds to one-third of the overall main

memory latency. We also propose multiple schemes to add an extra

delay in the simulation model to account for the missing cycles.

Then, we execute applications from the SPEC CPU2006 benchmark

suite to validate the approach of adding an extra latency to achieve

better simulation accuracy. Finally, we quantify the LLC to memory

latency for various high-end and emerging platforms and we show

its significant range, between 30 ns (POWER8) and 277 ns (Knights

Landing); therefore, it is really important to properly adjust and

validate this parameter in system simulators before any measure-

ments are performed. Overall, we believe that the issues addressed

in this paper would help researchers of the computer architecture

community to improve main memory system simulation.

The rest of the paper is organized as follows. Section 2 explains

simulation environment and evaluates main memory latency with

Table 1: Cache parameters of the Sandy Bridge EP class pro-

cessor used in the study.

L1-D L2 L3

Size 32 KiB 256 KiB 20MiB

Latency (in CPU cycles) 4 8 28

Cache line size 64 B 64 B 64 B

Set associativity 8-way 8-way 20-way

a microbenchmark for real and simulated systems. This section also

proposes approaches to fix the deviation identified between real and

simulated main memory latency measurements. Section 3 details

the validation of the proposed approaches with SPEC CPU2006

benchmarks, while Section 4 discusses LLC tomain memory latency

of various high-end and emerging High Performance Computing

(HPC) platforms. Section 5 analyzes the validation procedure of

state-of-the-art system and memory simulators. Finally, Section 6

presents the conclusions of the study.

2 MAIN MEMORY LATENCY EVALUATION

AND SIMULATION ENHANCEMENTS

In this section, we detail the methodology used to model a targeted

system into a simulation infrastructure and we describe the mi-

crobenchmarks used to discover the main memory access latency.

The targeted system we aimed to model is an Intel Xeon E5-2670

Sandy Bridge-EP processor [9] operating at 3.0GHz. Sandy Bridge

is a micro-architecture that is still in use, specially in smaller Tier-1

systems [24] as in the Barcelona Supercomputing Center (BSC)

where we conduct our experiments. The main memory comprises

four 4GiB DIMMs devices [22] connected to the processor using

four DDR3-1600 channels. Each processor comprises eight cores

where the hyper-threading feature has been disabled like in most

HPC systems [5].

2.1 Simulation environment

The simulator infrastructure we chose to use is an integration of

two simulators: ZSim [23] as CPU simulator and DRAMsim2 [21]

as main memory simulator.

ZSim is a user-level, execution-driven CPU simulatorwidely used

in the computer architecture research community. Developed by

researchers fromMIT and Stanford University, ZSim is designed for

simulation of large-scale systems. However, ZSim was originally de-

veloped to simulate Intel Westmere architecture which is no longer

being used in HPC domain. One of the tasks that we had to perform

was to upgrade and validate ZSim for Intel Sandy Bridge processor.

The work to upgrade ZSim consisted of the following steps: First,

we adjusted the simulator by updating the instruction latencies

obtained through the execution of CPU microbenchmarks [25] in

the real hardware; Second, we improved the micro-operation fusion

and we increased the number of entries in the Reorder Buffer (ROB)

from 128 (Westmere) to 168 (Sandy Bridge); Third, we configured

the cache hierarchy according to the Intel documentation [9] for a

Sandy Bridge-EP Class, summarized in Table 1. Finally, we updated

the L3 caching mechanism implementing the hashing function

described in work by Maurice et al. [15].

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA R. Sánchez Verdejo et al.

Table 5: Details memory hierarchy for main memory la-

tency measurements

Mainstream architectures Emerging architectures

Platforms

N
e
h
a
le
m

X
5
5
6
0

H
a
sw

e
ll

E
5
-2
6
9
8
v
3

K
n
ig
h
ts

L
a
n
d
in
g

P
o
w
e
r8

T
h
u
n
d
e
rX

X
-G

e
n
e
2

X
-G

e
n
e
1

Manuf. Intel Intel Intel IBM Cavium APM APM

Arch. Nehalem Haswell MIC POWER8 ARMv8-A ARMv8-A ARMv8-A

Released 2009 2014 2016 2014 2014 2015 2013

Sockets 2 2 1 2 2 1 1

Cores per
Socket

4 16 68 10 48 8 8

CPU freq.
GHz

2.8 2.3 1.4 3.49 1.8 2.4 2.4

Out-of-order Yes Yes Yes Yes No Yes Yes

DP Flops,
per cycle,
per core

4 16 32 8 2 2 2

L1i 32KiB 32KiB 32KiB 32KiB 48KiB 32KiB 32KiB

L1d 32KiB 32KiB 32KiB 64KiB 32KiB 32KiB 32KiB

L2 256KiB 256KiB 1MiB 512KiB 16MiB 256KiB 256KiB

L3 8MiB 40MiB / 80MiB / 8MiB 8MiB

Memory
conf.

per socket

3 ch.
DDR3
1333

4 ch.
DDR4
2133

8 ch.
MCDRAMa

+
6 ch.
DDR4
2400

4 ch.
DMI

28.8GBps

4 ch.
DDR3
1600

4 ch.
DDR3
1600

4 ch.
DDR3
1600

Memory
capacity
per node

24GiB 128GiB

16GiB
(MCDRAM)

+
192GiB
(DDR4)

256GiB 128GiB 128GiB 64GiB

a KNL system has been set to flat mode, therefore both memories, MCDRAM and DDR4, are exposed
as separate NUMA nodes, and the user can choose in which memory the workload executes.

predominantly used in HPC systems so far, Nehalem X5560 and

Haswell E5-2698v3, as well as five emerging ones: Knights Landing,

POWER8, ThunderX, X-Gene 1 and X-Gene 2. The most important

features and the memory hierarchy of the architectures used in this

part of the study are summarized in Table 5.

To quantify access latencies to different levels of the memory

hierarchy, we used one of the benchmarks from the LMbench bench-

mark suite [17]. It is a suite of simple, portable benchmarks, which

compare different performance characteristics of Unix-like systems.

It comprises both bandwidth benchmarks (cached file read, memory

read/write, pipe, etc.) and latency benchmarks (context switching,

various networking latencies, memory read latency, etc.). We used

the memory read latency benchmark, with random-access reads

in order to mitigate the impact of the data prefetching. By varying

input dataset size, we could measure access latency to all memory

hierarchy levels. The measured latency comprises the latency of the

hardware components (caches, memory controller, main memory),

but also the latency of the system software, and virtual to physical

memory translation.

Our experiments show significant range in the main memory

access latency. In this paper, we focused on the latency between the

LLC and the main memory, so in Figure 7 we plot these measure-

ments for the platforms under study. The POWER8 platform has the

lowest LLC to main memory latency of 30 ns, followed by the main-

stream x86 platforms, Haswell (73 ns) and Nehalem (71 ns), and

emerging Arm-based servers Thunder X (82 ns) and XGene 2 (81 ns).

The XGene 1 latency is slightly higher, 124 ns, KNL latency reaches

245 ns and 277 ns for DDR4 and MCDRAM memory, respectively.

Overall, we see that the latency between the LLC and the main

memory can vary significantly between different platforms. Since

its value ranges between tens and hundreds of nanoseconds, it is

really important to properly adjust and validate this latency in the

system simulators before any measurements are performed.

5 STATE OF THE ART

5.1 Main memory simulators

DRAMsim [27] is the first cycle-accurate DRAM system simula-

tor. Developed with the intention to explore different parameters

to achieve optimal memory system performance, authors have

abstracted several timing models for technologies like SDRAM,

DDR, DDR2, DRDRAM and, FB-DIMMs. Limitations mentioned by

Wang et al. in DRAMsim original work, were addressed in 2011 by

Rosenfeld et al. in DRAMsim2 [21] proposal. DRAMsim2 provides

a detailed timing simulation of main memory following DDR2 and

DDR3 standards. DRAMsim and DRAMsim2 had been validated

against Micron’s DDR3 DRAM Verilog models [18] where no viola-

tion of timing constraints were detected.

Ramulator [13], released in 2016, is another publicly-available

DRAM simulator. It provides faster main-memory simulation and

enables simulation of the high-end DRAM standards and products

such as GDDR5 or HBM. Ramulator DDR3 timings were validated

against Micron’s DDR3 DRAM Verilog models [18], and no timing

constrains violations were detected. An important remark is that

Ramulator’s correctness was not validated for the memories other

than DDR3. Lastly, Ramulator claims to be up to 3 times faster than

other state-of-the-art main memory simulators. On ISCA 2012 edi-

tion, winners of the Memory Scheduling Championship presented

USIMM [6]: a trace-based simulation infrastructure for DRAM de-

vices focusing on memory controller scheduling algorithms. In the

same year, Jeong et al. [12] have proposed DrSim: a stand-alone

traced-based DRAM simulator with the possibility to run in execu-

tion mode with a specific version of gem5. To our best knowledge

neither USIMM or DrSim had been validated against real models,

and unfortunately, both simulators are no longer maintained.

5.2 CPU simulators

gem5 [2] is the most widely used system simulator. It originated

as a merge of the M5 simulator [3] of the CPU pipeline (validated

against an Alpha machine) and the memory hierarchy inherited

from GEMS [14]. The gem5 can be easily configured to simulate

various platforms, and since 2002, more than a hundred of publica-

tions are referred to be improving, extending or simply using this

simulator. Validation of the simulator versus the actual hardware is

delegated to the gem5 users.

Sniper [4] is an enhancement of the Graphite parallel simula-

tion infrastructure [19]. The simulator models the main memory

accesses trough a fixed latency with the option to add a normal

distribution on top of it. Sniper is validated against an Intel Xeon

X5550 processor (Nehalem architecture) with a set of the SPLASH-2

benchmarks [28]. The validation results show that the Sniper IPC

error with respect to the actual hardware is below 25%.

ZSim [23] simulator is built upon the Dynamic Binary Trans-

lation Technique. Currently, it is the fastest simulator capable to

perform the simulations up to 300 MIPS of over a thousand cores.

The reason for ZSim’s speed is that it partitions the simulation

in two phases, Bound andWeave phases, as described in Section 2.5.

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA R. Sánchez Verdejo et al.

3caf8e7e-ace6-4a7c-bf04-e374d9c08564
[19] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep,

and A. Agarwal. 2010. Graphite: A distributed parallel simulator for multicores.
In HPCA - 16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture. 1ś12. https://doi.org/10.1109/HPCA.2010.5416635

[20] M. Poremba and Y. Xie. 2012. NVMain: An Architectural-Level Main Memory
Simulator for Emerging Non-volatile Memories. In 2012 IEEE Computer Society
Annual Symposium on VLSI.

[21] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate
Memory System Simulator. IEEE Computer Architecture Letters 10, 1 (Jan 2011),
16ś19. https://doi.org/10.1109/L-CA.2011.4

[22] Samsung Electronics Co., Ltd. 2011. 240pin Registered DIMM based on 2Gb D-die.
M393B5273DH0 Datasheet.

[23] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 475ś486. https://doi.org/10.1145/2485922.2485963

[24] Top500 Main site 2018. Top 500 Supercomputer sites. (2018). https://www.
top500.org/

[25] R. S. Verdejo and P. Radojković. 2017. Microbenchmarks for Detailed Validation
and Tuning of Hardware Simulators. In 2017 International Conference on High
Performance Computing Simulation (HPCS). 881ś883. https://doi.org/10.1109/

HPCS.2017.135
[26] Viswanathan, Vish and Kumar, Karthik andWillhalm, Thomas and Lu, Patrick and

Filipiak, Blazej and Sakthivelu, Sri. 2018. Intel MLC. (2018). Retrieved Apr 2018
from https://software.intel.com/en-us/articles/intelr-memory-latency-checker

[27] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. 2005. DRAMsim: A Memory System Simulator. SIGARCH
Comput. Archit. News 33, 4 (Nov. 2005), 100ś107. https://doi.org/10.1145/1105734.
1105748

[28] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22Nd Annual International Sym-
posium on Computer Architecture (ISCA ’95). ACM, New York, NY, USA, 24ś36.
https://doi.org/10.1145/223982.223990

[29] A. Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 35ś44. https://doi.org/10.1109/ISPASS.2014.
6844459

[30] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2013. MemGuard: Memory
bandwidth reservation system for efficient performance isolation in multi-core
platforms. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 55ś64. https://doi.org/10.1109/RTAS.2013.6531079

