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Table 1. Traceability of Monero transaction inputs with 1+ mixins (up to block 1288774, excluding RingCT inputs). Deducible inputs

can be traced with complete certainty to the transaction output they spend (see Section 3). Among deducible transaction inputs, the

real input is usually the “newest” one (see Section 4). Entries marked [Est.] are estimated by extrapolating from deducible transaction

inputs, under the assumption that the spend-time distribution of deducible transactions is representative of the distribution overall.

Not deducible Deducible Total

Real input is not newest 14.82% [Est.] 302078 (4.83%) 19.65% [Est.]

Real input is newest 22.24% [Est.] 3635253 (58.11%) 80.35% [Est.]

Total 2318273 (37.06%) 3937331 (62.94%) 6255604 (100%)

we see substantial growth in transaction volume. After

accounting for the estimated impact of mining pools,

which opt-out of privacy by publishing their transac-

tions on webpages, there remain a substantial number of

potentially privacy-sensitive transactions, more than a

thousand per day. We estimate that many of these trans-

actions (about 25% of daily transactions at its peak) re-

late to the former underground marketplace AlphaBay,

which positioned Monero as a more secure alternative

to Bitcoin. The recent seizure of AlphaBay serves as a

reminder of the fragility of these marketplaces, whether

due to lawful actions, hacks, or exit scams [28], leaving

users remain at risk of deanonymization. In Section 7

we discuss our results in the context of three high-profile

criminal uses of Monero. Of course, Monero and other

privacy-preserving technologies have legitimate uses as

well, such as providing privacy for activists and support-

ing free speech within oppressive regimes.

In all of these, we consider an analyst model who

has access to not just public blockchain data, but

also records from exchanges and merchants, obtained

through seizure or subpoena.

Threat model

Alice purchases a quantity of XMR currency on a

popular cryptocurrency exchange, such as Kraken or

Poloniex, and withdraws it to a Monero wallet on her

home computer, as recommended by Monero best prac-

tices guides [2]. Over time, she uses it for a number of

innocuous activities such as online shopping and send-

ing money to friends. In other words, she transacts with

several parties using Monero under her real identity (the

exchange because it is mandatory, the shopping site so

as to have goods shipped to her, and so on). Later, Alice

uses her wallet pseudonymously for a sensitive payment,

one where she expects privacy. The attacker’s goal is to

link the pseudonymous account to a real name.

We consider a powerful attacker who is able to ob-

tain two sets of logs (whether through hacks, seizures, or

collusion). The first set of logs is of withdrawal transac-

tions from the exchange (or another transaction where

Alice used her real identity). The second set of logs is

of deposits at the merchant where Alice made her sen-

sitive payment. Due to the use of one-time addresses

in Monero, the withdrawal transaction is the only piece

of information on address ownership the attacker pos-

sesses. They cannot further infer common ownership of

addresses (a deanonymization attack possible in many

other cryptocurrencies [18, 24]). Furthermore, the at-

tacker does not possess Alice’s private keys and cannot

break any cryptographic primitives.

The success of the attack depends on the attacker’s

ability to link the withdrawal transaction to one of the

deposits at the merchant by deducing the real spend

among Monero’s chaff inputs, thereby confirming Alice

as the originator of the payment. We note that in addi-

tion to our attack, an attacker who is able to use side

channels such as additional timing information (e.g., a

time zone) can further reduce the effective anonymity

set provided by the mixins.

Proposed countermeasures

We propose an improved mixin sampling strategy that

can mitigate these weaknesses for future transactions.

Our solution is based on sampling mixins according to a

model derived from the blockchain data. We provide ev-

idence that the “spend-time” distribution of real trans-

action inputs is robust (i.e., changes little over time and

across different software versions), and can be well ap-

proximated with a simple two-parameter model. We ex-

tend the improved sampling with a sampling procedure

which samples mixins in “bins.” We show this binned

sampling ensures privacy even in spite of a compromised

sampling distribution.
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Lessons

Our work highlights the special difficulties of design-

ing privacy-preserving blockchain systems. As noted by

Goldfeder et al. [12], cryptocurrency privacy combines

the challenges of both anonymous communication and

data anonymization. The data are necessarily public for-

ever and vulnerabilities discovered at any point can be

exploited to compromise privacy retroactively, as exem-

plified by the deducible Monero transactions from mid

2016. Privacy is also weakened by the fact that choices

made by some users may affect other users detrimen-

tally, such as the mining pools’ practice of publishing

payout transactions.

Concurrent and related work on Monero traceability

Two reports from Monero Research Labs (MRL-

0001 [23] and MRL-0004 [16]) have previously dis-

cussed concerns about Weakness 1, known as the “chain-

reaction” attack. However, MRL-0001 considered only

an active attacker that must own coins used in previ-

ous transactions. Our results show this vulnerability is

not hypothetical and does not require an active attack,

but in fact leads to the traceability of most existing

transactions to prior to February 2017. MRL-0004 [16]

discussed a passive attack scenario and provided a sim-

ulation analysis predicting that the mandatory 2-mixin

minimum (implemented in version 0.9) would “allow the

system to recover from a passive attack quite quickly.”

Our results (Figure 5) show that indeed the fraction of

deducible inputs indeed drops steadily after instituting

the 2-mixin minimum (from 95% in March 2016 down

to 20% in January 2017), though a significant fraction

remain vulnerable.

Concurrently and inpendently of our work, Kumar

et al. [15] also evaluated the deducibility attack in Mon-

ero. Our work differs from (and goes beyond) their anal-

ysis in four main ways. First, we account for correla-

tion between the deducibility attack and temporal anal-

ysis in our simulation results (Section 4.3). Though de-

ducibility has been addressed in current versions, tem-

poral analysis remains independently effective. Second,

our analysis of the Monero ecosystem (Section 5) refutes

a possible objection that our analysis only applies to ir-

relevant transactions that do not need privacy (such as

mining pool payouts). Third, while we propose a similar

countermeasure to temporal analysis, we evaluate ours

through simulation. Finally, our binned mixins counter-

measure is novel and defends against a strong adversary

with prior information.

2 Background

Since the inception of Bitcoin in 2009 [21], a broad

ecosystem of cryptocurrencies has emerged. A cryp-

tocurrency is a peer-to-peer network that keeps track

of a shared append-only data structure, called a

blockchain, which represents a ledger of user account

balances (i.e., mappings between quantities of currency

and public keys held by their current owner). To spend

a portion of cryptocurrency, users broadcast digitally-

signed messages called transactions, which are then val-

idated and appended to the blockchain.

In slightly more detail, each cryptocurrency trans-

action contains some number of inputs and outputs; in-

puts consume coins, and outputs create new coins, con-

serving the total balance. Each input spends an unspent

transaction output (TXO) created in a prior transaction.

Together, these form a transaction graph.

The public nature of blockchain data poses a po-

tential privacy hazard to users. Since each transac-

tion is publicly broadcast and widely replicated, any

potentially-identifying information can be data-mined

for even years after a transaction is committed. Several

prior works have developed and evaluated techniques for

transaction graph analysis in Bitcoin [18, 24, 25]. Our

present work shows that the Monero blockchain also con-

tains a significant amount of traceable data.

The function of the peer-to-peer network and con-

sensus mechanism is not relevant to our current work,

which focuses only on blockchain analysis; readers

can find a comprehensive overview in Bonneau et

al. [5]. Network-based forensic attacks are also known

to threaten privacy in Bitcoin [3, 14], but applying this

to Monero is left for future work.

Cryptonote: Non-interactive mixing with ring

signatures

The Cryptonote protocol [30] introduces a technique for

users to obscure their transaction graph, in principle

preventing transaction traceability. Instead of explicitly

identifying the TXO being spent, a Cryptonote trans-

action input identifies a set of possible TXOs, includ-

ing both the real TXO along with several chaff TXOs,

called mixins (as illustrated in Figure 1). Instead of an

ordinary digital signature, each Cryptonote transaction

comes with a ring signature (a form of zero-knowledge

proof) that is valid for one of the indicated TXOs, but

that does not reveal any information about which one

is real. To prevent double-spending, every input must
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provide a key image that is unique to the output be-

ing spent, and the network must check whether this key

image has ever been revealed before.

Several cryptocurrencies are based on the

Cryptonote protocol, including Monero, Boolberry,

Dashcoin, Bytecoin, and more. We focus our empiri-

cal analysis on Monero, since it is currently the largest

and most popular, e.g. it has the 12th largest market

cap of all cryptocurrencies, over $750M. However, our

results are also applicable to other Cryptonote-based

protocols (as we show for Bytecoin in Appendix C).

Choosing mixin values in Cryptonote

The Cryptonote protocol does not provide an explicit

recommendation on how the “mixins” should be chosen.

However, the original Cryptonote reference implemen-

tation included a “uniform” selection policy, which has

been adopted (at least initially) by most implementa-

tions, including Monero. Since all the TXOs referenced

in a transaction input must have the same denomina-

tion (i.e., a 0.01 XMR input can only refer to an 0.01

XMR output), the client software maintains a database

of available TXOs, indexed by denomination. Mixins are

sampled from this ordered list of available TXOs, disre-

garding any temporal information except for their rela-

tive order in the blockchain.

In principle, it is up to an individual user to de-

cide on a policy for how to choose the mixins that are

included in a transaction. Since it is not a “consensus

rule,” meaning that miners do not validate that any par-

ticular distribution is used, clients can individually tune

their policies while using the same blockchain. The Mon-

ero command-line interface allows users to specify the

number of mixins, with a current default of 4.

Over the past several years, Monero’s mixin selec-

tion policy has undergone several changes; we describe

the important ones below. A summary of the timeline

relevant to our data analysis is shown in Figure 3.

Prior to version 0.9.0 (January 1, 2016) In the ini-

tial Monero implementation, mixins were selected uni-

formly from the set of all prior TXOs having the same

denomination as the coin being spent. As a consequence,

earlier outputs were chosen more often than newer ones.

After version 0.9.0 (January 1, 2016) Version 0.9.0

introduced a new policy for selecting mixins based on

a triangular distribution, favoring newer coins as mix-

ins over older ones. This change was motivated by the

belief that newer inputs are more likely to be the real

input [9]. This version also introduced a mandatory min-

imum number of 2 mixins per transaction input, as rec-
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Fig. 3. Data considered in our experiment.

ommended by MRL-0001 [23]. This mandatory mini-

mum was enforced after a “hard fork” flag day, which

occurred on March 23, 2016.

After version 0.10.0 (September 19, 2016) Version

0.10.0 introduced a new RingCT feature [22], which al-

lows users to conceal the denomination of their coins,

avoiding the need to partition the available coins into

different denominations and preventing value-based in-

ference attacks. RingCT transactions were not consid-

ered valid until after a hard fork on January 10, 2017.

The RingCT feature does not directly address the

traceability concern. But as RingCT transactions can

only include other RingCT transaction outputs as mix-

ins, and since it was deployed after the 2-mixin mini-

mum took effect (in version 0.9.0), there are no 0-mixin

RingCT inputs to cause a hazard.

After version 0.10.1 (December 13, 2016) Version

0.10.1 included a change to the mixin selection policy:

now, some mixins are chosen from among the “recent”

TXOs (i.e., those created within the last 5 days, called

the “recent zone”). Roughly, the policy is to ensure 25 %

of the inputs in a transaction are sampled from the re-

cent zone.

After version 0.11.0 (September 07, 2017) Version

0.11.0 increased the minimum number of mixins per

transaction input to 4, which was enforced after a hard

fork on September 15, 2017.

Transaction notation

We briefly introduce some notation for describing trans-

action graphs. For a transaction tx, tx.in denotes the

vector of tx’s transaction inputs, and tx.out denotes the

vector of tx’s transaction outputs. We use subscripts

to indicate the elements of input/output vectors, e.g.

tx.in1 denotes the first input of tx. Each Cryptonote

transaction input contains a reference to one or more

prior transaction outputs. We use array notation to
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through logical deduction. In this section, we investigate

an entirely unrelated complementary weakness which

traces inputs probabilistically.

4.1 Effective-Untraceability

To quantify the untraceability of a transaction input

when some referenced outputs are more likely to be the

real spend we first define the effective-untraceability set

size or the “effective-untraceability.”

Anonymity set size is a standard privacy metric

which typically assumes each element in the anonymity

set is equiprobable. This is not the case in Monero as

the temporal analysis attacks we will demonstrate show

that some referenced outputs are more likely than others

to be the real spend. Following the approach of [7, 26]

we use entropy to account for these differing probabili-

ties. We measure guessing entropy rather than Shannon

entropy [27] because it is intuitive to our setting, an

attacker trying to guess the real spend, and is easily

relatable to effective-untraceability.

First defined in [17], guessing entropy is commonly

used as a measure of password strength [4]. In the con-

text of untraceability guessing entropy is the expected

number of guesses before guessing the spent output. A

transaction input’s guessing entropy is

Ge =
∑

0≤i≤M

i · pi

where p = p0, p1, . . . , pM are probabilities, sorted highest

to lowest, that a referenced output is the real spend of

a transaction input.

We define the effective-untraceability, i.e. effective-

anonymity set size, of a transaction input as (1+2·Ge). If

all referenced outputs of a transaction input are equally

likely to be the real spend, the effective-untraceability

for that input is M + 1.

4.2 The Guess-Newest Heuristic

Among all the prior outputs referenced by a Monero

transaction input, the real one is usually the newest one.

Figure 2(c) shows the spend-time distribution for de-

ducible transaction inputs (i.e., zero-mixin inputs and

inputs for which the real TXO can be deduced using the

technique from Section 3). As can be seen, this distribu-

tion is highly right-skewed; in general users spend coins

soon after receiving them (e.g., a user might withdraw a

coin from an exchange, and then spend it an hour later).

In contrast, the distribution from which (most) mixins

are sampled (either a uniform distribution or a triangu-

lar distribution, for the most part) includes much older

coins with much greater probability.

Cross-validation with deducible transactions

In order to quantify the effect of these mismatched dis-

tributions, we examine the rank order of the transac-

tions with 1 or more mixins for which we have ground

truth (i.e. the deducible transactions from Section 3).

Table 3 shows the percentages of deducible transaction

inputs for which the real (deduced) reference is also

the “newest” reference. It turns out that overall, 92%

of the deducible inputs could also be guessed correctly

this way. For 1 ≤ M ≤ 10 such transaction inputs have

an effective-untraceability of no more than 1.16–1.80.

We note that transactions with more mixins are

only slightly less vulnerable to this analysis: even among

transaction inputs with 4 mixins (the required minimum

since September 2017) the Guess-Newest heuristic still

applies to 81% of these transactions.

Validation with ground truth

We also verify the heuristic using our own ground truth,

which we obtain by periodically creating transactions us-

ing the default wallet in Monero 0.10.3.1. We set up wal-

lets for three scenarios and send transactions from one

wallet to another. The time gap between two transac-

tions follows an exponential distribution, with the rate

parameter set such that the means of the distributions

correspond to 30 minutes, 4 hours, and 1 day.

We evaluate whether guessing the most-recently cre-

ated input identifies the true input. At a 95%-confidence

level, we get success probabilities of 0.95 ± 0.02 for the

30-minute interval (n = 120), 0.90 ± 0.03 for 4 hours

(n = 84), and 0.42 ± 0.14 for 24 hours (n = 12).

4.3 Monte Carlo Simulation

The Guess-Newest heuristic and the deducibility attack

(Section 3) are not entirely independent. The transac-

tions that are deducible tend to be those that include old

mixins, which thus also makes them more likely suscepti-

ble to Guess-Newest. As a consequence, cross-validation

of the heuristic using only deducible transactions over-

states the effectiveness of temporal analysis.

To control for this correlation, we also employ an al-

ternative validation strategy based on a Monte Carlo
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We therefore estimate that as a lower bound, based on

the “0.10.1” line in Figure 7, that at least 60% of the re-

maining inputs are correctly traced using Guess-Newest.

Extrapolating from this figure, we estimate that in to-

tal the Guess-Newest heuristic correctly identifies 80%

of all Monero inputs (Table 1).

5 Characterizing Monero Usage

In the previous section, we showed that a significant

number of Monero transactions are vulnerable to trac-

ing analysis. However, not all transactions are equally

sensitive to privacy. We consider typical or normal trans-

actions in Monero to be privacy-sensitive. On the other

hand, public transactions, for which privacy is not a ma-

jor concern to their participants, and where details of

the transaction may even be publicly disclosed, form

a special case. We next quantify these different usage

types for Monero transactions, to assess potential im-

pact of our attacks on privacy-conscious users.

5.1 Quantifying Mining Activity

An integral part of a cryptocurrency is mining, which

refers to the process of bundling transactions in blocks

and minting new currency. Whenever a block is created,

the “miner” of that block receives a monetary reward,

described by a special “coinbase” transaction. With an

initial block interval of 1 minute until March 20, 2016,

and a block interval of 2 minutes thereafter, it is con-

ceivable that – at least in the early days – a significant

share of daily transactions relate to mining.

Miners often combine their efforts by joining mining

pools to reduce the variance of their payouts. Usually,

the pool owner receives the full block reward and then

distributes the reward according to each miner’s con-
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tribution. To provide transparency and accountability,

many pools publicly announce the blocks they find as

well as the payout transactions in which they distribute

the rewards. This, however, reveals sensitive informa-

tion about the relation between payout and coinbase

transactions. If an input in a pool’s payout transaction

spends from a coinbase transaction of a block known to

belong to the same pool, it is likely the real spend. This

deducibility may even weaken the privacy of other trans-

actions, similar to a 0-mixin input. Transactions related

to mining activity should thus be considered public.

To account for public transactions related to mining,

we crawled the websites of 18 Monero mining pools and

extracted information about 73,667 pool payouts. We

also collected information about 210,800 non-orphaned

blocks that had been won by these pools. We analyzed

the coverage of this mining activity by computing the

fraction of all blocks in the network that had been pro-

duced by pools in our dataset over a moving window of

20,000 blocks. Figure 8 shows the results of this analysis.

Our data accounts for roughly 30% of the Monero

mining power in late 2014. In early 2015, acording to

an archive of Monerohash.com [20] retrieved via The

Wayback Machine [29], over 70% of the mining power

belonged to a combination of the Dwarf [8] and Miner-

Gate [19] mining pools, neither of which reveals payment

transactions, and of unknown mining sources. This cen-

tralization of hash power continued until April of 2016

at which point Dwarf and MinerGate were still signif-

icant (about 35%), but there was no longer significant

unaccounted for mining power.

Besides the 73,667 transactions for which we have

ground truth, we can estimate the number of unlabeled

transactions in the network that are used for mining

payments. To minimize transaction fees, most pools will

pay their miners only a few times per day, batching to-

gether payments to many miners into a few transactions

with up to hundreds of outputs. Most pools do offer an

option for immediate payout upon request, but charge

a significant fee for doing so. Additionally, pools will

allow users to be paid to an exchange service instead

of to their own wallet. Thus, determining precisely the

number of mining transactions is challenging.

Working under the assumption that the distribution

of payments from the pools we observed tracks that of

the pools that we were not able to observe, namely that

the distribution of transactions is driven primarily by

the needs and demands of the miners, we can estimate

the volume of total mining-related transactions.

To do so, we compute the ratio between the total

number of transactions observed and the total number
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Algorithm 2. Binned mixin sampling procedure.

SampleBins(RealOut, NumMixins, BinSize)

NumBins← (NumMixins + 1)/BinSize;

RealBin ← MapOutToBin(RealOut);

MixinVector ← Copy(RealBin);

while |MixinVector| < (NumMixins + 1) do

TxOut ← SampleSingleMixin(RealOut, 1);

if TxOut /∈ MixinVector then

Bin ← MapOutToBin(TxOut);

MixinVector.appendAll(Bin);

return sorted(MixinVector);

output. Let xmax and xmin be output ages which max-

imize and minimize the ratios

rmax = max
∀x

(

DS(x)

DM (x)

)

, rmin = min
∀x

(

DS(x)

DM (x)

)

.

The difference between rmax and rmin represents the

point of greatest error between the spend-time distri-

bution and the mixin sampling distribution. The maxi-

mum percent error ε is the error between the spend-time

distribution and the mixin sampling distribution defined

as

rmin = (1 − ε), rmax =
1

1 − ε
.

Thus, if ε = 0%, a temporal analysis attack can never

distinguish between the spend-time and mixin sampling

distributions, if ε = 100% a temporal analysis attack can

always distinguish the distributions. A full description

of min-untraceability is given in Appendix F.

In Table 4 we compute the min-untraceability for

different bin sizes and maximum percent errors using

min-untraceability. As shown, increasing the bin size

trades off min-untraceability when the maximum per-

cent error is small for increased untraceability when the

maximum percent error is large. We argue that a bin

size of two is ideal as it maximizes min-untraceability

under a small maximum percent error compared to a

bin size of three or four, yet still provides an effective-

untraceability of 2 against worst-case temporal analy-

sis attacks (attacks which under single mixin sampling

would completely trace transactions).

7 Discussion and

Recommendations

We have identified two weaknesses in Monero’s mixin

selection policy, and shown that they pose a significant

risk of traceability – especially for early Monero trans-

actions. Next, we discuss how these weaknesses can sup-

port investigations into present criminal activity, and

also offer suggestions for improving Monero’s privacy.

7.1 Criminal Uses of Monero

In 2017 there have been three widely publicized in-

stances of criminal activity involving Monero transac-

tions. Our techniques show that Monero is not necessar-

ily a dead end for investigators.

AlphaBay: the most prolific darknet market since

the Silk Road (operating between December 2014 and

July 2017) began accepting Monero deposits in July

2016, partially leading to the large rise in transaction

volume. In July 2017, US law enforcement raided an Al-

phaBay server and seized 12,000 Monero (worth around

$500,000) [1]. Assuming the AlphaBay server kept logs

generated by the default Monero client, the seized logs

could include Monero transactions associated with user

withdrawals and deposits, including those prior to 2017.

Shadow Brokers: From June 2017 onward, the

“Shadow Brokers” offered to accept Monero payments

for subscription access to zero-day vulnerabilities and

exploit tools. They (mistakenly?) advised their hope-

ful subscribers to publish their email addresses (hexen-

coded, but publicly visible) in the Monero blockchain,

leading to these transactions being identified [31].

WannaCry: Ransomware operators received Bit-

coin ransomware payments, to a common address. To

launder the Bitcoin ransoms, the operators began ex-

changing them for Monero using the Swiss exchange

service ShapeShift. The Swiss exchange subsequently

announced their cooperation with US law enforce-

ment, and began blacklisting Bitcoin ransoms. However,

$36,922 have already been exchanged for Monero [11].

In each of these scenarios, an analyst’s goal is to link

the criminally-associated transactions to other informa-

tion, such as accounts at exchanges, which can further

their investigation. The analyst starts off having identi-

fied several Monero TXOs that belonged to a criminal

suspect, and might next ask cooperating exchanges for

information about the relatively small number of related

transactions referencing that TXO.

A seller at AlphaBay that received a payment

directly into an exchange account could clearly be

linked this way. Users following a Monero best prac-

tice guide, including “How To Use Monero and Not Get

Caught” [2], would have known to avoid this by first

passing their coins through a wallet on their own com-

puter; however, for transactions made in mid 2016 to
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early 2017, they might still be traceable through the

“deduction” technique.

In the WannaCry and Shadow Brokers scenarios,

since the relevant transaction occurred post-RingCT,

deduction is most likely ineffective. However, analysts

could still use the temporal analysis and Guess-Newest

heuristic to narrow their search at exchanges or to ac-

cumulate probabilistic evidence.

7.2 Recommendations

We make the following three recommendations to the

Monero community so that privacy can be improved for

legitimate uses in the future.

The mixing sampling distribution should be modified

to closer match the real distribution

We have provided evidence that the strategy by which

Monero mixins are sampled results in a different time

distribution than real spends, significantly undermining

the untraceability mechanism. To correct this problem,

the mixins should ideally be sampled in such a way that

the resulting time distributions match.

A report from Monero Research Labs cited the diffi-

culty of frequently tuning parameters based on data col-

lection (especially since the data collection mechanism

itself becomes a potential target for an attacker hoping

to alter the parameters) [16]. Fortunately, we provide

preliminary evidence that the distribution of “spend-

times” changes very little over time. Hence we recom-

mend a sampling procedure based on a model of spend-

ing times derived from blockchain data, as discussed in

Section 6.1.

Avoid including publicly deanonymized transaction

outputs as mixins

We have empirically shown the harmful effect of publicly

deanonymized (i.e. 0-mixin) transactions on the privacy

of other users. Since non-privacy-conscious users may

make 0-mixin transactions to reduce fees, Monero had

instituted a 2-mixin minimum, and recently increased

this to 4. However, even 4+mixin transactions may be

publicly deanonymized; in particular, as discussed in

Section 5.1, mining pools have a legitimate interest in

forgoing anonymity by publicly announcing their blocks

and transactions for the sake of accountability. Thus, we

propose that Monero develop a convention for flagging

such transactions as “public,” so that other users do not

include them as mixins.

Monero users should be warned that their prior

transactions are likely vulnerable to tracing analysis

A significant fraction (91%) of non-RingCT Monero

transactions with one or more mixins are deducible (i.e.,

contain at least one deducible mixin), and therefore

can be conclusively traced. Furthermore, we estimate

that among all transaction inputs so far, the Guess-

Newest heuristic can be used to identify the correct

mixin with 80% accuracy. Even after accounting for

publicly deanonymized transactions such as pool pay-

outs, we find that at least a few hundred transactions

per day in mid 2016 and more than a thousand transac-

tions per day from September 2016 through January

2017 would be vulnerable. Furthermore, we estimate

that at most a quarter of these can be attributed to

illicit marketplaces like AlphaBay. These users might

have incorrectly assumed that Monero provided much

higher privacy, especially for transactions taking place

in late 2016. Because many transactions on AlphaBay

are criminal offenses, with statutes of limitations that

will not expire for many years (if ever), these users re-

main at risk of deanonymization attacks. We stress that

illicit businesses tend to be early adopters of new tech-

nology, but there exist many legitimate reasons to use

privacy-centric cryptocurrencies (e.g., a journalist pro-

tecting her sources). While such scenarios are less visi-

ble, their users face the same risk of deanonymization.

Towards fulfilling this recommendation, we released

an initial draft of this paper to the Monero community.

We believe it has been in the best interest of Monero

users that we offered this warning as soon as possible,

even before countermeasures have been deployed. One

reason for our decision is that the data from the Mon-

ero blockchain is public and widely replicated, and thus

delaying the release would not mitigate post-hoc analy-

sis, which can be carried out at any future time. Second,

countermeasures in future versions of the Monero client

will not affect the vulnerability of transactions occurring

between the time of our publication and the deployment

of such future versions.

Complementing this paper, we have launched a

block explorer (https://monerolink.com), which dis-

plays the linkages between transactions inferred using

our techniques. We recommend additionally developing

a wallet tool that users can run locally to determine

whether their previous transactions are vulnerable.
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A Deducibility Attack as a SAT

problem

A limitation of the query-based algorithm is that it can

only deduce a spend when previous iterations ruled out

all other mixins. However, more complex “puzzles” are

conceivable where we cannot rule out mixins because

they have been provably been spent, but because they

must have been spent by another input (cf. Figure 14).

We formalize this combinatorial puzzle as a SAT prob-

lem and solve it using the Sat4j SAT solver.

A SAT problem p is a boolean formula containing n

propositional variables that yield a mapping δ between

inputs and outputs. Each variable rxy ∈ δ denotes a

single reference from an input x to an output y. Let

δ(x̂) give us all existing y values for rx̂y, and vice versa.

We can then specify restrictions on the possible relation-

ships between inputs and outputs.

– Every input can spend any of the referenced outputs:

|X|
∧

x=1

∨

y∈δ(x)

rxy

– An input can only spend a single output:

|X|
∧

x=1

|δ(x)|−1
∧

i=1

|δ(x)|
∧

j=i+1

(¬rxδ(x)i
∨ ¬rxδ(x)j

)

txX .out

txY .out

txZ .out

txA.in

txB .in

txC .in

Fig. 14. Since txY .out must have been spent by either txB .in or

txC .in, txX .out must have been spent by txA.in.

– Similarly, every output can only be spent by a single

input:

|Y |
∧

y=1

|δ(y)|−1
∧

i=1

|δ(y)|
∧

j=i+1

(¬rδ(y)iy ∨ ¬rδ(y)jy)

Since inputs can only spend outputs of the same

value, the SAT problem can be solved individually for

each denomination. Assignments of propositional vari-

ables that are true in all solutions of p correspond to

true spends, as it reflects the only possible way to spend

an output (e.g., txA.in always spends txX .out in Fig-

ure 14).

Solving the SAT problem using Sat4j yields an addi-

tional 5149 deanonymized spends across 1157 different

denominations.

B Detailed Description of our

Models of Monero Sampling

Routines

In Algorithms 3,4,5 we give pseudocode for the mixin

selection procedures used in our simulation (Section 4).

The changes between each successive version are high-

lighted in blue. We note that these are simplified models

of the mixin sampling behavior in the Monero client, in

particular they elide over edge cases that avoid spend-

ing “locked” coins that have recently been mined. The

full code listing of the Monero client can be found on

the Monero git repository.2

2 https://github.com/monero-project/monero/blob/v0.9.0/

src/wallet/wallet2.h#L570 and https://github.com/monero-

project/monero/blob/v0.10.0/src/wallet/wallet2.cpp#L3605
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Algorithm 3. SampleMixins(RealOut, NumMixins)

[vPre0.9.0]
Let TopGIdx be the index of the most recent transaction

output with denomination RealOut.amount;

BaseReqMixCount := b(NumMixins + 1)× 1.5 + 1c;

while |MixinVector| < BaseReqMixCount do

i← UniformSelect(0, TopGIdx);

if i /∈ MixinVector and i 6= RealOut.idx then

MixinVector.append(i);

Let FinalVector be a uniform random choice of

NumMixins elements from MixinVector;

return sorted(FinalVector + [RealOut.idx]);

Algorithm 4. SampleMixins(RealOut, NumMixins)

[v0.9.0]
Let TopGIdx be the index of the most recent transaction

output with denomination RealOut.amount;

BaseReqMixCount := b(NumMixins + 1)× 1.5 + 1c;

MixinVector := [];

while |MixinVector| < BaseReqMixCount do

i← TriangleSelect(0, TopGIdx);

if i /∈ MixinVector and i 6= RealOut.idx then

MixinVector.append(i);

Let FinalVector be a uniform random choice of

NumMixins elements from MixinVector;

return sorted(FinalVector + [RealOut.idx]);

C An Analysis of Bytecoin

The cryptocurrency Bytecoin was an early implemen-

tation of the Cryptonote protocol. As Monero is based

upon Bytecoin’s codebase, Bytecoin’s mixin sampling

procedure shares the same weaknesses. We run the

mixin sudoku algorithm on transaction data extracted

from the Bytecoin blockchain and show the results in

Table 5. Overall, we are able to deduce the real spent

for 29% of all inputs with more than one mixin. Of those

that include only 1 mixin, we can deduce 56% of inputs.

We attribute the lower total success rate to a discrep-

ancy between the number inputs to outputs in Bytecoin,

suggesting that there exist a lot of unspent outputs from

which significantly fewer inputs can choose.

In Table 6 we show the percentage of inputs where

guessing the most recent output yields the true spend.

With an accuracy of 97.54% the Guess-Newest heuristic

proves to be very effective.

Algorithm 5. SampleMixins(RealOut, NumMixins)

[v0.10.1]
Let TopGIdx be the index of the most recent transaction

output with denomination RealOut.amount;

BaseReqMixCount := b(NumMixins + 1)× 1.5 + 1c;

Let RecentGIdx be the index of the most recent

transaction output prior to 5 days ago with

denomination RealOut.amount prior to 5 days ago;

BaseReqRecentCount := MAX(1, MIN( TopGIdx -

RecentGIdx + 1, BaseReqMixCount ×

RecentRatio));

if RealOut.idx ≥ RecentGIdx then
BaseReqRecentCount -= 1

MixinVector := [];

while |MixinVector| < BaseReqRecentCount do

i← UniformSelect(RecentGIdx, TopGIdx);

if i /∈ MixinVector and i 6= RealOut.idx then

MixinVector.append(i);

while |MixinVector| < BaseReqMixCount do

i← TriangleSelect(0, TopGIdx);

if i /∈ MixinVector and i 6= RealOut.idx then

MixinVector.append(i);

Let FinalVector be a uniform random choice of

NumMixins elements from MixinVector;

return sorted(FinalVector + [RealOut.idx]);

D Guessing Entropy

Untraceability

We construct a measure of the guessing entropy of the

untraceability of a transaction input which we denote

Ge. We compute this value as

Ge =
∑

0≤k≤M

k · pk

where p = p0 ≥ p1 ≥ · · · ≥ pM are the probabilities that

each referenced output is the spent output, and M is the

number of mixins outputs referenced by the transaction

input for M + 1 total referenced outputs. Put another

way Ge is the expected number of guesses beyond the

first guess to correctly guess the spent output. For in-

stance if M = 3 and each referenced output is equally

likely (pi = 1
4 ) then the expected number of guesses

would be Ge = 0 · 1
4 + 1 · 1

4 + 2 · 1
4 + 3 · 1

4 = 3/2.

The effective-untraceability, i.e. effective-anonymity

set size, of a transaction input is (1 + 2 · Ge). If all refer-

enced outputs of the transaction input are equally likely

to be the real spend the effective-untraceability for that

transaction input would be M + 1. However if some out-

puts are more likely than others the guessing entropy,

and thus the effective-untraceability, decreases to reflect
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Table 5. Bytecoin transaction inputs (with 1 or more mixins, at

least 1000 TXOs available) where the real input can be deduced.

Total Deducible (%)

1 mixins 4192272 2338746 (55.79)

2 mixins 813375 264610 (32.53)

3 mixins 1243428 207540 (16.69)

4 mixins 2450891 249618 (10.18)

5 mixins 405140 25666 (6.34)

6 mixins 1250627 51755 (4.14)

7 mixins 158753 4198 (2.64)

8 mixins 76530 539 (0.70)

9 mixins 62714 226 (0.36)

10 mixins 204725 197 (0.10)

Total 10858455 3143095 (28.95)

Table 6. Percentage of deducible Bytecoin transaction inputs

where the real input is the “newest” input.

Deducible Newest (%)

1 mixins 2338746 2311078 (98.82)

2 mixins 264610 249000 (94.10)

3 mixins 207540 193453 (93.21)

4 mixins 249618 245236 (98.24)

5 mixins 25666 19027 (74.13)

6 mixins 51755 44243 (85.49)

7 mixins 4198 3011 (71.72)

8 mixins 539 378 (70.13)

9 mixins 226 149 (65.93)

10+ mixins 197 128 (64.97)

Total 3143095 3065703 (97.54)

this loss of untraceability. For instance consider a trans-

action input with M = 3 mixins that has a guessing

entropy of 1/2 rather than the ideal guessing entropy

of 3/2. Such a transaction input would have a effective-

untraceability of 2 or the equivalent untraceability to an

ideal transaction input with only M = 1 mixins.

E Bin Assignment Scheme

Algorithm 6. Our bin assignment scheme for binned mixin

sampling. AssignBins(Blockchain, BinSize)

TxOutVector := [];

Bins := [];

for h← 0, h < Height(Blockchain), h← h + 1 do

Block← Blockchain[h];

r ← Hash(Block.Header);

ShuffledTxOuts← Shuffle(r, Block.TxOuts);

TxOutVector.appendAll(ShuffledTxOuts);

while |TxOutVector| > (2× BinSize− 1) do

Bin ← TxOutVector.pop(BinSize);

Bins.append(Bin);

Bins.append(TxOutVector);

return Bins;

F Minimum Untraceability

Let the spend-time distribution be denoted as DS(x)

and the mixin sampling distribution be denoted as

DM (x) where x is the the age of an output. If these

two distributions are known, an attacker can use tem-

poral analysis to answer the question if we observe a

transaction input with the following ages of referenced

outputs X = x0, x1, x2, · · · , xm, what is the probability

pi = P (xi|X) that the referenced input at time xi is the

real spend.

DM (x) and DS(x) allows us to compute P (X|xi),

the probability of X being selected given that xi is the

spent output

P (X|xi) =
∏

0≤q 6=i≤m

DM (xq),

the probability that xi would be selected from the spend-

time distribution

P (xi) = DS(xi),

and the probability that X is referenced by the input

P (X) =
∑

0≤p≤m

(DS(xp)
∏

0≤j 6=p≤m

DM (xj)).

Using Bayes’ theorem we can now compute the proba-

bility that xi is the spent output

P (xi|X) =
P (xi)P (X|xi)

P (X)

=
DS(xi)

∏

0≤j 6=i≤m DM (xj)
∑

0≤p≤m

(

DS(xp)
∏

0≤q 6=p≤m DM (xq)
)
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=

DS (xi)
DM (xi)

∑

0≤p≤m

DS (xp)
DM (xp)

Let rx = DS (x)
DM (x) be the ratio between the spend-

time distribution and the mixin sampling distribution

for some age x. We can reformulate P (xi|X) in terms of

rx

pi = P (xi|X) =
ri

∑

0≤p≤m(rp)
.

Plugging in our expression for pi = P (xi|X) and

sorting the probabilities so that p0 ≥ p1 ≥ · · · ≥ pm we

can compute the guessing entropy Ge as a function of

the ratio rx

Ge =
∑

0≤k≤m

k ·
rk

∑

0≤p≤m(rp)
,

We can now use this definition to measure tempo-

ral analysis. For instance, if rx = 1.0 for an output of

age x, this output provides no information for temporal

analysis. On the other hand we can eliminate as mixins

any referenced output ages x such that rx = 0.0. More

generally if the ratio of two referenced outputs xi, xj is

ri > rj then xi has a higher probability of being the

spent output than xj , i.e. pi > pj .

To perform a worst case analysis we need to find the

ages that minimize the guessing entropy. Let xmax and

xmin be output ages which maximize and minimize the

ratio r where

rmax = max
∀x

(
DS(x)

DM (x)
), rmin = min

∀x
(

DS(x)

DM (x)
).

The difference between rmax and rmin represents the

point of greatest error between the spend-time distri-

bution and the mixin sampling distribution. We denote

the maximum percent error between the spend-time dis-

tribution and the mixin sampling distribution as ε such

that

rmin = (1 − ε), rmax =
1

1 − ε
,

and
rmax

rmin
=

1

(1 − ε)2
.

The most vulnerable possible set of referenced out-

puts to temporal analysis is a single output whose age

is xmax (most likely to be the real spend) and where all

other referenced outputs have ages equal to xmin (most

likely to be mixins). Such a set of transaction inputs

yields Gemin, the minimum possible guessing entropy

of the untraceability of a transaction input.

Gemin =
0 · rmax +

∑

1≤k≤m k · rmin

rmax +
∑

1≤k≤m(k · rmin)
=

1
2 m(m + 1)
rmax

rmin
+ m

We can reformulate Gemin in terms of the maximum

percent error of the sampling distribution, ε, and num-

ber of mixins, m,

Gemin(m, ε) =
1
2 m(m + 1)

1
(1−ε)2 + m

The above function only gives us Gemin, the guess-

ing entropy for the current mixin sampling procedure.

We will now compute it for binned mixins. Binned mix-

ins have two parameters: the size of each bin s and the

number of bins n. The total number of mixins outputs

referenced by a transaction input using mixin bins is

m = (n · s) − 1. We use Gemin(m, ε) to create a function,

BGemin(s, n, ε), for the minimum guessing entropy for

binned mixins.

As each bin contains outputs of the same age, all

outputs sharing a bin share the same probability un-

der temporal analysis of being the spent output. Thus,

we can treat bins as transaction outputs which require

more than one guess to search. We will now formally

show that this is the case. Let pi be the probability the

i-th bin contains the spent output, then q = pi

s
is the

probability that an output in the i-th bin is the real

spend. This gives us a function for the guessing entropy

untraceability of binned mixins:

BGe =

ns−1
∑

k=0

(k·qk) = q0

s−1
∑

j=0

j+q1

2s−1
∑

j=s

j+· · ·+qn−1

(s·n)−1
∑

j=s·(n−1)

j

=

n−1
∑

k=0

qk(

(k+1)·s−1
∑

i=ks

i) =

n−1
∑

k=0

pk

s
(
s

2
(2ks + s − 1))

=
1

2
(2s

n−1
∑

k=0

(k · pk) + s − 1) = s

n−1
∑

k=0

(k · pk) +
s − 1

2

We plug Gemin into BGe to create a function for guess-

ing entropy untraceability for binned mixins:

BGemin(s, n, ε) = s · Gemin(n − 1, ε) +
s − 1

2
.

For bin sizes of s = 1 this is just Gemin:

BGemin(s = 1, n = m+1, ε) = 1 ·Gemin(n−1, ε)+
1 − 1

2

= Gemin(n − 1, ε) = Gemin(m, ε).

This makes sense as binned mixins with a bin size s = 1

are equivalent to the current mixin sampling procedure.

The min-untraceability is the effective-untraceability us-

ing BGemin as the guessing entropy.


