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made with mixed coins for which there was at least one

tracker that received leaked data about both purchases.

We find that in 20 of these 25 cases, the tracker can

identify the user’s wallet despite the use of mixing.

Our attack highlights the dangers of pervasive web

tracking: Bitcoin is often used for sensitive activities,

making the compromise of Bitcoin privacy a far more

serious threat than targeted advertising. In Section 8

we discuss mitigations that merchants can deploy. None

is a complete solution, given the fundamental tension

between privacy and the analytics needs of modern e-

commerce. Indeed, most of the privacy-breaching data

flows we identify are intentional and not accidental (Sec-

tion 4).

The main self-defense available to users today is to

use tracking-protection tools such as Ghostery or uBlock

Origin, but we note several limitations. First, since our

attack is passive, trackers have already accumulated

data in their logs that enable them to retrospectively

carry out the attack. Second, tracking protection tools

aren’t perfect and contain both false positives (resulting

in broken functionality) and false negatives (resulting in

missed trackers). In Section 4 we show that even with

tracking protection enabled, 25 merchants still leak sen-

sitive information to third parties. Third, merchants,

payment processors, and even network eavesdroppers

are potential adversaries for some of the attacks we de-

scribe, and tracking protection does not help against

these adversaries. Finally, in Section 8 we also discuss

how our techniques can aid law enforcement investiga-

tions.

We stress that we focus our study on Bitcoin as it

is the cryptocurrency with the most adoption on mer-

chant websites. However, our attacks apply to many

cryptocurrencies; in Section 5.2, we demonstrate that

our attacks hold on the Litecoin blockchain.

2 Background and Related Work

Our work brings together two previously unrelated ar-

eas of privacy research: web tracking and anonymity of

cryptocurrencies. We describe each in turn.

Online tracking. Since the web’s inception, the

number of third parties that track and record user ac-

tivity has exploded. [14, 36, 40, 56]. In this paper we

use the terms third party and tracker interchangeably.

Some trackers have a substantial view of users’ activi-

ties across the web: Google, for instance, has a track-

ing presence on roughly 80% of sites [37]. Tracking

methods have also become more sophisticated over time

[2, 15, 17, 35, 60]. The effectiveness of tracker-blocking

tools has been studied by various authors [19, 43, 66].

Some trackers like Google and Facebook are known

to tie their tracking profiles to identities directly dis-

closed by users, but most trackers have no direct rela-

tionship with users. However, even such trackers acquire

PII, often accidentally. Various studies have shown that

the leakage of PII from first parties to third parties is

rampant [31, 32], and the problem remains severe today.

Most trackers are legitimate businesses, but are

known to use intrusive means to track users. These in-

clude misuse of HTML5 APIs for fingerprinting, such as

Canvas, Audio Context, and Battery Status [16]; cross-

device tracking [13]; workarounds to browser privacy

features [4], and sniffing data from unsubmitted forms

[26]. Many trackers have poor security on their servers

and are a target for compromise for malvertising and

other purposes [50, 61].

The problem of trackers observing shopping and

payment flows is unlikely to go away. Consider retarget-

ing, which is the ability to serve ads to users for items

they are known to have shown an interest in purchasing.

It is one of the most valuable forms of advertising [29].

The farther into a payment flow a tracker can observe

a user (cart page, checkout page, etc.) the greater the

interest signaled. Another major benefit is conversion

tracking of ad campaigns. Having trackers on the pay-

ment flows is needed to help analyze whether a user who

was served an ad actually follows through with a pur-

chase. Other applications include fraud/abuse detection

and consumer insights.

Cryptocurrencies. In Bitcoin-like cryptocurren-

cies, users pay by broadcasting transactions to a peer-to-

peer network. Transactions are signed statements autho-

rizing transfers from one address to another. Addresses

are public keys that act as pseudonymous “account"

identifiers. Transactions are recorded in an immutable,

global ledger called the blockchain [11, 48].

Address clustering and mixing. It is trivial to

generate new Bitcoin addresses, and most wallet soft-

ware takes advantage of this feature to improve user

privacy. In the normal course of operation, users end up

with coins split between numerous addresses, and it may

not be obvious which addresses belong to the same user

(or entity). However, there are well known and well un-

derstood attacks to infer links between such addresses

[3, 42, 55, 57]. These techniques have been improved

upon and implemented by companies such as Chainal-

ysis and made available via easily accessible APIs. Ad-

dress clustering is not perfect, but it is a powerful at-
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tack, and wallet addresses must be considered cluster-

able unless additional privacy-protection techniques are

employed to break the link between those addresses.

Many such privacy-protection techniques are known

[65]; the ones readily deployable on existing Bitcoin-like

cryptocurrencies are all variants of the idea of mixing.

The best known and most used technique is known as

CoinJoin [39, 58], in which different users coordinate in

order to jointly create a transaction that spends a coin

of equal value from each of them, and from which each

of them receives a coin of the same value. The order

of outputs is randomly permuted so that the mapping

between inputs and outputs cannot be deduced from the

public blockchain. Services such as JoinMarket provide

the ability for users to coordinate to mix their coins [47].

CoinJoin improves unlinkability by breaking the

multi-input heuristic, one of the main heuristics used in

address clustering. However, the susceptibility of Coin-

Join (and other mixing techniques) to clustering has not

yet been rigorously studied. It is known that CoinJoin

transactions are at least detectable as such, since they

involve many inputs and outputs with the same value,

a highly unlikely pattern in a regular payment transac-

tion. In other words, CoinJoin improves anonymity but

does not provide unobservability [47].

Intersection attacks date back to the communica-

tions anonymity literature and are well known. Their

applicability to cryptocurrency mixing is also generally

understood. At least two papers mention it explicitly

[10, 23], but they focus on mix participants and other in-

termediaries as adversaries. A 2015 blog post also men-

tions the attack [51]. We introduce the idea that auxil-

iary information to link different mixed coins is readily

available to web adversaries (as opposed to behavioral

patterns in earlier work, which is a much less reliable

linkage mechanism). Further, we are able to empirically

evaluate the attack using recently proposed techniques

for identifying CoinJoin transactions on the blockchain

[47] (Section 6).

Other research on cryptocurrency privacy

and forensics. Gervais et al. present an attack on e-

commerce purchases using cryptocurrencies: since prices

are denominated in local currencies, usually close to in-

teger multiples of the unit of currency, blockchain trans-

action amounts could reveal the currency and hence the

location of the purchase [20]. Our work is complemen-

tary; their attack is stronger than ours in that the adver-

sary can be anyone examining the blockchain, whereas

our attack is stronger in the sense that much more in-

formation is leaked, and not just the location.

Another major route to compromise of cryptocur-

rency privacy, orthogonal to ours, is the linkage of trans-

actions to the sender’s IP address. An adversary who

is well connected to the Bitcoin peer-to-peer network

might be able to do so [8, 30]; even users who con-

nect to the Bitcoin network over Tor are potentially vul-

nerable [9]. In response to these attacks, Bitcoin Core

changed the protocol for how transactions are dissemi-

nated across the network in 2015. However, recent work

showed weaknesses in the updated protocol [18, 27, 49].

A re-designed P2P networking protocol with strong

anonymity guarantees has been proposed [64], but not

yet adopted by any cryptocurrency.

In concurrent work, Portnoff et al. explore a tech-

nique similar to our transaction linkage attack [53]. In

their work, linkage is a forensic technique to help iden-

tify entities behind illegal activities (sex trafficking).

It is enabled by a specific feature of a specific web-

site, backpage.com: classified ads paid for by users are

posted on the website along with an accurate times-

tamp. This allows anyone (e.g., researchers, NGOs, law

enforcement) to link an ad to the transaction on the

bitcoin blockchain that represents the payment for the

ad. In our work, linkage can be carried out only by spe-

cific entities, such as trackers, but we extend the linkage

via cookies, PII, and blockchain analysis, none of which

are applicable to the setting of Portnoff et al. Of course,

their work can be viewed as a demonstration of a privacy

breach affecting Backpage users, including the majority

not engaging in illegal activities; similarly, our attack

can be turned into a forensic technique (Section 8).

3 Threat model and attacks

Merchant, payment processor, and trackers. A

typical cryptocurrency-based e-commerce flow consists

of a user, a merchant, a payment processor, and one or

more trackers. The merchant is the website where the

user is shopping. Most merchants make use of payment

processors such as BitPay and Coinbase to handle the

processing of cryptocurrencies. When the user pays with

Bitcoin or another cryptocurrency, the transaction is re-

ceived by the payment processor, who then usually cred-

its the merchant’s account with an equivalent amount

of dollars or other local currency. Trackers are “third

parties” on web pages, often invisible, that track users’

actions for purposes of advertising and analytics (Sec-

tion 2). Doubleclick, Google Analytics, and Facebook

are common examples. Merchants, payment processors,
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and trackers are all potential adversaries in our attack,

although we are most interested in the latter.

Information flows to third parties. Users take

actions on shopping sites such as logging in, viewing

items, adding items to their cart, checking out, and mak-

ing a payment. See Figure 2 for a typical payment flow

on a merchant site. The more of these actions a third

party learns about, the more feasible the attack. The

types of information useful to the third party are:

– Payment timestamp: the third party learns the ap-

proximate payment time simply by virtue of being

embedded on merchant website, especially on pages

constituting the checkout process. Checkout pages

usually require the user to complete payment (i.e.,

broadcast the cryptocurrency transaction) within a

short time window, typically 15 minutes. Trackers

embedded on payment receipt pages are in an even

better position, as they learn the payment time to

within a few seconds. Note that assuming the user

included a reasonable transaction fee, payment pro-

cessors consider payments received as soon as the

transaction is broadcast to the peer-to-peer network

and received by the payment processor’s node. This

involves a latency of only a few seconds. The trans-

action may not be confirmed until it is incorporated

into the blockchain, which may take tens of minutes

depending on the degree of confirmation that the

payment processor requires. The transaction confir-

mation time is largely irrelevant to our attack.

– Payment address: the payment address is the des-

tination to send coins. Recipients (payment proces-

sors) will typically generate a fresh address specific

to the transaction — new Bitcoin addresses are triv-

ial to generate. Although there is no business reason

for trackers to receive the payment address, we find

that this does happen often (Section 4). Since pay-

ment addresses are unique, at least within the time

scale of interest to us, a leak of the payment address

trivially allows the tracker to link the web user to

the blockchain transaction.

– Price: Depending on the merchant website, track-

ers may be able to see the prices of items viewed by

users, items added to the cart, or even the final price

after shipping and taxes have been calculated. Note

that these prices are almost always denominated in

USD, EUR, or another fiat currency, even on web-

sites that only accept cryptocurrencies as payment,

due to the extreme volatility of cryptocurrency ex-

change rates. However, once the user checks out, the

amount is calculated in BTC (or another cryptocur-

rency) based on the exchange rate at that instant.

In some cases, this BTC-denominated price is also

revealed to the tracker, which is more useful for link-

ing than the price before applying the conversion.

– Personally Identifiable Information (PII): By PII we

mean any information related to the user’s real iden-

tity or account on the merchant website, such as

name, email address, username, and shipping ad-

dress. Trackers’ access to PII exacerbates the at-

tack. In this paper we analyze leaks of PII from mer-

chant websites to trackers, but we emphasize that

since trackers are widely present on the web, the link

to PII can be acquired on any website whatsoever.

Leaks of PII to trackers are known to be rampant

across the web (Section 2).

In our measurements in Section 4, we focus on pas-

sive attacks where trackers obtain this information in

the normal course of operation. Except for (some) PII

leaks, most other information flows to trackers are in-

tentional: trackers use this information for advertising

and analytics purposes. However, we note that in many

cases, tracking scripts are in a position to carry out an

active attack and extract all of the above information

from web pages even if they don’t obtain it passively.

This is because third-party scripts are typically embed-

ded without any isolation, in a way that gives them

full access to the content on the page. Sandboxing tech-

niques such as iframes are readily available, but only

infrequently employed since they interfere with some of

the functionality provided by trackers.

Attack 1: single transaction linkage. In this

attack, the adversary (tracker) seeks to link a web user

(as identified by the user’s cookie or PII) to a transac-

tion on the cryptocurrency blockchain. The merchant

and payment processor are not interesting adversaries

for this attack, because it is unsurprising that they can

carry out this linkage (but see Section 4.3). We assume

that the user is aware of this possibility, and poten-

tially takes necessary precautions, such as mixing to

unlink the transaction on the blockchain from her other

blockchain transactions and addresses. Attack 2 seeks to

overcome such defenses. But the tracker’s ability to link

to even a single transaction is a privacy breach, because

the user has no business relationship with the tracker

and many users are in fact unaware of the existence of

trackers (or at least their prevalence and sophistication).

It is also worrisome because trackers compile profiles of

users’ activities across the web.

If the tracker has access to the receiving address,

it trivially enables linkage, as noted above. The more
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the wallet, it is likely that a small number of additional

observations will suffice. We quantify this in Section 6.

4 Web measurement: Leaks of

sensitive data

In this section we analyze leaks of sensitive data on mer-

chant sites. In sections 5 and 7 we examine how trackers

can actually use this data to identify transactions on the

blockchain. We also show in this section how trackers

can connect this information to users’ identities.

4.1 Method

To identify leaks of sensitive data, we performed a web

crawl of popular merchants that accept Bitcoin. To cre-

ate a list of merchant sites, we began by combining pop-

ular community-maintained lists of merchants [54, 62],

which gave us 1438 sites. We then pruned the list to

those domains that were found in the Alexa top 1 mil-

lion websites, which left 283 sites. As we crawled the

sites, we discovered that about half of the merchants no

longer accepted Bitcoin. This left 130 merchants in our

crawl that accepted Bitcoin at the time of our measure-

ments, and we focus on these 130 sites. These merchants

were geographically distributed over 21 countries, with

64 based in the United States and 20 based in the United

Kingdom.

Typical merchant payment flows allow us to com-

plete most of the steps — viewing products, adding

them to the cart, initiating checkout, and receiving a

payment address and price — before actually having

to make a payment. This allowed us to collect data on

almost the entire payment flow on a large number of

websites. However, to analyze payment receipt pages,

we need to actually make purchases. Thus we analyze

transaction receipt pages on a smaller scale based on

actual purchases. We made purchases from 20 distinct

merchants in total.

To collect data on web tracking we used a mod-

ified version of the open-source web privacy measure-

ment tool OpenWPM [16]. Using the tool we collected

all HTTP(S) requests and responses. We also manually

marked any PII and payment-related information that

we encountered on the pages we visited; we added func-

tionality to the tool to automatically record this infor-

mation when marked.

BitPay 70

Coinbase 24

Coinpayments 3

Stripe 2

Other 31

Total 130

Table 1. Prevalence of payment processors in 130-site crawl

Throughout our measurements, we are interested

in the privacy risk both for a regular user and for a

user who employs tracking-protection tools. Most such

tools (e.g., Adblock Plus, uBlock Origin) use stan-

dard, community-maintained filter lists: EasyList and

EasyPrivacy. To measure the privacy-risk for users of

tracking protection lists, we simply re-run our analy-

sis after deleting those third-party URLs in our crawl

databases that appear in the lists.

4.2 Findings

Based on our measurements of 130 Bitcoin-accepting

merchants, we found numerous third parties that re-

ceive transaction-relevant information by virtue of their

business relationship with the merchant in the normal

course of a transaction. We define transaction-relevant

information as any information that could help iden-

tify the transaction on the blockchain. These potential

adversaries could retroactively perform the transaction-

linkage attack using data already present in their HTTP

logs or databases. We measure information received

through either unintentional leakage, via the referer

field of an HTTP GET or POST request [32], or through

intentional information sharing via an HTTP POST ac-

tion or a GET URL parameter.

Third parties receiving Bitcoin address or BTC price

Almost all merchants use third-party payment proces-

sors; this helps them avoid the security, volatility, and

legal risks of receiving and holding bitcoins. Table 1

lists the prevalence of different payment processors in

our crawl of bitcoin-accepting merchants. The payment

processor either sits in an iframe on the checkout page,

or on a separate page in the payment flow. The frame

or page will display the exact Bitcoin amount the user

should send, to an address controlled by the payment

processor.

We found that 17 of the 130 Bitcoin-

accepting merchant websites send the receiving

Bitcoin address or BTC-denominated price to a
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Info type w/o protection w/ protection

Non-BTC-denominated

price, incl. shipping
24 12

Non-BTC-denominated

price, pre-shipping
23 5

Non-BTC-denominated

price, either
43 16

Bitcoin address 12 12

Bitcoin price 11 9

Bitcoin address or price 17 15

Add-to-cart events 28 2

Total merchants sharing

info
53 25

Table 2. Number of merchants sending transaction-relevant

information to third parties, with/without tracking protection

Info type w/o protection w/ protection

Non-BTC-denominated

price, incl. shipping
29 11

Non-BTC-denominated

price, pre-shipping
18 3

Non-BTC-denominated

price, either
38 13

Bitcoin address 5 4

Bitcoin price 4 2

Bitcoin address or price 9 6

Add-to-cart events 9 2

Total third parties

receiving info
40 13

Table 3. Number of third parties receiving transaction-

relevant information, with or without tracking protection

third party (Table 2). With this information, linking

the payment to the blockchain is trivial. The leaks were

found on less-popular payment processors and websites

that implement their own Bitcoin payment processing.

We can also break it down by third parties instead

of merchants: see Table 3. In both tables, we also present

the corresponding measurements for users of tracking-

protection tools (via the EasyList and EasyPrivacy2 fil-

ter lists). Those results are presented in the “with pro-

tection” columns. See Appendix A.2 for a list of third

parties that receive transaction-relevant information de-

spite the use of tracking protection.

On 11 out of the 12 websites that leak the Bit-

coin address, the leaks were to third-party services

that render QR codes to facilitate payment. Provid-

ing a QR code encoding the payment recipient’s Bit-

coin address and the Bitcoin price makes payment

2 https://easylist.to/

easier for the user. QR-code generator services gen-

erally work by accepting a GET request with the

data encoded as a query parameter, and return-

ing the rendered QR code image. Thus, transaction-

relevant information is contained in the GET re-

quest (e.g., https://blockchain.info/qr?data=bitcoin://

[address]?amount=[price]&size=180). If the QR-code

generator service stores HTTP requests in their logs

they will have passively collected sufficient information

to perform the blockchain analysis attack. We saw three

domains providing this service: chart.googleapis.com,

qrserver.com, and blockchain.info. Three payment pro-

cessors in particular use chart.googleapis.com to gener-

ate QR codes: coingate.com, litepaid.com, gourl.io.3

We made purchases on a subset of 20 merchants

websites, which allowed us to examine trackers on pay-

ment receipt pages. Table 7 in Appendix A.2 presents

the number of third parties found on each merchant’s

payment receipt page, and the number of third parties

that also receive transaction-relevant information in the

course of the payment flow. Embedded third parties are

common on receipt pages: in total, there were 245 third

parties on the 20 merchant receipt pages we vis-

ited.

We found further serious leaks of sensitive informa-

tion on some of these pages. In particular, the payment

processor Coinbase redirects to receipt page URL on the

merchant website (such as https://www.overstock.com/

bitcoinprocessed/?...), and appends to this merchant

URL a long string of query parameters that include

the Bitcoin payment address. If the resulting payment

receipt page embeds third parties, then the merchant

will (likely inadvertently) leak the payment address via

the HTTP referer header. We found this to be the case

on multiple merchant websites that use Coinbase. The

overstock.com receipt page alone leaked the pay-

ment address to 42 distinct third parties via this

referer leakage.

Additionally, we found that many merchant web-

sites leak payment processor invoice page URLs to third

parties. This is a different type of leak from the one in

the previous paragraph. The URLs themselves do not

contain sensitive information, but the contents of the

invoice pages do, in the case of both Coinbase and Bit-

pay. In both cases, the invoice page is not protected by

access control and the content can be viewed by anyone

3 Google’s policy is to retain these log for 2 weeks, for debugging

and development purposes [21]. We could not find the retention

policies for the other two service providers.
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who has the URL. Of the sites from which we made pur-

chases, 12 of the 20 merchants included leaks of these

URLs to a total of 25 third parties.

Third parties receiving non-BTC cart prices

The cart page displays each product in a user’s shop-

ping cart, along with the non-BTC denominated (e.g.,

USD or EUR denominated) subtotal of the cart. This

subtotal will often exclude taxes and shipping. The user

is often directed to enter their shipping address at the

following checkout page, which will then calculate the

shipping fee and add it to the cart subtotal.

From our crawl data we identify a second set of third

parties that receive the non-BTC-denominated cart

price. If the received cart price is missing shipping and

handling, it will increase the adversary’s uncertainty

about the BTC-denominated price (see Section 5). As

seen in Table 2, 43 out of the 130 bitcoin-accepting

merchants we visited send some form of non-

BTC-denominated cart price data to third par-

ties — many more than share BTC price or address

with third parties.

Based on the type of HTTP request that sent the

transaction-relevant information to a third-party, we

can categorize whether the sharing of data was inten-

tional or unintentional. We consider an unintentional

data leakage a sharing of data that happens solely via

referer leakage. While it is possible that the third party

parses the referer for the price information on the back-

end, we find it is useful to separate these cases from an

intentional sharing of data. An intentional share with a

third party means that the price was sent in the URL

of a GET request or the body of a POST request — in

that case, the request was intentionally constructed. In

our crawl, we found that the overwhelming major-

ity of requests that shared transaction-relevant

data with a third party were intentional: of the

312 requests we observed on 53 merchant sites shar-

ing transaction-relevant information, 295 intentionally

shared data.

To perform the cluster intersection attack, an adver-

sary must have transaction-relevant information for at

least two separate purchases. A third party positioned

on more than one website is in a better position to have

the necessary data. Table 8 in Appendix A.2 contains

the prevalence of third parties receiving transaction-

relevant information that appeared on at least two mer-

chant sites. As one might expect, Google Analytics and

Facebook are pervasive.

Third parties receiving product page visits

At minimum, on an e-commerce site a product

page will display the non-BTC denominated price

of an item that a user can purchase. A product

page will also often embed resources from many

third-party domains. As an illustrative example,

the product page https://missionbelt.com/collections/

solid-color-40mm-belts/products/vader-40, includes re-

sources from 31 distinct third-party domains.

Thus, third-party trackers could infer the user’s cart

subtotal based on the product pages they visit. In our

data we found several examples of third parties that

not only see the product pages a user visits, but know

exactly when the user adds an item to their cart. In to-

tal, 28 bitcoin-accepting merchants in our crawl

shared add-to-cart events with third parties. The

most common third party to receive this information

was Facebook, which received add-to-cart events on

26 merchants’ sites. Being able to receive add-to-cart

events is essentially equivalent to being able to see pre-

shipping cart prices. Only two of those merchant sites

send add-to-cart events to third parties if the consumer

uses browser tracking protection.

Third parties receiving transaction timing

As discussed in Section 5, an adversary needs to know

the approximate timing of a Bitcoin transaction in ad-

dition to its value. There are several ways in which third

parties already have this information stored in logs.

As discussed earlier, when a user completes a Bit-

coin transaction, the payment processor typically redi-

rects the user back to a receipt page. Any third par-

ties loaded on the receipt page who had previously seen

transaction-relevant data can then use the receipt page

load-time as the approximate timestamp of the bitcoin

transaction (except during periods of anomalously high

network load). In our data, 245 distinct third-party do-

mains had resources loaded on merchant receipt pages

on sites for which we made a purchase. 16 out of 20

of those merchant sites embedded on the receipt

page at least one third party which had previ-

ously received transaction-relevant information.

This knowledge makes blockchain linking much easier.

A more detailed breakdown of third parties by merchant

receipt page can be found in Table 7 in Appendix A.2.

Even without seeing a bitcoin transaction receipt

page, third parties could still estimate the time a

transaction took place based on whether or not they

know when a user starts the checkout process. From

our data we measured the extent to which Facebook
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PII type w/o protection w/ protection

email 32 25

firstname 27 20

lastname 25 19

username 15 12

address 13 9

name 11 4

phone 10 4

company 5 4

Merchants

sharing PII
49 38

Table 4. Number of merchants sharing each type of PII, with

or without tracking protection

trackers, for instance, explicitly track a user through

their API’s “InitiateCheckout” event. The Facebook

InitiateCheckout event was found on 15 sites of the

130 bitcoin-accepting merchants we visited in our crawl.

Third parties receiving PII

A leak of transaction-relevant information coinciding

with a leak of PII allows the adversary to attach a real

world identity to a Bitcoin address. In our crawl, 49

bitcoin-accepting merchants leak some form of

PII to a total of 137 third parties. Table 4 lists the

number of merchants that share each type of PII with

a third party. Table 6 in Appendix A.2 lists the number

of third parties receiving each type of PII.

We also found that 21 third parties that re-

ceive PII also receive transaction-relevant infor-

mation. Those third parties can conduct the blockchain

analysis attack and add a label to the resulting cluster.

4.3 Other adversaries

Some entities do not yet collect the necessary informa-

tion to conduct the blockchain attack, but could be in

the position to collect the information through an active

attack.

Active attacks by third parties

Third-party JavaScript has access to the complete DOM

of whatever frame the script is embedded in: if that

frame contains a piece of transaction-relevant data, then

a script that turned malicious could go out of its way

to collect the data if it wasn’t already collecting it.

OpenWPM allows us to match third-party scripts

to the pieces of information they can read. In short,

Bitcoin address 31

Non-BTC-denominated price 104

Bitcoin price 30

Total sites leaking transaction-relevant info 107

Table 5. Active attacks: Number of merchants that allow

third-party script access to transaction-relevant information

107 sites in our crawl grant third-party scripts

access to transaction-relevant information (Table

5). The most-prevalent third party by far is google-

analytics.com, which appears to be widely trusted: for

example, a google-analytics.com script is often the only

script found on Coinbase’s payment processing page.

Potential third-party access to PII was even more

prevalent: on the 130 bitcoin-accepting merchants

we crawled, 125 merchants granted third-party

scripts access to some form of PII. This included

the scripts of payment processors that may not other-

wise receive PII.

Network adversaries

While most of the merchants we visited in our crawl use

HTTPS, some failed to do so. In our crawl, we found

36 merchants that did not use HTTPS for crucial

parts of the payment flow, including cart pages.

A network adversary could thus see the page load in

cleartext, and parse transaction-relevant information or

PII from the page.

Payment processors

While users are arguably aware that payment proces-

sors will receive transaction-related information in the

course of a payment, they probably do not expect that

payment processors receive PII, since creating an ac-

count with the payment processor is generally not re-

quired. Yet, we found that at least 24 merchants

share some form of PII with BitPay, even though

BitPay does not require that the merchant send them

PII.

Merchants

Conversely, users may expect that while merchants

necessarily receive PII, they may not be able to eas-

ily identify the transaction on the blockchain. But we

made merchant accounts with BitPay and Coinbase,

and found that they both share the full details of the

Bitcoin transaction with the merchant.
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5 Blockchain analysis: Estimation

of linkability

Having shown that trackers obtain payment-related in-

formation from online purchases, we now present em-

pirical analyses of the Bitcoin blockchain to show that

trackers can use this information to uniquely identify

the transaction on the blockchain. We reiterate that

many trackers will have no need for the techniques in

this section since merchants share unique transaction-

specific information with them.

For blockchain analysis, we used BlockSci [28], an

in-memory blockchain graph database and query inter-

face that supports Bitcoin and various altcoins.

5.1 Method

We seek to answer the question: for a given level of price

uncertainty, exchange rate uncertainty, and transaction

time uncertainty, what is the distribution of anonymity

set sizes of the transaction? The anonymity set contains

candidate transactions, one of which represents the ac-

tual payment. Based on the anonymity set sizes, we also

compute adversary success probabilities. Throughout,

we average our measurements over a set of prices (ob-

tained from actual sites, as described below), and a set

of random points in time over a two-year period from

mid-2015 to mid-2017.

Exchange rate data. Recall from Section 2 that

payment processors use price data from exchanges,

which is also available to adversaries. In our measure-

ments, we use publicly available historical data from

BitStamp made available by bitcoincharts.com.4 The

data contains the prices of all trades executed on the

exchange, starting in September 2011. As of June 2017

it contains 11.6 million trades. During the time period

of interest to us it contains about 4.4 million trades, or

about 4.2 trades per minute.

Sampling prices. To obtain a representative sam-

ple of prices of user purchases, we sampled 100 item

prices from our dataset of merchants. We sampled mer-

chants randomly and then sampled items randomly

from those listed on the homepages of those merchant

websites, ensuring a maximum of 10 from any one mer-

chant. When converted to USD, the prices ranged from

4 https://api.bitcoincharts.com/v1/csv/

a minimum of 1.52 to a maximum of 359.00, with a

mean of 51.27 and a median of 24.99.

Sampling actual prices is important, because the

distribution of values of e-commerce payments is differ-

ent from that of other transactions on the blockchain.

For example, prices are often close to integer multiples

of the currency of account (USD, EUR, etc.) [20]. There-

fore, if we sample prices directly from blockchain trans-

actions, we might obtain unrepresentative results.

Sampling times. We pick 100 random timestamps

from our time period of interest. By picking these ran-

domly instead of periodically, we ensure that there are

no patterns such as specific times of day or day of week.

Modeling price uncertainty. By analyzing the

behavior of various merchants, we make the following

key observation: if the adversary knows only the country

of the user’s shipping address, there are only a small

number of possible values (typically fewer than 10) for

the difference between the cart price and the final price.

For example, there are no instances where each US state

has a distinct shipping fee. Based on our observations,

the vast majority of merchants do not collect tax. Note

that often the shipping address is directly revealed to

the tracker (Section 4). Even otherwise, it is easy for

trackers to learn the user’s country, whether based on

IP address, locale, or language. Thus, we model price

uncertainty as a small set of possible values. We sample

these values from the list of actual shipping rates on the

merchants we analyzed. We always include the value 0

in this sample, because free shipping is (unsurprisingly)

a popular option.

Modeling time uncertainty. The tracker may ob-

serve the user take one or more of the following actions:

view the shopping cart, initiate checkout, and view the

transaction receipt page. In the first case, the tracker

can guess that the user may have initiated payment

within a few minutes (though this guess might be incor-

rect). In the second case, the tracker knows that if the

payment was made, it would have to be within a time

window set by the payment processor, typically 15 min-

utes. In the third case, the tracker knows the transaction

timestamp to within a few seconds (network latency).

Modeling exchange rate uncertainty. The ex-

change rate data used by the payment processor is al-

ways available to the adversary. However, there is poten-

tially some uncertainty introduced by the lag between

the tracker observing the user initiate the checkout pro-

cess and the user being quoted an exchange rate. We

model the adversary’s uncertainty as a time interval. If

this window is 5 minutes, it means that the exchange

rate that was applied to the transaction could take any
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Algorithm 1: Clustering. One step of the address

clustering algorithm. We invoke this function recur-

sively to find all addresses associated with a given

coin or address. The algorithm incorporates the

multi-input and change-address detection heuristics

from [42]. Bitcoin mixing today is dominated by

JoinMarket, so we use JoinMarket detection (Ap-

pendix A.1) in place of IsMixTx.

1: function ExpandCluster(addr)

2: C ← {addr}

3: for all tx in TxsFrom(a) do

4: if not IsMixTx(tx) then

5: C ← C ∪ FromAddresses(tx)

6: C ← C ∪ {ChangeAddress(tx)}

7: for all tx in TxsTo(a) do

8: if not IsMixTx(tx) and

9: ChangeAddress(tx) = addr then

10: C ← C ∪ FromAddresses(tx)
return C

where we de-anonymize our own wallets, is deferred to

the next section.

6.1 Method

Identifying joins. First we identify existing CoinJoin

transactions on the Bitcoin blockchain. We focus on

JoinMarket, since it is (to our knowledge) the only de-

centralized mixing service that is currently operating

and has a usable level of liquidity. We adapt Möser et

al.’s algorithm to identify JoinMarket transactions [47],

and it is shown in Algorithm 3 in Appendix A.1. We

found 95,239 such transactions, of which 78,697 are dur-

ing the period of interest to us (mid 2015–mid 2017).

The number of coins mixed in one of these transactions

has a mean of 3.98 and a standard deviation of 1.72.

Simulating the victim. We consider a victim with

a wallet of clusterable addresses who obtains 100 dis-

tinct mixed coins over the two-year period of interest.

We sample 100 timestamps (block heights) uniformly

during this period; at each of these times, the victim

initiates mixing of a coin from her wallet and completes

r ≤ 5 rounds of mixing. 5 rounds represents a very high

degree of anonymity based on JoinMarket’s advice to

users [1]. The victim retains the mixed coins until the

end of the period of interest. The values of these coins

don’t matter since this information is not used by our

deanonymization algorithm.

Algorithm 2: Cluster Intersection Attack. Step 1

can be amortized over multiple invocations of the algo-

rithm; alternately step 2 can be modified so that join

detection can be performed only as needed.

Inputs:

– a set of mixed coins C known to be controlled by

the same user.

– an integer r, representing the adversary’s (possibly

incorrect) assumption that the victim did at most r

rounds of mixing.

Output: a wallet cluster.

1. Identify all join transactions on the blockchain.

2. For each coin c ∈ C:

– Identify all coins x such that there is a directed

path from x to c of length at most r consisting

only of join transactions. Call this set Xc.

– For each coin x ∈ Xc, identify the wallet cluster

it belongs to (Algorithm 1). Call the resulting

set of wallet clusters Wc.

3. Compute the wallet cluster intersection:
⋂

c∈C
Wc.

4. If it results in a unique wallet cluster, output it.

Otherwise output “incorrect assumptions”.

To simulate the mixing of one coin (with r rounds

of mixing) starting from a given timestamp, we sam-

ple from the JoinMarket transactions on the blockchain

that have this timestamp. With this node as the start-

ing point in the graph of JoinMarket transactions, we

sample a path of length r from among all such paths. If

there are no such paths, we repeat the procedure start-

ing from a different initial transaction.

Attack. At this point the victim has 100 mixed

distinct coins in her (simulated) wallet. Now we simulate

the web tracker’s view, that is, we simulate the victim

making two transactions in a way that reveal to the

adversary that two of these coins trace from the same

wallet. Then we execute the cluster intersection attack

(Algorithm 2). We repeat the procedure with different

values of the number of rounds r and the number of

transactions t observed by the adversary.

6.2 Results

Figure 7 shows the adversary’s success rate as a func-

tion of the number of mixing rounds and the number

of transactions observed. By construction of the exper-
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and was also present on the payment receipt page, which

means that for these adversaries the payment time un-

certainty is very low. In this scenario, the anonymity

set sizes are much lower: in fact, it is 1 for 14 of 17 pur-

chases. The adversary behaving as described in Section 6

would identify the correct transaction 90% of the time.

The true negative rate is also high: 82%. This means

that if the adversary’s assumption about the payment

time was incorrect for whatever reason — if the network

load is too high or the user’s wallet software included

too low a fee, the receipt may not happen quickly —

the adversary will be able to correctly deduce this.

Validating the cluster intersection attack.

Next we validate the cluster intersection attack. Out

of the 11 purchases we made using mixed coins, we con-

sider adversaries that observe a random t of those pur-

chases and know which transaction on the blockchain

corresponds to each of them. We find that for t = 2, the

adversary described in Algorithm 2 has an 89% chance

of correctly identifying our wallet cluster, and for t = 3,

this goes up to 99%.

If more rounds of mixing are used, the attack will

not work as well. On the other hand, we mixed all our

coins during a 3-day period, and realistic users who mix

coins over a period of months or years will have worse

privacy. In Section 5 we evaluated the effect of these

factors as well as the number of transactions observed

by the adversary. For our experiments in this section,

we limited the number of parameters because of the

expensive nature of the mixing market.

Validating the attack end-to-end. The two at-

tacks are especially powerful when combined. Even if

the single-transaction linkage doesn’t produce a unique

result, we can run cluster intersection on every possible

combination of the candidate transactions produced by

it. Most combinations will produce an intersection of

size zero, and can be discarded. If exactly one combina-

tion produces one cluster and all the rest produce zero

clusters, then the adversary outputs that cluster.

From our purchase records, we determined that

there were 11 trackers in a position to observe more

than one purchase: americanexpress.com, chatid.com,

criteo.com, doubleclick.net, facebook.com, google-

analytics.com, google.com, monetate.net, revjet.com,

steelhousemedia.com, tealiumiq.com. Overall there are

25 pairs of purchases for which there was a tracker that

could observe both purchases. We ran the end-to-end

attack on all 25 pairs, again using default values of the

adversary’s payment time uncertainty and exchange

rate uncertainty. We found that the attack succeeds in

identifying our wallet cluster in 20 cases.

Again, these numbers reflect conservative assump-

tions about the adversary’s knowledge. If the Bitcoin

transaction details are directly leaked to the tracker,

or if the tracker is present on the receipt page, or ob-

serves more than two payments, the success rate will

be much higher. Similarly, many Bitcoin users do not

employ mixing. We do not know what fraction of e-

commerce purchases are made with mixed coins, but we

observe that only .05% of transactions on the blockchain

over the past two years are CoinJoin transactions. If the

user doesn’t employ mixing, then it will be straightfor-

ward for the adversary to identify her wallet cluster,

even with a high degree of uncertainty in the payment

amount and time.

8 Mitigation and discussion

Our findings are a reminder that systems without prov-

able (or at least well-defined) privacy properties may

have information leaks and privacy breaches in unex-

pected ways. When multiple such systems interact, the

leaks can be even more subtle. For another example of

the difficulty of composing systems with complex pri-

vacy properties, see [9].

Cryptocurrency anonymity is a new research topic,

but it sits at the intersection of anonymous communi-

cation and data anonymization, both well-established

fields. Unfortunately, it seems to inherit the worst of

these two worlds. Like data anonymization (and un-

like anonymous communication), sensitive data must be

publicly and permanently stored, available to any adver-

sary, and de-anonymization may happen retroactively.

And like anonymous communication systems (and un-

like data anonymization), privacy depends on subtle in-

teractions arising from the behavior of users and appli-

cations. Worse, realistic traces of the system may not

be available at the time of designing and implementing

the privacy defenses.

Turning to defenses, we observe that our first at-

tack exploits the inherent tension between privacy and

e-commerce, and our second attack exploits the inher-

ent tension between privacy and the public nature of the

blockchain. Thus, all mitigation strategies come with

tradeoffs. The available mitigations break down into

three categories: self-defense by users, techniques that

merchants can use, and alternative cryptocurrencies or

cryptocurrency-based payment methods.

Mitigation by merchants. There are a few

straightforward mitigations that merchants could de-
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ploy: (1) enabling HTTPS on all shopping (and es-

pecially payment-related) pages — this would pro-

tect against network adversaries, but not third-party

trackers, our main adversary of interest (2) generating

Bitcoin-address QR codes internally instead of outsourc-

ing it to a third party; (3) avoiding leaks of the Bitcoin

address from payment receipt pages; and (4) avoiding

unintentional PII leaks. As to the last point, however,

note that the attack succeeds as long as some first party

website visited by the user leaks PII to third parties, and

at least some PII leakage is for cross-device linking pur-

poses [13], and thus intentional. Beyond these obvious

steps, merchants could share less data with third par-

ties, and with fewer of them, but this would come at the

expense of their advertising and analytics objectives.

Self-defense. Web tracking is a well-known privacy

threat, and the main defense is to use browser extensions

such as uBlock Origin, Adblock Plus, or Ghostery to

block trackers. Such defenses can be quite effective, but

they are far from perfect [16, 43]. Our measurements in

Section 4 confirm the partial effectiveness of these tools.

Note that these tools do not help when the adversary is a

network eavesdropper (for either attack) or the payment

processor (for the cluster intersection attack).

On the cryptocurrency side, the main self-defense

is to use improved mixing techniques, especially multi-

round mixing. We showed in Section 6 that this is effec-

tive (but not perfect) as long as the adversary observes

only 2 or 3 transactions. In our end-to-end evaluation in

Section 7, we carried out only 1 or 2 rounds of mixing,

and this a limitation of our experiments. Increasing the

number of rounds comes at the expense of cost (trans-

action fees and mixing fees) and convenience (due to

transaction confirmation time). A more through evalu-

ation of the trade-offs is a topic for future work.

While we have focused on CoinJoin or decentral-

ized mixing, in principle the cluster intersection attack

should also work against centralized mixes. If a mixing

service introduces a delay of (say) up to 6 blocks, then

for a given coin that was mixed at a given block height,

all mix outputs produced in the next 6 blocks can be

considered part of its anonymity set. The main compli-

cation is the extent to which mix transactions are distin-

guishable from other transactions, which is likely highly

implementation-dependent. Of course, centralized mix-

ing is additionally vulnerable to the mix operator collud-

ing with the adversary or stealing the funds. Evaluating

the attack against centralized mixes (as well as other

anonymity techniques including TumbleBit [22]) is an

avenue for future work.

Alternative cryptocurrencies and payment

mechanisms. Our attacks apply to Bitcoin, Lite-

coin, and any other cryptocurrency with Bitcoin-style

transactions. However, unlike the Bitcoin approach of

anonymity as an overlay, there are some cryptocurren-

cies that bake privacy into the protocol, and promise

untraceability of transactions. The most well known of

these are Zcash, based on the Zerocash protocol [7, 44],

and Monero, based on the Cryptonote protocol [63].

Zcash is more computationally expensive but comes

with more rigorous security properties. Of the two, Mon-

ero has more vendor support at the time of writing, but

still far less than Bitcoin or even Litecoin, and primar-

ily on hidden-service sites merchandising illicit goods.

While some anonymity weaknesses have recently been

revealed in Monero [34, 45], we believe that it is not

susceptible to the cluster intersection attack.

The lightning network [52] is a proposal for a fast

micropayments. It is a network of two-party bidirec-

tional payment channels. If Alice wants to pay Bob,

she finds a path of such channels that link her to Bob,

through which she can route the payment. Although the

lightning network relies on Bitcoin (or another under-

lying cryptocurrency) for its security, the vast majority

of transactions are off-chain. There is no global ledger

of all lightning payments, rendering our attack ineffec-

tive. While the lightning network would be an effective

defense against our attacks, it introduces other privacy

concerns [6, 38], and the issues that arise are analogous

to communications anonymity [25].

Finally, like virtually all deanonymization attacks

on cryptocurrencies, our techniques could be used to

build forensic tools for law enforcement use. In past in-

vestigations, agents have sought to find the identity be-

hind specific blockchain transactions that were known

to represent thefts, funding of unlawful activities, or

earnings from unlawful activities, as in the case of ran-

somware. Alternatively, agents may have an identified

person of interest and may wish to scrutinize their cryp-

tocurrency dealings for evidence of money laundering

or other financial crimes. Thus, both blockchain → web

and web → blockchain linking techniques are of poten-

tial interest to law enforcement. Agents might subpoena

a tracker or payment processor for information that

might allow such linkage, or even use network surveil-

lance techniques.
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A Appendix

A.1 JoinMarket identification

CoinJoin transactions have a distinct structure, and

JoinMarket transactions especially so. Whether or not

JoinMarket can be modified to operate in a way that

the transactions are not as distinguishable from other

transactions is an open question. Here we describe our

algorithm for identifying JoinMarket transactions, and

evaluate its effectiveness. We adapt the algorithms from

several previous works [5, 41, 46, 47, 59].
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Algorithm 3: JoinMarket Identification.

1: function IsJoinMarketTransaction(tx)

2: if ContainsOpReturn(tx) then

3: return false

4: p← d|Outs(tx)|/2e

5: if p < 2 then

6: return false

7: v ←MostCommon(Val(O) : O ∈ Outs(tx))

8: if |{O ∈ Outs(tx) | Val(O) = v}| 6= p then

9: return false

10: A← {Addr(x) : x ∈ Ins(tx)}

11: V ← {}

12: for all a in A do

13: s← 0

14: for all I in Ins(tx) do

15: if Addr(I) = a then

16: s← s + Val(I)

17: V ← V ∪ {s}

18: q ←MaxFee(v)

19: B ← Array of length p with all entries v − q

20: i← 0

21: for all O in Outs(tx) do

22: if Val(O)! = v then

23: B[i]← B[i] + Val(O)

24: i← i + 1

25: for all P in Partitions(V ) do

26: t← 0

27: for all Si in P do

28: if
∑

Si ≥ Bi then

29: t← t + 1

30: if t ≥ p then

31: return True

32: return False

The algorithm is a series of heuristics to filter trans-

actions based on the following observations:

– Transactions should only contain spendable ad-

dresses (lines 2–3)

– There must be at least two participants. If there are

n participants, there could be either 2n or 2n−1 out-

puts because JoinMarket has “sweep transactions”

where the taker obtains no change (lines 4–6)

– There must be an output of value v for each partic-

ipant, v being the most common output value (lines

7–9)

– There must be enough inputs to cover all of the

outputs (lines 10–32). Specifically, for each change

address, there must be a distinct set of inputs that

add up to at least the output value v plus the change

value minus the max fee (q) that might have been

paid to the liquidity providers. For our calculations

we set this to be the maximum of .0001 satoshis or

1% of the CoinJoin output.

One limitation of this algorithm is that it is slow

when the number of inputs is large. This is unavoid-

able as the problem is NP-complete (variable-sized bin-

covering in the unit supply model [24]). The listing

shows a brute-force implementation for simplicity; our

actual implementation is optimized, but nevertheless ex-

ponential. For our analyses, we ran it on transactions

with at most 17 inputs; it takes about 30 minutes to

process 150 million transactions. Based on the work of

Möser et al., who don’t use this heuristic, the vast ma-

jority — 92% — of JoinMarket transactions have no

more than 17 inputs.

When we run this algorithm on our two-year pe-

riod of interest (May 2015 – April 2017; block 354416–

block 464269), it results in 78,697 transactions. The

algorithm has low false negatives, and thus we regard

this as a near-superset of JoinMarket transactions for

this period. The criteria used in Algorithm 3 for filter-

ing transactions are necessarily true of all JoinMarket

transactions, except for any transactions where liquidity

providers charged so high a fee that they were rejected

by our max-fee heuristic. But based on the empirical

analysis of [47], virtually all offers posted on the market

by makers have a fee that is significantly less than the

threshold we used. As a further sanity check, all Coin-

Joins that we performed in our experiments (Section 7)

are identified by this algorithm.

CoinJoins and especially JoinMarket transactions

tend to connect to each other, and thus we can expect

to find large connected components among the identified

transactions. Indeed, among the 78,697 transactions, we

find a single giant component of size 60,187. We regard

these as a near-subset of CoinJoin transactions during

this period. While it is possible that non-CoinJoin trans-

actions may sometimes accidentally satisfy the criteria

in Algorithm 3, it is unlikely that they will cluster with

the JoinMarket transactions.

The fact that our near-superset and our near-subset

are similar in size gives us further confidence in the

method. Depending on the application, one or the other

version may be more suitable. We make use of both ver-

sions in our analyses: when simulating the victim, we

use the near-subset, because we want to have high con-

fidence that the transactions we use for simulation are

indeed CoinJoins. When simulating the adversary, we




