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Abstract: We show how third-party web trackers can
deanonymize users of cryptocurrencies. We present two
distinct but complementary attacks. On most shopping
websites, third party trackers receive information about
user purchases for purposes of advertising and analytics.
We show that, if the user pays using a cryptocurrency,
trackers typically possess enough information about the
purchase to uniquely identify the transaction on the
blockchain, link it to the user’s cookie, and further to the
user’s real identity. Our second attack shows that if the
tracker is able to link two purchases of the same user to
the blockchain in this manner, it can identify the user’s
cluster of addresses and transactions on the blockchain,
even if the user employs blockchain anonymity tech-
niques such as CoinJoin. The attacks are passive and
hence can be retroactively applied to past purchases.
We discuss several mitigations, but none are perfect.
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1 Introduction

Eight years after Bitcoin’s introduction, the ability to
pay online using cryptocurrencies is common: prominent
merchants such as Microsoft, Newegg, and Overstock
support it. Cryptocurrency users tend to value financial
privacy, and it is a major reason for choosing to pay with
digital currencies [33]. Yet, websites including shopping
sites are known to be rife with third-party tracking [16].
In this paper, we study the impact of online tracking on
the privacy of cryptocurrency users.

First, we show that online trackers are able to see
sensitive details of payment flows, such as the identities
and prices of items added to shopping carts. Crucially,
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in many cases they receive sufficient information about a
purchase to link it uniquely to a transaction on the Bit-
coin blockchain.! This core linkage can be expanded in
both directions: based on tracking cookies, the transac-
tion can be linked to the user’s activities across the web.
And based on well-known address clustering techniques
[3, 42], it can be linked to their other transactions.

This basic attack can be made worse in several ways.
We find that many merchant sites send even more in-
formation to trackers, such as the transaction-specific
Bitcoin address. This acts as a high-entropy identifier
and makes linking to the blockchain trivial. We also
show that many merchants additionally leak users’ PII
(name, email address, etc.) to trackers, allowing trackers
to link not only users’ web profiles but also blockchain
transactions to their identities. Finally, malicious track-
ers may use JavaScript to extract Bitcoin addresses or
PII from web pages even if it is not leaked to them by
default. We show that this is possible on the vast ma-
jority of merchant sites.

Of course, Bitcoin does not guarantee unlinkability
of transactions. But while linking of a user’s Bitcoin ad-
dresses with each other is well known [3, 42, 55, 57|, our
attack shows how to link addresses to external informa-
tion, including identity.

The main defense against linkage attacks is mixing
[12, 58]. The best known mixing technique is CoinJoin,
in which users send coins to each other in a way that
hides the link between their old and new coins. Our sec-
ond main contribution is showing the effectiveness of
the cluster intersection attack, a previously known at-
tack against mixing. Specifically, we show that a small
amount of additional information, namely that two (or
more) transactions were made by the same entity, is suf-
ficient to undo the effect of mixing (see Figure 1). While
such auxiliary information is available to many poten-
tial entities — merchants, other counterparties such as
websites that accept donations, intermediaries such as
payment processors, and potentially network eavesdrop-

1 Throughout we study Bitcoin since it has the most support
for online payments, but our findings apply to many other cryp-
tocurrencies.
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Fig. 1. An illustration of the full scope of our attack.
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Consider three websites that have the same embedded tracker. Alice makes purchases and pays with Bitcoin on

the first two sites, and logs in on the third. Merchant A leaks a QR code of the transaction’s Bitcoin address to

the tracker, merchant B leaks a purchase amount, and merchant C leaks Alice’s PII. Such leaks are commonplace

today, and usually intentional (Section 4). The tracker links these three purchases based on Alice’s browser cookie.

Further, the tracker obtains enough information to uniquely (or near-uniquely) identify coins on the Bitcoin

blockchain that correspond to the two purchases. However, Alice took the precaution of putting her bitcoins

through CoinJoin before making purchases. Thus, either transaction individually could not have been traced back

to Alice’s wallet, but only one wallet participated in both CoinJoins, and it is hence revealed to be Alice’s.

pers — web trackers are in the ideal position to carry
out this attack.

Note a limitation of the cluster intersection attack:
it can only link addresses that were in the same cluster
before mixing was employed. Throughout this paper, we
assume that the user’s wallet consists of a single cluster
of addresses. In reality, a user wallet may have multiple
disjoint clusters that our attack will not be able to link.

Based on the above two attacks, we present the fol-
lowing findings. We present a taxonomy of information
leaks to trackers on e-commerce websites. We focus on
leaks that allow linking a payment flow to a blockchain
transaction. We compiled a list of 130 online merchants
that accept Bitcoin, and analyzed their websites by ex-
tending the functionality of the open-source OpenWPM
web privacy measurement tool [16]. We find that at least
53/130 of merchants leak payment information to a to-
tal of at least 40 third parties, most frequently from
shopping cart pages. The vast majority of these rep-
resent intentional sharing of purchase data with third
parties for advertising and analytics purposes. In addi-
tion, we find that many merchant websites have far more
serious (and likely unintentional) information leaks that
directly reveal the exact transaction on the blockchain
to dozens of trackers.

Turning to the Bitcoin blockchain, we use empiri-
cal measurement to estimate the uniqueness of transac-

tions as a function of the adversary’s uncertainty about
the transaction’s timestamp and value (Section 5). We
find that unique linkage is possible in over 60% of cases
for realistic values of these parameters, and that in the
vast majority of cases, the anonymity set size is 5 or
less. The attack degrades gracefully as the adversary’s
uncertainty increases. Note that in the case of the unin-
tentional leaks mentioned above, there is no uncertainty,
and unique linkage is always possible.

Next, we evaluate the efficacy of the cluster inter-
section attack against CoinJoin (Section 6; in Section 8
we discuss the applicability to other types of mixing).
By identifying a corpus of 78,697 CoinJoin transactions
on the Bitcoin blockchain over a two-year period, we
present realistic simulations of a victim who mixes coins
from her wallet and then makes payment transactions
that are observed by the adversary. For example, if the
victim employs 3 rounds of CoinJoin and the adver-
sary observes two of the victim’s payments, he can link
them back to her wallet (despite mixing) with 98% ac-
curacy. Multiple rounds of mixing increase privacy, but
those gains are quickly stripped away if the adversary
observes more than 2 payments.

Finally, we evaluate our attack end to end (Section
7). We made 21 purchases on 20 merchant websites. For
11 of these purchases, we used freshly mixed coins to at-
tempt to deter linkage. There were 25 pairs of purchases



made with mixed coins for which there was at least one
tracker that received leaked data about both purchases.
We find that in 20 of these 25 cases, the tracker can
identify the user’s wallet despite the use of mixing.

Our attack highlights the dangers of pervasive web
tracking: Bitcoin is often used for sensitive activities,
making the compromise of Bitcoin privacy a far more
serious threat than targeted advertising. In Section 8
we discuss mitigations that merchants can deploy. None
is a complete solution, given the fundamental tension
between privacy and the analytics needs of modern e-
commerce. Indeed, most of the privacy-breaching data
flows we identify are intentional and not accidental (Sec-
tion 4).

The main self-defense available to users today is to
use tracking-protection tools such as Ghostery or uBlock
Origin, but we note several limitations. First, since our
attack is passive, trackers have already accumulated
data in their logs that enable them to retrospectively
carry out the attack. Second, tracking protection tools
aren’t perfect and contain both false positives (resulting
in broken functionality) and false negatives (resulting in
missed trackers). In Section 4 we show that even with
tracking protection enabled, 25 merchants still leak sen-
sitive information to third parties. Third, merchants,
payment processors, and even network eavesdroppers
are potential adversaries for some of the attacks we de-
scribe, and tracking protection does not help against
these adversaries. Finally, in Section 8 we also discuss
how our techniques can aid law enforcement investiga-
tions.

We stress that we focus our study on Bitcoin as it
is the cryptocurrency with the most adoption on mer-
chant websites. However, our attacks apply to many
cryptocurrencies; in Section 5.2, we demonstrate that
our attacks hold on the Litecoin blockchain.

2 Background and Related Work

Our work brings together two previously unrelated ar-
eas of privacy research: web tracking and anonymity of
cryptocurrencies. We describe each in turn.

Online tracking. Since the web’s inception, the
number of third parties that track and record user ac-
tivity has exploded. [14, 36, 40, 56]. In this paper we
use the terms third party and tracker interchangeably.
Some trackers have a substantial view of users’ activi-
ties across the web: Google, for instance, has a track-
ing presence on roughly 80% of sites [37]. Tracking
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methods have also become more sophisticated over time
[2, 15, 17, 35, 60]. The effectiveness of tracker-blocking
tools has been studied by various authors [19, 43, 66].

Some trackers like Google and Facebook are known
to tie their tracking profiles to identities directly dis-
closed by users, but most trackers have no direct rela-
tionship with users. However, even such trackers acquire
PII, often accidentally. Various studies have shown that
the leakage of PII from first parties to third parties is
rampant [31, 32], and the problem remains severe today.

Most trackers are legitimate businesses, but are
known to use intrusive means to track users. These in-
clude misuse of HTML5 APIs for fingerprinting, such as
Canvas, Audio Context, and Battery Status [16]; cross-
device tracking [13]; workarounds to browser privacy
features [4], and sniffing data from unsubmitted forms
[26]. Many trackers have poor security on their servers
and are a target for compromise for malvertising and
other purposes [50, 61].

The problem of trackers observing shopping and
payment flows is unlikely to go away. Consider retarget-
ing, which is the ability to serve ads to users for items
they are known to have shown an interest in purchasing.
It is one of the most valuable forms of advertising [29].
The farther into a payment flow a tracker can observe
a user (cart page, checkout page, etc.) the greater the
interest signaled. Another major benefit is conversion
tracking of ad campaigns. Having trackers on the pay-
ment flows is needed to help analyze whether a user who
was served an ad actually follows through with a pur-
chase. Other applications include fraud /abuse detection
and consumer insights.

Cryptocurrencies. In Bitcoin-like cryptocurren-
cies, users pay by broadcasting transactions to a peer-to-
peer network. Transactions are signed statements autho-
rizing transfers from one address to another. Addresses
are public keys that act as pseudonymous “account’
identifiers. Transactions are recorded in an immutable,
global ledger called the blockchain [11, 48].

Address clustering and mixing. It is trivial to
generate new Bitcoin addresses, and most wallet soft-
ware takes advantage of this feature to improve user
privacy. In the normal course of operation, users end up
with coins split between numerous addresses, and it may
not be obvious which addresses belong to the same user
(or entity). However, there are well known and well un-
derstood attacks to infer links between such addresses
[3, 42, 55, 57]. These techniques have been improved
upon and implemented by companies such as Chainal-
ysis and made available via easily accessible APIs. Ad-
dress clustering is not perfect, but it is a powerful at-



tack, and wallet addresses must be considered cluster-
able unless additional privacy-protection techniques are
employed to break the link between those addresses.

Many such privacy-protection techniques are known
[65]; the ones readily deployable on existing Bitcoin-like
cryptocurrencies are all variants of the idea of mizing.
The best known and most used technique is known as
CoinJoin [39, 58], in which different users coordinate in
order to jointly create a transaction that spends a coin
of equal value from each of them, and from which each
of them receives a coin of the same value. The order
of outputs is randomly permuted so that the mapping
between inputs and outputs cannot be deduced from the
public blockchain. Services such as JoinMarket provide
the ability for users to coordinate to mix their coins [47].

CoinJoin improves unlinkability by breaking the
multi-input heuristic, one of the main heuristics used in
address clustering. However, the susceptibility of Coin-
Join (and other mixing techniques) to clustering has not
yet been rigorously studied. It is known that CoinJoin
transactions are at least detectable as such, since they
involve many inputs and outputs with the same value,
a highly unlikely pattern in a regular payment transac-
tion. In other words, CoinJoin improves anonymity but
does not provide unobservability [47].

Intersection attacks date back to the communica-
tions anonymity literature and are well known. Their
applicability to cryptocurrency mixing is also generally
understood. At least two papers mention it explicitly
[10, 23], but they focus on mix participants and other in-
termediaries as adversaries. A 2015 blog post also men-
tions the attack [51]. We introduce the idea that auxil-
iary information to link different mixed coins is readily
available to web adversaries (as opposed to behavioral
patterns in earlier work, which is a much less reliable
linkage mechanism). Further, we are able to empirically
evaluate the attack using recently proposed techniques
for identifying CoinJoin transactions on the blockchain
[47] (Section 6).

Other research on cryptocurrency privacy
and forensics. Gervais et al. present an attack on e-
commerce purchases using cryptocurrencies: since prices
are denominated in local currencies, usually close to in-
teger multiples of the unit of currency, blockchain trans-
action amounts could reveal the currency and hence the
location of the purchase [20]. Our work is complemen-
tary; their attack is stronger than ours in that the adver-
sary can be anyone examining the blockchain, whereas
our attack is stronger in the sense that much more in-
formation is leaked, and not just the location.
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Another major route to compromise of cryptocur-
rency privacy, orthogonal to ours, is the linkage of trans-
actions to the sender’s IP address. An adversary who
is well connected to the Bitcoin peer-to-peer network
might be able to do so [8, 30]; even users who con-
nect to the Bitcoin network over Tor are potentially vul-
nerable [9]. In response to these attacks, Bitcoin Core
changed the protocol for how transactions are dissemi-
nated across the network in 2015. However, recent work
showed weaknesses in the updated protocol [18, 27, 49].
A re-designed P2P networking protocol with strong
anonymity guarantees has been proposed [64], but not
yet adopted by any cryptocurrency.

In concurrent work, Portnoff et al. explore a tech-
nique similar to our transaction linkage attack [53]. In
their work, linkage is a forensic technique to help iden-
tify entities behind illegal activities (sex trafficking).
It is enabled by a specific feature of a specific web-
site, backpage.com: classified ads paid for by users are
posted on the website along with an accurate times-
tamp. This allows anyone (e.g., researchers, NGOs, law
enforcement) to link an ad to the transaction on the
bitcoin blockchain that represents the payment for the
ad. In our work, linkage can be carried out only by spe-
cific entities, such as trackers, but we extend the linkage
via cookies, PII, and blockchain analysis, none of which
are applicable to the setting of Portnoff et al. Of course,
their work can be viewed as a demonstration of a privacy
breach affecting Backpage users, including the majority
not engaging in illegal activities; similarly, our attack
can be turned into a forensic technique (Section 8).

3 Threat model and attacks

Merchant, payment processor, and trackers. A
typical cryptocurrency-based e-commerce flow consists
of a user, a merchant, a payment processor, and one or
more trackers. The merchant is the website where the
user is shopping. Most merchants make use of payment
processors such as BitPay and Coinbase to handle the
processing of cryptocurrencies. When the user pays with
Bitcoin or another cryptocurrency, the transaction is re-
ceived by the payment processor, who then usually cred-
its the merchant’s account with an equivalent amount
of dollars or other local currency. Trackers are “third
parties” on web pages, often invisible, that track users’
actions for purposes of advertising and analytics (Sec-
tion 2). Doubleclick, Google Analytics, and Facebook
are common examples. Merchants, payment processors,



and trackers are all potential adversaries in our attack,
although we are most interested in the latter.
Information flows to third parties. Users take
actions on shopping sites such as logging in, viewing
items, adding items to their cart, checking out, and mak-
ing a payment. See Figure 2 for a typical payment flow
on a merchant site. The more of these actions a third
party learns about, the more feasible the attack. The
types of information useful to the third party are:

— Payment timestamp: the third party learns the ap-
proximate payment time simply by virtue of being
embedded on merchant website, especially on pages
constituting the checkout process. Checkout pages
usually require the user to complete payment (i.e.,
broadcast the cryptocurrency transaction) within a
short time window, typically 15 minutes. Trackers
embedded on payment receipt pages are in an even
better position, as they learn the payment time to
within a few seconds. Note that assuming the user
included a reasonable transaction fee, payment pro-
cessors consider payments received as soon as the
transaction is broadcast to the peer-to-peer network
and received by the payment processor’s node. This
involves a latency of only a few seconds. The trans-
action may not be confirmed until it is incorporated
into the blockchain, which may take tens of minutes
depending on the degree of confirmation that the
payment processor requires. The transaction confir-
mation time is largely irrelevant to our attack.

— Payment address: the payment address is the des-
tination to send coins. Recipients (payment proces-
sors) will typically generate a fresh address specific
to the transaction — new Bitcoin addresses are triv-
ial to generate. Although there is no business reason
for trackers to receive the payment address, we find
that this does happen often (Section 4). Since pay-
ment addresses are unique, at least within the time
scale of interest to us, a leak of the payment address
trivially allows the tracker to link the web user to
the blockchain transaction.

— Price: Depending on the merchant website, track-
ers may be able to see the prices of items viewed by
users, items added to the cart, or even the final price
after shipping and taxes have been calculated. Note
that these prices are almost always denominated in
USD, EUR, or another fiat currency, even on web-
sites that only accept cryptocurrencies as payment,
due to the extreme volatility of cryptocurrency ex-
change rates. However, once the user checks out, the
amount is calculated in BTC (or another cryptocur-
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rency) based on the exchange rate at that instant.
In some cases, this BTC-denominated price is also
revealed to the tracker, which is more useful for link-
ing than the price before applying the conversion.

— Personally Identifiable Information (PII): By PII we
mean any information related to the user’s real iden-
tity or account on the merchant website, such as
name, email address, username, and shipping ad-
dress. Trackers’ access to PII exacerbates the at-
tack. In this paper we analyze leaks of PII from mer-
chant websites to trackers, but we emphasize that
since trackers are widely present on the web, the link
to PII can be acquired on any website whatsoever.
Leaks of PII to trackers are known to be rampant
across the web (Section 2).

In our measurements in Section 4, we focus on pas-
sive attacks where trackers obtain this information in
the normal course of operation. Except for (some) PII
leaks, most other information flows to trackers are in-
tentional: trackers use this information for advertising
and analytics purposes. However, we note that in many
cases, tracking scripts are in a position to carry out an
active attack and extract all of the above information
from web pages even if they don’t obtain it passively.
This is because third-party scripts are typically embed-
ded without any isolation, in a way that gives them
full access to the content on the page. Sandboxing tech-
niques such as iframes are readily available, but only
infrequently employed since they interfere with some of
the functionality provided by trackers.

Attack 1: single transaction linkage. In this
attack, the adversary (tracker) seeks to link a web user
(as identified by the user’s cookie or PII) to a transac-
tion on the cryptocurrency blockchain. The merchant
and payment processor are not interesting adversaries
for this attack, because it is unsurprising that they can
carry out this linkage (but see Section 4.3). We assume
that the user is aware of this possibility, and poten-
tially takes necessary precautions, such as mixing to
unlink the transaction on the blockchain from her other
blockchain transactions and addresses. Attack 2 seeks to
overcome such defenses. But the tracker’s ability to link
to even a single transaction is a privacy breach, because
the user has no business relationship with the tracker
and many users are in fact unaware of the existence of
trackers (or at least their prevalence and sophistication).
It is also worrisome because trackers compile profiles of
users’ activities across the web.

If the tracker has access to the receiving address,
it trivially enables linkage, as noted above. The more
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Fig. 2. An illustration of a typical payment flow on a merchant site. Each step of this flow presents opportunities for

leaking transaction-relevant information to embedded third-party trackers.

interesting case is when the tracker knows the approxi-
mate price and time. Then the tracker’s task is to search
the logs of transactions that were broadcast to the peer-
to-peer network to identify those that fall within the
window of uncertainty both in terms of transaction
value and time. To quantify the tracker’s success, then,
we must model the uncertainty in the tracker’s knowl-
edge of price and time.

— Price uncertainty: The tracker’s uncertainty around
price arises primarily from shipping. If the tracker
knows the adversary’s location (either based on a
leak of PII or based on IP address), this uncertainty
can be minimized, although there might still be a
small number of possible values of the shipping fee
based on the shipping speed selected by the user.

— Exchange rate uncertainty: The second source of
uncertainty is the exchange rate: the tracker usu-
ally sees prices denominated in USD (or another
fiat currency) and not in BTC. Most payment pro-
cessors use exchange rates based on trading data
publicly released by an exchange, which means the
tracker can always reconstruct the exchange rate at
any given point in the past. However, since trades
happen several times per second, the exchange rate
varies rapidly and hence some uncertainty will still
remain.

— Payment time uncertainty: this arises because of the
gap between the user checking out, the user’s wal-
let broadcasting the transaction, and that broadcast
being recorded by the adversary or another node.
The adversary may run his own peer-to-peer Bitcoin
node, or may simply obtain the transaction broad-
cast timestamp from publicly available sources such
as blockchain.info. If the tracker is present on the
transaction receipt page, then the latency is mini-
mized, and is of the order of the network propaga-
tion delay, i.e., a few seconds.

Attack 2: Cluster intersection. This is a com-
plementary attack where the adversary aims to identify
the cluster of addresses in the victim’s Bitcoin wallet.

Recall from Section 2 that wallets can (and do) easily
create numerous addresses, but in the normal course of
operation these addresses can still be linked together via
various heuristics. Mixing techniques such as CoinJoin
are thought to protect against such linkage, although
this has not yet been studied rigorously. We assume that
the victim uses a desktop (local) wallet rather than an
online wallet provider. Privacy-conscious users tend not
to use online wallets, since that would allow the wallet
provider to trivially track all of the user’s activities. We
also assume that the user employs effective communica-
tions anonymity techniques to mask the IP addresses of
their wallet, as that is a well-known way for anonymity
to be compromised (Section 2).

In our attack, the victim interacts with the adver-
sary multiple times. The adversary could be a merchant,
payment processor, or (especially) a tracker who only
indirectly observes the victim. Knowing that the adver-
sary might learn one of his addresses, the victim em-
ploys mixing to prevent the adversary from learning the
rest of his addresses and transactions. He doesn’t spend
coins directly from his wallet, but only after first mixing
them. In Figure 1, after the victim has shopped on mer-
chantA.com the adversary is unable to determine which
of the three wallet clusters belongs to the victim. But
after a second interaction with the same victim on mer-
chantB.com, the adversary simply finds the intersection
of the two sets of clusters, which leads him to a unique
cluster.

Web trackers passively observe users’ web purchases
and are able to link them together, via cookies or de-
vice fingerprinting, even if the merchant and payment
processor are different in every case. Thus, this attack
is complementary to Attack 1, and would take as in-
put two blockchain transactions identified via Attack 1.
Note that even if Attack 1 is imperfect, and returns a
set of transactions instead of a single one, Attack 2 will
still succeed. The intersection size rapidly decreases as
a function of the number of observations, and even if
two observations aren’t sufficient to uniquely identify



the wallet, it is likely that a small number of additional
observations will suffice. We quantify this in Section 6.

4 Web measurement: Leaks of
sensitive data

In this section we analyze leaks of sensitive data on mer-
chant sites. In sections 5 and 7 we examine how trackers
can actually use this data to identify transactions on the
blockchain. We also show in this section how trackers
can connect this information to users’ identities.

4.1 Method

To identify leaks of sensitive data, we performed a web
crawl of popular merchants that accept Bitcoin. To cre-
ate a list of merchant sites, we began by combining pop-
ular community-maintained lists of merchants [54, 62],
which gave us 1438 sites. We then pruned the list to
those domains that were found in the Alexa top 1 mil-
lion websites, which left 283 sites. As we crawled the
sites, we discovered that about half of the merchants no
longer accepted Bitcoin. This left 130 merchants in our
crawl that accepted Bitcoin at the time of our measure-
ments, and we focus on these 130 sites. These merchants
were geographically distributed over 21 countries, with
64 based in the United States and 20 based in the United
Kingdom.

Typical merchant payment flows allow us to com-
plete most of the steps — viewing products, adding
them to the cart, initiating checkout, and receiving a
payment address and price — before actually having
to make a payment. This allowed us to collect data on
almost the entire payment flow on a large number of
websites. However, to analyze payment receipt pages,
we need to actually make purchases. Thus we analyze
transaction receipt pages on a smaller scale based on
actual purchases. We made purchases from 20 distinct
merchants in total.

To collect data on web tracking we used a mod-
ified version of the open-source web privacy measure-
ment tool OpenWPM [16]. Using the tool we collected
all HTTP(S) requests and responses. We also manually
marked any PII and payment-related information that
we encountered on the pages we visited; we added func-
tionality to the tool to automatically record this infor-

mation when marked.
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BitPay 70
Coinbase 24
Coinpayments | 3
Stripe 2
Other 31
Total 130

Table 1. Prevalence of payment processors in 130-site crawl

Throughout our measurements, we are interested
in the privacy risk both for a regular user and for a
user who employs tracking-protection tools. Most such
tools (e.g., Adblock Plus, uBlock Origin) use stan-
dard, community-maintained filter lists: EasyList and
EasyPrivacy. To measure the privacy-risk for users of
tracking protection lists, we simply re-run our analy-
sis after deleting those third-party URLs in our crawl
databases that appear in the lists.

4.2 Findings

Based on our measurements of 130 Bitcoin-accepting
merchants, we found numerous third parties that re-
ceive transaction-relevant information by virtue of their
business relationship with the merchant in the normal
course of a transaction. We define transaction-relevant
information as any information that could help iden-
tify the transaction on the blockchain. These potential
adversaries could retroactively perform the transaction-
linkage attack using data already present in their HT'TP
logs or databases. We measure information received
through either unintentional leakage, via the referer
field of an HTTP GET or POST request [32], or through
intentional information sharing via an HTTP POST ac-
tion or a GET URL parameter.

Third parties receiving Bitcoin address or BTC price
Almost all merchants use third-party payment proces-
sors; this helps them avoid the security, volatility, and
legal risks of receiving and holding bitcoins. Table 1
lists the prevalence of different payment processors in
our crawl of bitcoin-accepting merchants. The payment
processor either sits in an iframe on the checkout page,
or on a separate page in the payment flow. The frame
or page will display the exact Bitcoin amount the user
should send, to an address controlled by the payment
processor.

We found that 17 of the 130 Bitcoin-
accepting merchant websites send the receiving
Bitcoin address or BTC-denominated price to a



Info type w/o protection  w/ protection
Nt.)n—B.TC—der'lon?mated 24 12
price, incl. shipping
Non-BTC-denominated 23 5
price, pre-shipping
Non- - .

ofm B'I_'C denominated 43 16
price, either
Bitcoin address 12 12
Bitcoin price 11 9
Bitcoin address or price 17 15
Add-to-cart events 28 2
Total merchants sharing 53 25

info

Table 2. Number of merchants sending transaction-relevant
information to third parties, with/without tracking protection

Info type w/o protection  w/ protection
Non-BTC- i

a:')n ' C der'lorr'lmated 29 11
price, incl. shipping
Non-BTC-denominated 18 3
price, pre-shipping
Non-BTC-d inated

f)n . enominate 38 13
price, either
Bitcoin address 5 4
Bitcoin price 4 2
Bitcoin address or price 9 6
Add-to-cart events 9 2
Total third parti

otal third parties 40 13

receiving info

Table 3. Number of third parties receiving transaction-
relevant information, with or without tracking protection

third party (Table 2). With this information, linking
the payment to the blockchain is trivial. The leaks were
found on less-popular payment processors and websites
that implement their own Bitcoin payment processing.

We can also break it down by third parties instead
of merchants: see Table 3. In both tables, we also present
the corresponding measurements for users of tracking-
protection tools (via the EasyList and EasyPrivacy? fil-
ter lists). Those results are presented in the “with pro-
tection” columns. See Appendix A.2 for a list of third
parties that receive transaction-relevant information de-
spite the use of tracking protection.

On 11 out of the 12 websites that leak the Bit-
coin address, the leaks were to third-party services
that render QR codes to facilitate payment. Provid-
ing a QR code encoding the payment recipient’s Bit-
coin address and the Bitcoin price makes payment

2 https://easylist.to/
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easier for the user. QR-code generator services gen-
erally work by accepting a GET request with the
data encoded as a query parameter, and return-
ing the rendered QR code image. Thus, transaction-
relevant information is contained in the GET re-
quest (e.g., https://blockchain.info/qr?data=bitcoin://
[address]?amount=[price]&size=180). If the QR-code
generator service stores HTTP requests in their logs
they will have passively collected sufficient information
to perform the blockchain analysis attack. We saw three
domains providing this service: chart.googleapis.com,
grserver.com, and blockchain.info. Three payment pro-
cessors in particular use chart.googleapis.com to gener-
ate QR codes: coingate.com, litepaid.com, gourl.io.3

We made purchases on a subset of 20 merchants
websites, which allowed us to examine trackers on pay-
ment receipt pages. Table 7 in Appendix A.2 presents
the number of third parties found on each merchant’s
payment receipt page, and the number of third parties
that also receive transaction-relevant information in the
course of the payment flow. Embedded third parties are
common on receipt pages: in total, there were 245 third
parties on the 20 merchant receipt pages we vis-
ited.

We found further serious leaks of sensitive informa-
tion on some of these pages. In particular, the payment
processor Coinbase redirects to receipt page URL on the
merchant website (such as https://www.overstock.com/
bitcoinprocessed/?...), and appends to this merchant
URL a long string of query parameters that include
the Bitcoin payment address. If the resulting payment
receipt page embeds third parties, then the merchant
will (likely inadvertently) leak the payment address via
the HTTP referer header. We found this to be the case
on multiple merchant websites that use Coinbase. The
overstock.com receipt page alone leaked the pay-
ment address to 42 distinct third parties via this
referer leakage.

Additionally, we found that many merchant web-
sites leak payment processor invoice page URLs to third
parties. This is a different type of leak from the one in
the previous paragraph. The URLs themselves do not
contain sensitive information, but the contents of the
invoice pages do, in the case of both Coinbase and Bit-
pay. In both cases, the invoice page is not protected by
access control and the content can be viewed by anyone

3 Google’s policy is to retain these log for 2 weeks, for debugging
and development purposes [21]. We could not find the retention
policies for the other two service providers.



who has the URL. Of the sites from which we made pur-
chases, 12 of the 20 merchants included leaks of these
URLs to a total of 25 third parties.

Third parties receiving non-BTC cart prices

The cart page displays each product in a user’s shop-
ping cart, along with the non-BTC denominated (e.g.,
USD or EUR denominated) subtotal of the cart. This
subtotal will often exclude taxes and shipping. The user
is often directed to enter their shipping address at the
following checkout page, which will then calculate the
shipping fee and add it to the cart subtotal.

From our crawl data we identify a second set of third
parties that receive the non-BTC-denominated cart
price. If the received cart price is missing shipping and
handling, it will increase the adversary’s uncertainty
about the BTC-denominated price (see Section 5). As
seen in Table 2, 43 out of the 130 bitcoin-accepting
merchants we visited send some form of non-
BTC-denominated cart price data to third par-
ties — many more than share BTC price or address
with third parties.

Based on the type of HTTP request that sent the
transaction-relevant information to a third-party, we
can categorize whether the sharing of data was inten-
tional or unintentional. We consider an unintentional
data leakage a sharing of data that happens solely via
referer leakage. While it is possible that the third party
parses the referer for the price information on the back-
end, we find it is useful to separate these cases from an
intentional sharing of data. An intentional share with a
third party means that the price was sent in the URL
of a GET request or the body of a POST request — in
that case, the request was intentionally constructed. In
our crawl, we found that the overwhelming major-
ity of requests that shared transaction-relevant
data with a third party were intentional: of the
312 requests we observed on 53 merchant sites shar-
ing transaction-relevant information, 295 intentionally
shared data.

To perform the cluster intersection attack, an adver-
sary must have transaction-relevant information for at
least two separate purchases. A third party positioned
on more than one website is in a better position to have
the necessary data. Table 8 in Appendix A.2 contains
the prevalence of third parties receiving transaction-
relevant information that appeared on at least two mer-
chant sites. As one might expect, Google Analytics and
Facebook are pervasive.
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Third parties receiving product page visits
At minimum, on an e-commerce site a product
page will display the non-BTC denominated price
of an item that a user can purchase. A product
page will also often embed resources from many
third-party domains. As an illustrative example,
the product page https://missionbelt.com/collections/
solid-color-40mm-belts/products/vader-40, includes re-
sources from 371 distinct third-party domains.

Thus, third-party trackers could infer the user’s cart
subtotal based on the product pages they visit. In our
data we found several examples of third parties that
not only see the product pages a user visits, but know
exactly when the user adds an item to their cart. In to-
tal, 28 bitcoin-accepting merchants in our crawl
shared add-to-cart events with third parties. The
most common third party to receive this information
was Facebook, which received add-to-cart events on
26 merchants’ sites. Being able to receive add-to-cart
events is essentially equivalent to being able to see pre-
shipping cart prices. Only two of those merchant sites
send add-to-cart events to third parties if the consumer
uses browser tracking protection.

Third parties receiving transaction timing

As discussed in Section 5, an adversary needs to know
the approximate timing of a Bitcoin transaction in ad-
dition to its value. There are several ways in which third
parties already have this information stored in logs.

As discussed earlier, when a user completes a Bit-
coin transaction, the payment processor typically redi-
rects the user back to a receipt page. Any third par-
ties loaded on the receipt page who had previously seen
transaction-relevant data can then use the receipt page
load-time as the approximate timestamp of the bitcoin
transaction (except during periods of anomalously high
network load). In our data, 245 distinct third-party do-
mains had resources loaded on merchant receipt pages
on sites for which we made a purchase. 16 out of 20
of those merchant sites embedded on the receipt
page at least one third party which had previ-
ously received transaction-relevant information.
This knowledge makes blockchain linking much easier.
A more detailed breakdown of third parties by merchant
receipt page can be found in Table 7 in Appendix A.2.

Even without seeing a bitcoin transaction receipt
page, third parties could still estimate the time a
transaction took place based on whether or not they
know when a user starts the checkout process. From
our data we measured the extent to which Facebook



PIl type w/o protection  w/ protection
email 32 25
firstname 27 20
lastname 25 19
username 15 12
address 13 9
name 11 4
phone 10 4
company 5 4
Merchants

sharing PII 49 38

Table 4. Number of merchants sharing each type of PII, with
or without tracking protection

trackers, for instance, explicitly track a user through
their API’s “InitiateCheckout” event. The Facebook
InitiateCheckout event was found on 15 sites of the
130 bitcoin-accepting merchants we visited in our crawl.

Third parties receiving Pll

A leak of transaction-relevant information coinciding
with a leak of PII allows the adversary to attach a real
world identity to a Bitcoin address. In our crawl, 49
bitcoin-accepting merchants leak some form of
PII to a total of 137 third parties. Table 4 lists the
number of merchants that share each type of PII with
a third party. Table 6 in Appendix A.2 lists the number
of third parties receiving each type of PII.

We also found that 21 third parties that re-
ceive PII also receive transaction-relevant infor-
mation. Those third parties can conduct the blockchain
analysis attack and add a label to the resulting cluster.

4.3 Other adversaries

Some entities do not yet collect the necessary informa-
tion to conduct the blockchain attack, but could be in
the position to collect the information through an active
attack.

Active attacks by third parties
Third-party JavaScript has access to the complete DOM
of whatever frame the script is embedded in: if that
frame contains a piece of transaction-relevant data, then
a script that turned malicious could go out of its way
to collect the data if it wasn’t already collecting it.
OpenWPM allows us to match third-party scripts
to the pieces of information they can read. In short,
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Bitcoin address 31
Non-BTC-denominated price 104
Bitcoin price 30
Total sites leaking transaction-relevant info | 107

Table 5. Active attacks: Number of merchants that allow
third-party script access to transaction-relevant information

107 sites in our crawl grant third-party scripts
access to transaction-relevant information (Table
5). The most-prevalent third party by far is google-
analytics.com, which appears to be widely trusted: for
example, a google-analytics.com script is often the only
script found on Coinbase’s payment processing page.

Potential third-party access to PII was even more
prevalent: on the 130 bitcoin-accepting merchants
we crawled, 125 merchants granted third-party
scripts access to some form of PII. This included
the scripts of payment processors that may not other-
wise receive PII.

Network adversaries

While most of the merchants we visited in our crawl use
HTTPS, some failed to do so. In our crawl, we found
36 merchants that did not use HTTPS for crucial
parts of the payment flow, including cart pages.
A network adversary could thus see the page load in
cleartext, and parse transaction-relevant information or
PII from the page.

Payment processors

While users are arguably aware that payment proces-
sors will receive transaction-related information in the
course of a payment, they probably do not expect that
payment processors receive PII, since creating an ac-
count with the payment processor is generally not re-
quired. Yet, we found that at least 24 merchants
share some form of PII with BitPay, even though
BitPay does not require that the merchant send them
PII.

Merchants

Conversely, users may expect that while merchants
necessarily receive PII, they may not be able to eas-
ily identify the transaction on the blockchain. But we
made merchant accounts with BitPay and Coinbase,
and found that they both share the full details of the
Bitcoin transaction with the merchant.



5 Blockchain analysis: Estimation
of linkability

Having shown that trackers obtain payment-related in-
formation from online purchases, we now present em-
pirical analyses of the Bitcoin blockchain to show that
trackers can use this information to uniquely identify
the transaction on the blockchain. We reiterate that
many trackers will have no need for the techniques in
this section since merchants share unique transaction-
specific information with them.

For blockchain analysis, we used BlockSci [28], an
in-memory blockchain graph database and query inter-
face that supports Bitcoin and various altcoins.

5.1 Method

We seek to answer the question: for a given level of price
uncertainty, exchange rate uncertainty, and transaction
time uncertainty, what is the distribution of anonymity
set sizes of the transaction? The anonymity set contains
candidate transactions, one of which represents the ac-
tual payment. Based on the anonymity set sizes, we also
compute adversary success probabilities. Throughout,
we average our measurements over a set of prices (ob-
tained from actual sites, as described below), and a set
of random points in time over a two-year period from
mid-2015 to mid-2017.

Exchange rate data. Recall from Section 2 that
payment processors use price data from exchanges,
which is also available to adversaries. In our measure-
ments, we use publicly available historical data from
BitStamp made available by bitcoincharts.com.? The
data contains the prices of all trades executed on the
exchange, starting in September 2011. As of June 2017
it contains 11.6 million trades. During the time period
of interest to us it contains about 4.4 million trades, or
about 4.2 trades per minute.

Sampling prices. To obtain a representative sam-
ple of prices of user purchases, we sampled 100 item
prices from our dataset of merchants. We sampled mer-
chants randomly and then sampled items randomly
from those listed on the homepages of those merchant
websites, ensuring a maximum of 10 from any one mer-
chant. When converted to USD, the prices ranged from

4 https://api.bitcoincharts.com/v1/csv/
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a minimum of 1.52 to a maximum of 359.00, with a
mean of 51.27 and a median of 24.99.

Sampling actual prices is important, because the
distribution of values of e-commerce payments is differ-
ent from that of other transactions on the blockchain.
For example, prices are often close to integer multiples
of the currency of account (USD, EUR, etc.) [20]. There-
fore, if we sample prices directly from blockchain trans-
actions, we might obtain unrepresentative results.

Sampling times. We pick 100 random timestamps
from our time period of interest. By picking these ran-
domly instead of periodically, we ensure that there are
no patterns such as specific times of day or day of week.

Modeling price uncertainty. By analyzing the
behavior of various merchants, we make the following
key observation: if the adversary knows only the country
of the user’s shipping address, there are only a small
number of possible values (typically fewer than 10) for
the difference between the cart price and the final price.
For example, there are no instances where each US state
has a distinct shipping fee. Based on our observations,
the vast majority of merchants do not collect tax. Note
that often the shipping address is directly revealed to
the tracker (Section 4). Even otherwise, it is easy for
trackers to learn the user’s country, whether based on
IP address, locale, or language. Thus, we model price
uncertainty as a small set of possible values. We sample
these values from the list of actual shipping rates on the
merchants we analyzed. We always include the value 0
in this sample, because free shipping is (unsurprisingly)
a popular option.

Modeling time uncertainty. The tracker may ob-
serve the user take one or more of the following actions:
view the shopping cart, initiate checkout, and view the
transaction receipt page. In the first case, the tracker
can guess that the user may have initiated payment
within a few minutes (though this guess might be incor-
rect). In the second case, the tracker knows that if the
payment was made, it would have to be within a time
window set by the payment processor, typically 15 min-
utes. In the third case, the tracker knows the transaction
timestamp to within a few seconds (network latency).

Modeling exchange rate uncertainty. The ex-
change rate data used by the payment processor is al-
ways available to the adversary. However, there is poten-
tially some uncertainty introduced by the lag between
the tracker observing the user initiate the checkout pro-
cess and the user being quoted an exchange rate. We
model the adversary’s uncertainty as a time interval. If
this window is 5 minutes, it means that the exchange
rate that was applied to the transaction could take any



value from the published time-series of exchange-rate
values during a 5-minute period that begins when the
adversary observed the user initiate checkout.

Modeling the victim and adversary. We simu-
late 10,000 payment flows based on all combinations of
the 100 prices and 100 timestamps sampled as above.
For each flow, we consider two cases: the victim either
does, or doesn’t, complete the payment within the win-
dows of uncertainty assumed by the adversary.

We posit an adversary that behaves as follows:

— if there is exactly one transaction that falls within
the uncertainty intervals, output that transaction.

— if there is more than one such transaction, output a
random transaction from that set.

— if there is no transaction, output “no transaction”.

The last point is important, because in many cases
the adversary observes the user on the shopping cart
page or the checkout page, but does not know for sure
that the payment was made (some adversaries are also
present on transaction receipt pages and will have this
additional information).

Quantifying success. We quantify the adversary’s
success in terms of two numbers: the true positive rate
and the true negative rate. A true positive occurs when
the victim completed the transaction, and the adversary
outputs the correct transaction. A true negative occurs
when the victim did not complete the transaction, and
the adversary correctly outputs “no transaction”.

For each simulated payment flow and each set of
uncertainty parameters, we search the log of broad-
cast transactions (“mempool" log) for transactions that
match the price and time within the specified uncer-
tainty windows. Transactions found, in addition to the
payment itself, constitute the anonymity set. Since the
payments are simulated, we do not expect to find them
on the blockchain, but in a real attack the payment
would be part of the blockchain. In other words, our
measurements answer the question: “had a payment of a
given value been made at a given time, how many trans-
actions on the blockchain could it be confused with?”
The anonymity set size is 1 more than this value.

Additional
transactions have several other characteristics that en-

heuristics. E-commerce payment
able the adversary to distinguish them from (some)
other transactions on the blockchain. We incorporate
several such heuristics in our attack.

— Payments are always made to regular addresses rather
than high-security “multisignature” addresses. This is
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true across almost all 130 merchants that we analyzed.
The use of multisignature addresses would make our
attack far stronger since the attacker, knowing the type
of address used by any given merchant, would be able to
limit the set of candidate transactions on the blockchain.
— Payment transactions almost always have two out-
puts — the recipient’s output and the change output
— and never more than two. This behavior is consis-
tent across all but one user wallet software that we
are aware of; the exception is Samourai Wallet (https:
//samouraiwallet.com/).

— Fresh addresses are used, both for change and for the
recipient’s output. This is a conservative assumption;
alternative behavior would make our attack stronger. If
the user’s wallet reuses addresses for change, that would
undo the effect of mixing. If the recipient reuses ad-
dresses, it would make it easier for the adversary to asso-
ciate specific addresses with recipients, and thus further
filter the set of candidate transactions on the blockchain.

5.2 Results

Anonymity set size. Figure 3 shows the distribution
of anonymity set sizes under default values of various
parameters: payment time uncertainty of 15 minutes,
exchange rate uncertainty of 5 minutes, and a price un-
certainty set size of 5. The most common value of the
anonymity set is 1, which shows that the attack is pow-
erful under this default set of parameters. Based on the
anonymity set size distribution, the true positive rate is
76% and the true negative rate is 62%.

Impact of uncertainty. Having shown that the
attack is successful under a default set of parameters
for uncertainty, we examine the impact of each uncer-
tainty parameter. In Figure 4 we see that the accuracy
remains high even if there are 10 possible values for the
price. As we observed earlier, price uncertainty arises
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Fig. 4. Effect of price uncertainty on
transaction linkage

due to shipping options, and there are rarely more than
10 possible values for it for any given country.

The attack degrades gracefully when we increase
the adversary’s time uncertainty or exchange rate un-
certainty (Figures 5, 6). Note that if the payment pro-
cessor automatically redirects to the payment receipt
page, and the adversary is embedded on this page, then
the time uncertainty is on the order of seconds, and the
success rate is extremely high.

More generally, the adversary will have a high suc-
cess rate if his uncertainty on at least one of the three
dimensions is low (Figures 4, 5, 6), as this greatly cuts
down the number of possible matching transactions.

Robustness of the results. While we took care
to sample prices from the actual distribution of prices
on merchant websites, we find that our results are ro-
bust in terms of the sampling strategy. For example, we
repeated our experiments with prices sampled from the
distribution of transaction amounts on the blockchain
(Figure 10 in Appendix A.2). The results are very sim-
ilar; the accuracy improves slightly. We also repeated
our experiments with all prices doubled, i.e., with each
sampled price replaced by twice its value (Figure 11
in Appendix A.2). Again the results are essentially un-
changed.

We also repeated our experiments on the Litecoin
blockchain instead of Bitcoin. Litecoin is the altcoin
with the most adoption for online payments, in terms
of support by merchants and payment processors. Again
we find that the success rate is high (Figure 12 in Ap-
pendix A.2); in fact, it is higher than the success rate
for Bitcoin, likely due to Litecoin’s lower transaction
volume, and therefore smaller anonymity sets. Litecoin
had a volume of 3,605,028 transactions in the two-year
period of interest, as opposed to Bitcoin’s 150,614,721.

Uncertainty Window (minutes)

Fig. 5. Effect of payment time uncer-
tainty on transaction linkage

Uncertainty Window (minutes)

Fig. 6. Effect of exchange rate uncer-
tainty on transaction linkage

Further improvements. So far, we have made
conservative assumptions about the adversary’s knowl-
edge. The success of the attack in practice may in fact
be much higher, either due to idiosyncratic behavior
by payment processors or due to additional information
available to the adversary.

BitPay, one of the two main payment processors,
rounds its transaction amounts (in Satoshis) to a multi-
ple of 100. Since the adversary knows the identity of the
payment processor, whenever that processor is BitPay,
he can eliminate a large fraction of possible transactions
— any transaction amount that is not a multiple of 100
Satoshis. Applying this heuristic, the accuracy improves
substantially (Figure 13 in Appendix A.2).

Even if there is no discernible pattern in the transac-
tion amount, the adversary may be able to tell which (if
any) payment processor was involved in any given trans-
action on the blockchain. Such address tagging heuris-
tics are well known [42], and are applied at scale by
companies such as Chainalysis. Tagging is not always
accurate, but it can help the adversary greatly decrease
the anonymity set. This technique was used for Bitcoin
forensics in a recent paper [53].

6 The cluster intersection attack

We now turn to our second attack, the cluster intersec-
tion attack (Algorithm 2). To recap, the attack is ap-
plicable when the adversary has auxiliary information
revealing that two (or more) transactions made with
mixed coins trace back to the same wallet (address clus-
ter). Web trackers who observe multiple purchases may
have this information.

In this section, we present a large-scale simulation of
the effectiveness of this attack. An empirical validation,
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Algorithm 1: Clustering. One step of the address
clustering algorithm. We invoke this function recur-
sively to find all addresses associated with a given
coin or address. The algorithm incorporates the
multi-input and change-address detection heuristics
from [42]. Bitcoin mixing today is dominated by
JoinMarket, so we use JoinMarket detection (Ap-
pendix A.1) in place of IsMixTxk.

1: function ExPANDCLUSTER (addr)

2: C + {addr}

3 for all tx in TxsFroM(a) do

4 if not ISMIxTx(tz) then

5 C + C U FROMADDRESSES(t2)

6: C + C U {CHANGEADDRESS(tx)}
7
8
9

for all ¢tz in TxsTo(a) do
if not IsMixTx(tx) and
CHANGEADDRESS(tx) = addr then

10: C + C' U FROMADDRESSES(tz)
return C'

where we de-anonymize our own wallets, is deferred to
the next section.

6.1 Method

Identifying joins. First we identify existing CoinJoin
transactions on the Bitcoin blockchain. We focus on
JoinMarket, since it is (to our knowledge) the only de-
centralized mixing service that is currently operating
and has a usable level of liquidity. We adapt Moser et
al’s algorithm to identify JoinMarket transactions [47],
and it is shown in Algorithm 3 in Appendix A.1. We
found 95,239 such transactions, of which 78,697 are dur-
ing the period of interest to us (mid 2015-mid 2017).
The number of coins mixed in one of these transactions
has a mean of 3.98 and a standard deviation of 1.72.

Simulating the victim. We consider a victim with
a wallet of clusterable addresses who obtains 100 dis-
tinct mixed coins over the two-year period of interest.
We sample 100 timestamps (block heights) uniformly
during this period; at each of these times, the victim
initiates mixing of a coin from her wallet and completes
r < 5 rounds of mixing. 5 rounds represents a very high
degree of anonymity based on JoinMarket’s advice to
users [1]. The victim retains the mixed coins until the
end of the period of interest. The values of these coins
don’t matter since this information is not used by our
deanonymization algorithm.

Algorithm 2: Cluster Intersection Attack. Step 1
can be amortized over multiple invocations of the algo-
rithm; alternately step 2 can be modified so that join
detection can be performed only as needed.

Inputs:

— a set of mixed coins C' known to be controlled by
the same user.

— an integer r, representing the adversary’s (possibly
incorrect) assumption that the victim did at most r

rounds of mixing.
Output: a wallet cluster.

1. Identify all join transactions on the blockchain.
2. For each coin c € C:
— Identify all coins = such that there is a directed
path from z to c¢ of length at most r consisting
only of join transactions. Call this set X..
— For each coin = € X, identify the wallet cluster
it belongs to (Algorithm 1). Call the resulting
set of wallet clusters W..
3. Compute the wallet cluster intersection: () . We.
4. If it results in a unique wallet cluster, output it.
Otherwise output “incorrect assumptions™.

To simulate the mixing of one coin (with r rounds
of mixing) starting from a given timestamp, we sam-
ple from the JoinMarket transactions on the blockchain
that have this timestamp. With this node as the start-
ing point in the graph of JoinMarket transactions, we
sample a path of length r from among all such paths. If
there are no such paths, we repeat the procedure start-
ing from a different initial transaction.

Attack. At this point the victim has 100 mixed
distinct coins in her (simulated) wallet. Now we simulate
the web tracker’s view, that is, we simulate the victim
making two transactions in a way that reveal to the
adversary that two of these coins trace from the same
wallet. Then we execute the cluster intersection attack
(Algorithm 2). We repeat the procedure with different
values of the number of rounds r and the number of
transactions t observed by the adversary.

6.2 Results

Figure 7 shows the adversary’s success rate as a func-
tion of the number of mixing rounds and the number
of transactions observed. By construction of the exper-
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Fig. 7. Effect of rounds of mixing on
success rate of cluster intersection attack.
For r < 3, the success rate is 100%.

iment, the cluster intersection attack has the same true
positive rate and true negative rate. Thus the graph also
represents the probability that, if the adversary is incor-
rect about the number of rounds of mixing, it will out-
put “incorrect assumptions”. With one or two rounds of
mixing, just two observed transactions are sufficient for
the adversary to identify the wallet cluster. Even with
four rounds of mixing, a small number of observations
is sufficient for high accuracy.

Figure 8 helps explain why the attack succeeds: the
success rate is strongly dependent on the difference in
age between the mixed coins. This is intuitive: if the
victim mixed a coin a year ago and another coin today,
the anonymity sets of the two coins are much less likely
to intersect, compared to two coins both mixed today.
In other words, users who have a long history of making
e-commerce purchases using mixed coins are at a greater
risk of deanonymization, not just because of the number
of purchases but also because of the gap between them.

7 Empirical validation of attacks

We now describe how we validated our attacks empir-
ically by making actual purchases and participating in
CoinJoin transactions. Naturally, the scale of these ex-
periments was more limited than our simulations.
Setup. We began by purchasing bitcoins from an
exchange, Coinbase, and routing them to six addresses.
We ensured that these six addresses are clearly clus-
terable by our clustering algorithm (Algorithm 1). This
simulates a user with a wallet containing addresses that
are linkable to each other before mixing. As discussed
in Section 2, we believe that this is a conservative and
realistic assumption. Furthermore, the clusterability of

Time between tx's (days)

Fig. 8. Effect of age of mixed coins on
success rate of cluster intersection attack
(with 5 rounds of mixing).
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Fig. 9. Observed anonymity set sizes in
empirical evaluation of the transaction
linkage attack

the user’s wallet is affected by factors not in the user’s
control. For example, if a payment processor provides a
payment address that has been used before, rather than
a freshly generated address, then the user’s change ad-
dress will be linked to her wallet.

Next, we participated in JoinMarket CoinJoin
transactions to create 11 coins which are not linkable
to the main cluster using known techniques. We partici-
pated in one round of CoinJoin for 6 of the transactions
and two rounds of CoinJoin for the other 5.

Finally, we made a set of 21 purchases on 20 mer-
chant sites. We sampled these sites from among those
that leaked transaction-relevant information to at least
one tracker (as measured in Section 4). For 11 of these
purchases, we used coins that had been mixed in the
previous step, and we ensured that these addresses as
well as the change addresses for these purchases did not
get linked to our cluster. For the other 10 purchases, we
used coins directly from our cluster. The final prices of
these items ranged from $3.28 to $46.40 when converted
to USD, with a mean of $13.67.

Validating transaction linkability. We calculate
the anonymity sets of these 21 transactions based on our
default values of the adversary’s uncertainty: a 5-minute
exchange rate uncertainty and a 15-minute payment
time uncertainty. The uncertainty windows are centered
around the true values of the payment time and the ex-
change rate determination time. For price uncertainty,
we use the actual list of shipping options (and result-
ing list of final prices) that we recorded while making
purchases. The number of possible pre-BTC prices is
typically 5 or fewer per purchase. We find that in 10
out of 21 cases, the anonymity set size is 1 (Figure 9).

For 17 of the 21 purchases, there was at least one
tracker that received transaction-relevant information



and was also present on the payment receipt page, which
means that for these adversaries the payment time un-
certainty is very low. In this scenario, the anonymity
set sizes are much lower: in fact, it is 1 for 14 of 17 pur-
chases. The adversary behaving as described in Section 6
would identify the correct transaction 90% of the time.
The true negative rate is also high: 82%. This means
that if the adversary’s assumption about the payment
time was incorrect for whatever reason — if the network
load is too high or the user’s wallet software included
too low a fee, the receipt may not happen quickly —
the adversary will be able to correctly deduce this.

Validating the cluster intersection attack.
Next we validate the cluster intersection attack. Out
of the 11 purchases we made using mixed coins, we con-
sider adversaries that observe a random t of those pur-
chases and know which transaction on the blockchain
corresponds to each of them. We find that for ¢t = 2, the
adversary described in Algorithm 2 has an 89% chance
of correctly identifying our wallet cluster, and for ¢t = 3,
this goes up to 99%.

If more rounds of mixing are used, the attack will
not work as well. On the other hand, we mixed all our
coins during a 3-day period, and realistic users who mix
coins over a period of months or years will have worse
privacy. In Section 5 we evaluated the effect of these
factors as well as the number of transactions observed
by the adversary. For our experiments in this section,
we limited the number of parameters because of the
expensive nature of the mixing market.

Validating the attack end-to-end. The two at-
tacks are especially powerful when combined. Even if
the single-transaction linkage doesn’t produce a unique
result, we can run cluster intersection on every possible
combination of the candidate transactions produced by
it. Most combinations will produce an intersection of
size zero, and can be discarded. If exactly one combina-
tion produces one cluster and all the rest produce zero
clusters, then the adversary outputs that cluster.

From our purchase records, we determined that
there were 11 trackers in a position to observe more
than one purchase: americanexpress.com, chatid.com,
google-
analytics.com, google.com, monetate.net, revjet.com,

criteo.com, doubleclick.net, facebook.com,
steelhousemedia.com, tealiumiqg.com. Overall there are
25 pairs of purchases for which there was a tracker that
could observe both purchases. We ran the end-to-end
attack on all 25 pairs, again using default values of the
adversary’s payment time uncertainty and exchange
rate uncertainty. We found that the attack succeeds in
identifying our wallet cluster in 20 cases.
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Again, these numbers reflect conservative assump-
tions about the adversary’s knowledge. If the Bitcoin
transaction details are directly leaked to the tracker,
or if the tracker is present on the receipt page, or ob-
serves more than two payments, the success rate will
be much higher. Similarly, many Bitcoin users do not
employ mixing. We do not know what fraction of e-
commerce purchases are made with mixed coins, but we
observe that only .05% of transactions on the blockchain
over the past two years are CoinJoin transactions. If the
user doesn’t employ mixing, then it will be straightfor-
ward for the adversary to identify her wallet cluster,
even with a high degree of uncertainty in the payment

amount and time.

8 Mitigation and discussion

Our findings are a reminder that systems without prov-
able (or at least well-defined) privacy properties may
have information leaks and privacy breaches in unex-
pected ways. When multiple such systems interact, the
leaks can be even more subtle. For another example of
the difficulty of composing systems with complex pri-
vacy properties, see [9].

Cryptocurrency anonymity is a new research topic,
but it sits at the intersection of anonymous communi-
cation and data anonymization, both well-established
fields. Unfortunately, it seems to inherit the worst of
these two worlds. Like data anonymization (and un-
like anonymous communication), sensitive data must be
publicly and permanently stored, available to any adver-
sary, and de-anonymization may happen retroactively.
And like anonymous communication systems (and un-
like data anonymization), privacy depends on subtle in-
teractions arising from the behavior of users and appli-
cations. Worse, realistic traces of the system may not
be available at the time of designing and implementing
the privacy defenses.

Turning to defenses, we observe that our first at-
tack exploits the inherent tension between privacy and
e-commerce, and our second attack exploits the inher-
ent tension between privacy and the public nature of the
blockchain. Thus, all mitigation strategies come with
tradeoffs. The available mitigations break down into
three categories: self-defense by users, techniques that
merchants can use, and alternative cryptocurrencies or
cryptocurrency-based payment methods.

Mitigation by merchants. There are a few
straightforward mitigations that merchants could de-



ploy: (1) enabling HTTPS on all shopping (and es-
pecially payment-related) pages — this would pro-
tect against network adversaries, but not third-party
trackers, our main adversary of interest (2) generating
Bitcoin-address QR codes internally instead of outsourc-
ing it to a third party; (3) avoiding leaks of the Bitcoin
address from payment receipt pages; and (4) avoiding
unintentional PII leaks. As to the last point, however,
note that the attack succeeds as long as some first party
website visited by the user leaks PII to third parties, and
at least some PII leakage is for cross-device linking pur-
poses [13], and thus intentional. Beyond these obvious
steps, merchants could share less data with third par-
ties, and with fewer of them, but this would come at the
expense of their advertising and analytics objectives.

Self-defense. Web tracking is a well-known privacy
threat, and the main defense is to use browser extensions
such as uBlock Origin, Adblock Plus, or Ghostery to
block trackers. Such defenses can be quite effective, but
they are far from perfect [16, 43]. Our measurements in
Section 4 confirm the partial effectiveness of these tools.
Note that these tools do not help when the adversary is a
network eavesdropper (for either attack) or the payment
processor (for the cluster intersection attack).

On the cryptocurrency side, the main self-defense
is to use improved mixing techniques, especially multi-
round mixing. We showed in Section 6 that this is effec-
tive (but not perfect) as long as the adversary observes
only 2 or 3 transactions. In our end-to-end evaluation in
Section 7, we carried out only 1 or 2 rounds of mixing,
and this a limitation of our experiments. Increasing the
number of rounds comes at the expense of cost (trans-
action fees and mixing fees) and convenience (due to
transaction confirmation time). A more through evalu-
ation of the trade-offs is a topic for future work.

While we have focused on CoinJoin or decentral-
ized mixing, in principle the cluster intersection attack
should also work against centralized mixes. If a mixing
service introduces a delay of (say) up to 6 blocks, then
for a given coin that was mixed at a given block height,
all mix outputs produced in the next 6 blocks can be
considered part of its anonymity set. The main compli-
cation is the extent to which mix transactions are distin-
guishable from other transactions, which is likely highly
implementation-dependent. Of course, centralized mix-
ing is additionally vulnerable to the mix operator collud-
ing with the adversary or stealing the funds. Evaluating
the attack against centralized mixes (as well as other
anonymity techniques including TumbleBit [22]) is an
avenue for future work.
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Alternative cryptocurrencies and payment
mechanisms. Our attacks apply to Bitcoin, Lite-
coin, and any other cryptocurrency with Bitcoin-style
transactions. However, unlike the Bitcoin approach of
anonymity as an overlay, there are some cryptocurren-
cies that bake privacy into the protocol, and promise
untraceability of transactions. The most well known of
these are Zcash, based on the Zerocash protocol [7, 44],
and Monero, based on the Cryptonote protocol [63].
Zcash is more computationally expensive but comes
with more rigorous security properties. Of the two, Mon-
ero has more vendor support at the time of writing, but
still far less than Bitcoin or even Litecoin, and primar-
ily on hidden-service sites merchandising illicit goods.
While some anonymity weaknesses have recently been
revealed in Monero [34, 45], we believe that it is not
susceptible to the cluster intersection attack.

The lightning network [52] is a proposal for a fast
micropayments. It is a network of two-party bidirec-
tional payment channels. If Alice wants to pay Bob,
she finds a path of such channels that link her to Bob,
through which she can route the payment. Although the
lightning network relies on Bitcoin (or another under-
lying cryptocurrency) for its security, the vast majority
of transactions are off-chain. There is no global ledger
of all lightning payments, rendering our attack ineffec-
tive. While the lightning network would be an effective
defense against our attacks, it introduces other privacy
concerns [6, 38], and the issues that arise are analogous
to communications anonymity [25].

Finally, like virtually all deanonymization attacks
on cryptocurrencies, our techniques could be used to
build forensic tools for law enforcement use. In past in-
vestigations, agents have sought to find the identity be-
hind specific blockchain transactions that were known
to represent thefts, funding of unlawful activities, or
earnings from unlawful activities, as in the case of ran-
somware. Alternatively, agents may have an identified
person of interest and may wish to scrutinize their cryp-
tocurrency dealings for evidence of money laundering
or other financial crimes. Thus, both blockchain — web
and web — blockchain linking techniques are of poten-
tial interest to law enforcement. Agents might subpoena
a tracker or payment processor for information that
might allow such linkage, or even use network surveil-
lance techniques.
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Appendix

A.1 JoinMarket identification

CoinJoin transactions have a distinct structure, and

JoinMarket transactions especially so. Whether or not

JoinMarket can be modified to operate in a way that

the transactions are not as distinguishable from other

transactions is an open question. Here we describe our

algorithm for identifying JoinMarket transactions, and

evaluate its effectiveness. We adapt the algorithms from

several previous works [5, 41, 46, 47, 59].



Algorithm 3: JoinMarket Identification.
function IsSJOINMARKETTRANSACTION(tx)
if CONTAINSOPRETURN(tx) then

1:

2

3 return false

4 p « [|OuTs(tx)|/2]

5: if p < 2 then

6 return false

7 v < MosTCOMMON(VAL(O) : O € OuTs(tx))
8 if |{O € Outs(tz) | VAL(O) = v}| # p then
9: return false

10: A + {ADDR(z) : x € INs(tz)}

11: V«{}

12: for all ¢ in A do

13: 50

14: for all I in INS(tz) do
15: if ADDR(]) = a then
16: s+ s+ VAL(])
17: V«—Vu{s}

18: q < MAXFEE(v)

19: B <+ Array of length p with all entries v — ¢
20: 140
21: for all O in Ours(tx) do

22: if VAL(O)! = v then

23: Bli] + Bl[i] + VAL(O)
24: 141+ 1

25: for all P in ParTITIONS(V) dO
26: t< 0

27: for all S; in P do

28: if 251 > B; then
29: t<—t+1

30: if t > p then

31: return True

32: return False

The algorithm is a series of heuristics to filter trans-
actions based on the following observations:

— Transactions should only contain spendable ad-
dresses (lines 2-3)

— There must be at least two participants. If there are
n participants, there could be either 2n or 2n—1 out-
puts because JoinMarket has “sweep transactions”
where the taker obtains no change (lines 4-6)

— There must be an output of value v for each partic-
ipant, v being the most common output value (lines
7-9)

— There must be enough inputs to cover all of the
outputs (lines 10-32). Specifically, for each change
address, there must be a distinct set of inputs that
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add up to at least the output value v plus the change
value minus the max fee (¢) that might have been
paid to the liquidity providers. For our calculations
we set this to be the maximum of .0001 satoshis or
1% of the CoinJoin output.

One limitation of this algorithm is that it is slow
when the number of inputs is large. This is unavoid-
able as the problem is NP-complete (variable-sized bin-
covering in the unit supply model [24]). The listing
shows a brute-force implementation for simplicity; our
actual implementation is optimized, but nevertheless ex-
ponential. For our analyses, we ran it on transactions
with at most 17 inputs; it takes about 30 minutes to
process 150 million transactions. Based on the work of
Moser et al., who don’t use this heuristic, the vast ma-
jority — 92% — of JoinMarket transactions have no
more than 17 inputs.

When we run this algorithm on our two-year pe-
riod of interest (May 2015 — April 2017; block 354416—
block 464269), it results in 78,697 transactions. The
algorithm has low false negatives, and thus we regard
this as a near-superset of JoinMarket transactions for
this period. The criteria used in Algorithm 3 for filter-
ing transactions are necessarily true of all JoinMarket
transactions, except for any transactions where liquidity
providers charged so high a fee that they were rejected
by our max-fee heuristic. But based on the empirical
analysis of [47], virtually all offers posted on the market
by makers have a fee that is significantly less than the
threshold we used. As a further sanity check, all Coin-
Joins that we performed in our experiments (Section 7)
are identified by this algorithm.

CoinJoins and especially JoinMarket transactions
tend to connect to each other, and thus we can expect
to find large connected components among the identified
transactions. Indeed, among the 78,697 transactions, we
find a single giant component of size 60,187. We regard
these as a near-subset of CoinJoin transactions during
this period. While it is possible that non-CoinJoin trans-
actions may sometimes accidentally satisfy the criteria
in Algorithm 3, it is unlikely that they will cluster with
the JoinMarket transactions.

The fact that our near-superset and our near-subset
are similar in size gives us further confidence in the
method. Depending on the application, one or the other
version may be more suitable. We make use of both ver-
sions in our analyses: when simulating the victim, we
use the near-subset, because we want to have high con-
fidence that the transactions we use for simulation are
indeed CoinJoins. When simulating the adversary, we



use the near-superset version because the cluster inter-

section attack is more robust to false positives than false

negatives.

A.2 Additional tables, figures, and lists
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Fig. 10. Effect of payment

time uncertainty on success

rate when prices are sampled

from the blockchain instead

of from merchant websites.

Compare to Figure 5.
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Receipt Receipt page
Merchant page third  TPs w/
parties tx-relevant info

adafruit.com 13 5
baronfig.com 35 7
digitalrev.com 20 9
fancy.com 0 0
giftoff.com 10 1
givemethedirt.com 33 5
healthmonthly.co.uk 19 1
jenshansen.com 59 7

newegg.com 46 22
~—_ opendime.com 5 5

T overstock.com 42 42

petspyjamas.com 36 11
— True Positive Rate pi'SUPPIY-com 0 0
readytogosurvival.com 32 3
5 10 15 20 25 30 reddit.com 1 1
Uncertainty Window (minutes) reeds.com 0 0
Fig. 11. Effect of payment somethinggeeky.com 0 0
time uncertainty on success thepihut.com 44 8
rate when prices are doubled. thisisground.com 50 4
Compare to Figure 5. tightstore.com 32 4

Third parties on receipt pages 245 88

Uncertainty Window (minutes)

Fig. 12. Effect of payment

time uncertainty on success

rate when performed on Lite-

coin. Compare to Figure 5.

Fraction Identified
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0.6

0.4
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— True Positive Rate
— True Negative Rate

5 10 15 20 25 30

Uncertainty Window (minutes)

Fig. 13. Effect of payment

time uncertainty on success

rate against Bitpay transac-

tions. Compare to Figure 5.

PIl type w/o protection  w/ protection
username 76 39

email 63 30

firstname 41 19

lastname 29 17

address 15 9

phone 13 7

name 7 4

company 5 3

Third parties receiving PIl 137 70

Table 6. Number of third parties receiving each type of PII,

with or without tracking protection

Table 7. Number of third parties on each merchant’s payment
receipt page, and the number of those third parties that also

received transaction-relevant information

Third-party domain w/o protection  w/ protection

google-analytics.com 27 0
facebook.com 16 0
doubleclick.net 8 0
google.com 8 8
chart.googleapis.com 8 8
segment.io 3 0
steelhousemedia.com 3 0
criteo.com 3 0
blockchain.info 3 3
hits.io 2 0
monetate.net 2 0

Table 8. Prevalence of third parties receiving transaction-
relevant information on at least two websites, with or without
tracking protection

List of third parties that receive transaction-
relevant information despite the use of track-
ing protection: monkeykingcode.com, chatid.com,
blockchain.info, google.com, revjet.com, qrserver.com,
bootstrapcdn.com, americanexpress.com, schutzklick.
de,

exponea.com

chart.googleapis.com, nosto.com, gopollen.com,



