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SUMMARY

The definition of neuronal type and how it relates to
the transcriptome are open questions. Drosophila
olfactory projection neurons (PNs) are among the
best-characterized neuronal types: different PN clas-
ses target dendrites to distinct olfactory glomeruli,
while PNs of the same class exhibit indistinguishable
anatomical and physiological properties. Using sin-
gle-cell RNA sequencing, we comprehensively char-
acterized the transcriptomes of most PN classes and
unequivocally mapped transcriptomes to specific
olfactory function for six classes. Transcriptomes
of closely related PN classes exhibit the largest dif-
ferences during circuit assembly but become indis-
tinguishable in adults, suggesting that neuronal
subtype diversity peaks during development. Tran-
scription factors and cell-surface molecules are the
most differentially expressed genes between classes
and are highly informative in encoding cell identity,
enabling us to identify a new lineage-specific tran-
scription factor that instructs PN dendrite targeting.
These findings establish that neuronal transcrip-
tomic identity corresponds with anatomical and
physiological identity defined by connectivity and
function.

INTRODUCTION

The nervous system comprises many neuronal types with varied
locations, input and output connections, neurotransmitters,
intrinsic properties, and physiological and behavioral functions.
Recent transcriptome analyses, especially from single cells,
have provided important criteria to define a cell type. Indeed, sin-
gle-cell RNA sequencing (RNA-seq) has been used to classify
neurons in various parts of the mammalian nervous system
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(e.g., Darmanis et al., 2015; Johnson et al., 2015; Usoskin
et al., 2015; Zeisel et al., 2015; Foldy et al., 2016; Fuzik et al.,
2016; Gokce et al., 2016; Shekhar et al., 2016; Tasic et al.,
2016), but the extent to which it is useful to define subtypes of
neurons and the relationship between cell type and connectivity
is unclear in most cases. Indeed, what constitutes a neuronal
type in many parts of the nervous system remains an open ques-
tion (Johnson and Walsh, 2017).

The Drosophila olfactory circuit offers an excellent system
to investigate the relationship between transcriptomes and
neuronal cell types. 50 classes of olfactory receptor neurons
(ORNs) form one-to-one connections with 50 classes of sec-
ond-order projection neurons (PNs) in the antennal lobe in
discrete glomeruli, forming 50 parallel information-processing
channels (Figure 1A; Vosshall and Stocker, 2007; Wilson,
2013). Each ORN class is defined by expression of one to two
unique olfactory receptor gene(s) and by the glomerulus
to which their axons converge. Correspondingly, each PN
class is also defined by the glomerulus within which their den-
drites elaborate, which correlates strongly with the axonal
arborization patterns at a higher olfactory center (Marin et al.,
2002; Wong et al., 2002; Jefferis et al., 2007). Furthermore, while
on average ~60 ORNs and ~3 PNs form many hundreds of syn-
apses within a single glomerulus (Mosca and Luo, 2014), every
ORN forms synapses with every PN to convey the same type of
olfactory information (Kazama and Wilson, 2009; Tobin et al.,
2017). Indeed, PNs that project to the same glomerulus exhibit
indistinguishable electrophysiological properties and olfactory
responses (Kazama and Wilson, 2009). Thus, one can define
each PN class as a specific neuronal type (or subtype, if all
PNs are collectively considered a cell type) with confidence
that each class has unique connectivity, physiological proper-
ties, and functions, whereas PNs of the same class most likely
do not differ. In other words, the ground truth of cell types for
fly PNs is one of the best defined in the nervous system. We
describe here a robust single-cell RNA-seq protocol for neurons
and glia in the Drosophila brain and its application to Drosophila
PNs to establish the relationship between transcriptome,
neuronal cell identity, and development.

N
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Figure 1. Single-Cell RNA-Seq Protocol for the Drosophila Pupal Brain
(A) Schematic of fly olfactory system organization. Olfactory receptor neurons (ORNSs) expressing the same odorant receptor (same color) target their axons to the
same glomerulus in the antennal lobe. Projection neuron (PN) dendrites also target single glomeruli, and their axons project to the mushroom body (MB) and

lateral horn (LH).
(B) Schematic of single-cell RNA-seq protocol.

(C) Representative confocal images of Drosophila central brains labeled by UAS-mCD8GFP crossed with PN driver GH146-GAL4 (24 hr APF) or astrocyte driver
alrm-GAL4 (72 hr APF). N-cadherin (Ncad, red) staining labels neuropil. Scale, 50 pm.

(D) Heatmap showing expression levels of genes that are specific for neurons or astrocytes. Each column is an individual cell. 67 alrm-GAL4+ and 946 GH146-
GAL4+ cells are shown, with driver indicated by the color above. Cell-type-specific genes are enriched in astrocytes (top nine) and PNs (bottom five). Expression
levels are indicated by the color bar (CPM, counts per million). Cells and genes were ordered using hierarchical clustering.

(E) Visualization of astrocyte and PN populations using t-distributed stochastic neighbor embedding (tSNE). Each dot is a cell.

See also Figure S1.
RESULTS

A Robust Single-Cell RNA-Seq Protocol for the
Drosophila Pupal Brain

Brains containing cells labeled by mCD8GFP driven from spe-
cific GAL4 lines were manually dissected, single-cell suspen-
sions were prepared following a method modified after Tan
et al. (2015), and cDNA were sequenced using a modified
SMART-seq2 protocol (Picelliet al., 2014) (Figure 1B; Figure S1A;
STAR Methods). We sequenced cells from Drosophila pupal
brains that were labeled by the astrocyte driver alrm-GAL4 (Doh-
erty et al., 2009) and olfactory PNs labeled by the GH146-GAL4
driver, which is expressed in 40 of 50 PN classes (Stocker et al.,

1997; Jefferis et al., 2001) (Figure 1C). About 5% of GFP-labeled
cells within the brain were recovered as single cells, and 90% of
PNs yielded high-quality cDNA after reverse transcription (Fig-
ures S1B and S1C). Cells were sequenced to a depth of
~1 million reads per cell, and 1,000-4,000 genes were detected
per cell (Figure S1D). Data quality was evaluated by examining
expression of five neuronal markers (brp, nSyb, elav, Syt1, and
CadN) and four astrocyte markers (alrm, Eaat1, Gat, and Gs2)
(Doherty et al., 2009; Sinakevitch et al., 2010; Stork et al.,
2014); they were specifically expressed in the corresponding
cell types (Figure 1D). We also identified five new genes (Msr-
110, tre1, Cyp4g15, mfas, and Obp44a) that were expressed in
pupal astrocytes, but not in PNs (Figure 1D). Unbiased clustering
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based on transcriptome profiles readily distinguished PNs and
astrocytes (Figure 1E). Among PNs, housekeeping genes
(e.g., Act5C and «a-Tub84B) were reliably detected in all cells,
and stress-related genes (e.g., Hsp70-family genes) were not
widely induced (Figure S1E). ~50% of cells co-expressed two
male-specific RNAs (Meller et al., 1997) (Figure S1F), as ex-
pected, given that we did not discriminate sex. These data
demonstrate the reliability of our single-cell RNA-seq protocol
for analyzing cell types and transcriptomes in Drosophila
pupal brain.

Clustering GH146-GAL4+ PNs Based on Single-Cell
Transcriptomes

GH146-GAL4+ (GH146+ hereafter) PNs are derived from three
neuroblast lineages whose cell bodies are located anterodorsal,
lateral, or ventral to the antennal lobe neuropil (Figure 2A; Jefferis
et al., 2001). The anterodorsal and lateral lineages produce unig-
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drites to multiple glomeruli (Jefferis et al.,
2001; Liang et al., 2013). We sequenced
1,046 single GH146+ cells at 24-30 hr
after puparium formation (APF). At this
stage, PNs are refining their dendrite targeting in the antennal
lobe; these dendrites also serve as targets for ORN axons that
will invade the antennal lobe and establish one-to-one connec-
tions in the following 24 hr (Jefferis et al., 2004). We analyzed
946 cells that passed quality filtering (STAR Methods).
Conventional dimensionality reduction and clustering methods
based on principal-component analysis (PCA) and t-distributed
stochastic neighbor embedding (tSNE) (van der Maaten and
Hinton, 2008) identified only ~12 distinct PN clusters (Figure 2B).
The inability to resolve more distinct clusters is likely due to the
limited sensitivity of these methods to distinguish cell types
with highly similar transcriptomes, as we expect for the PN
classes. To address this challenge, we developed an unsuper-
vised machine-learning algorithm, iterative clustering for identi-
fying markers (ICIM), to identify genes that distinguish PN
classes. ICIM searches for genes having the highest expression
variability within a cell population, partitions the cells into two



subpopulations using clustering based on these genes, then iter-
atively repeats the search on each subpopulation. Iteration con-
tinues until distinct subpopulations cannot be separated because
gene expression patterns within the population are homoge-
neous (Figure 2C). Stopping criteria are defined in an unbiased
manner without supervision. Genes identified using ICIM were
then used for further dimensionality reduction using tSNE and
clustering using HDBSCAN, a hierarchical density-based clus-
tering algorithm (Campello et al., 2013), on the tSNE space.
Applying ICIM to the transcriptomes of GH146+ PNs, we identi-
fied 561 genes that segregate the 946 GH7146+ cells into 35
distinct clusters (Figures S2A and S2B).

Two of the 35 clusters expressed known markers for vPNs
(Figure S2A): Gad1+, a GABA biosynthetic enzyme, and Lim1+,
a transcription factor (TF) expressed in vPNs, but not in adPNs
or IPNs (Komiyama and Luo, 2007), suggesting that they corre-
spond to vPNs. Besides PNs, the only other cells that GH746-
GAL4 also consistently labeled at a high level at 24 hr APF
were the anterior paired lateral (APL) neurons (Figure S2C). Three
other clusters expressed VGlut (Figure S2B), which specifically
marked GH7146+ APL neurons, but not PNs (Figure S2D), sug-
gesting that this VGlut+ population consists of APL neurons.
Because we were interested primarily in excitatory adPNs and
IPNs, we removed inhibitory vPNs and APL neurons from subse-
quent analysis. Nearly all of the remaining 902 GH146+ cells
should be adPNs and IPNs, which collectively target 40
glomeruli. Clustering analysis using ICIM and tSNE identified
30 distinct clusters (Figure 2D). Library complexity and
sequencing depth did not drive clustering (Figure S2E). The num-
ber of cells belonging to each cluster varied from 5-108, likely re-
flecting the fact that different PN classes contain different cell
numbers, ranging from 1-7 cells per antennal lobe (Yu et al.,
2010; Lin et al., 2012). It is likely that we did not sample a suffi-
cient number of cells to detect rare PN classes.

We previously showed that two TFs, abnormal chemosensory
jump 6 (Acj6) and ventral veins lacking (Vvl; also known as Drifter),
are expressed in adPNs and IPNs, respectively (Figure 2A), and
instruct lineage-specific dendrite targeting (Komiyama et al.,
2003). Indeed, our single-cell RNA-seq analysis revealed that
acj6 and vvl were expressed in a mutually exclusive manner (Fig-
ures 2E and S2F). Among the 30 clusters of adPNs and IPNs, 18
clusters (60%) expressed acj6, but not vv/, and thus represent
adPNs. The remaining 12 clusters were likely IPNs.

In summary, single-cell RNA-seq analysis revealed distinct
clusters of GH7146+ adPNs and IPNs expressing lineage markers
in a manner consistent with prior knowledge. TF transcripts,
whose protein levels are generally low (Ghaemmaghami et al.,
2003), were reliably detected within PNs and could be used to
assign lineage identity, supporting the specificity and sensitivity
of this method.

Matching Clusters to PN Classes Using Known Markers

We next attempted to map the correspondence between tran-
scriptome-based PN clusters and glomerular-target-based PN
classes by leveraging drivers that label specific PN classes.
We found that 971G04-GAL4 (Jenett et al., 2012) was robustly ex-
pressed in PNs at 24 hr APF. To limit expression only to PNs, we
utilized an intersectional strategy by combining 971G04-GAL4

with GH146-Flp (Potter et al., 2010) and UAS-FRT-STOP-FRT-
mCD8GFP (Hong et al., 2009), such that only cells that express
both 91G04-GAL4 and GH146-Fip would express mCD8GFP
(hereafter referred to as “intersecting with GH146-Fip”). This
resulted in expression of MCD8GFP in just two adPNs per hemi-
sphere, both of which project dendrites to the DC2 glomerulus
(Figure 3A). We sequenced 23 97G04+ PNs at 24-30 hr APF
and performed clustering analysis using ICIM and tSNE together
with the GH146 + cells. We found that all 97G04+ PNs mapped to
one GH146+ cluster (Figure 3C; cluster #1). All 91G04+ cells
could also be unambiguously mapped to this GH746+ cluster us-
ing a random forest classifier (data not shown). Thus, cluster #1
corresponds to DC2 PNs.

Mz19-GAL4 is expressed from 24 hr APF to adulthood (Fig-
ure 3B; Jefferis et al., 2004). After intersecting with GH146-Fip,
Mz19-GAL4 labels three PN classes: adPNs that project to
VA1d and DCS3 (acj6+), and IPNs that project to DA1 (acj6—).
We sequenced 123 Mz19+ cells at 24-30 hr APF and mapped
them to four clusters of GH146+ cells (Figure 3C). The Mz19+
and acj6— cells, corresponding to DA1 PNs, mapped to two
clusters (#2 and #2'), suggesting that both correspond to DA1
PNs, a notion that we explore further below. The Mz79+ and
acj6+ cells, corresponding to VA1d and DC3 PNs, mapped to
two clusters of GH146+ cells (#3 and #4; Figure 3C). Thus, clus-
ters #3 and #4 correspond to VA1d and DC3 PNs. We establish a
one-to-one correspondence between these clusters and PN
classes below.

Matching Clusters to PN Classes Using Newly Identified
Markers
To map additional PN transcriptome clusters to glomerular clas-
ses, we searched the single-cell transcriptome data for new
markers. We identified terribly reduced optic lobes (trols) as pre-
dominantly expressed in a single cluster (Figure 4A). Intersecting
an existing trol-GAL4 (NP5103-GAL4, inserted into an intron of
trol) with GH146-Fip labeled 2-3 adPNs at both 24 hr and 72 hr
APF, with dendrites projecting to the VM2 glomerulus at 72 hr
APF (Figure 4B). 28 sequenced trol-GAL4+ PNs (after intersect-
ing with GH146-Fip) mapped to the original trol+ cluster #5 (Fig-
ure 4C). These data indicate that tro/-GAL4 mimics endogenous
trol expression and that cluster #5 corresponds to VM2 PNs.
Using Mz19-GAL4, we mapped Mz19+ and acj6+ VA1d and
DC3 PNs to clusters #3 and #4 (Figure 3C) but could not resolve
which cluster belonged to which PN class. VA1d and DC3 PNs
are closely related: VA1d PNs are born immediately after DC3
PNs from the same lineage and target dendrites to neighboring
glomeruli. To establish a one-to-one mapping, we identified
CG31676 to have the strongest differential expression between
the two clusters (Figure 4D; compare clusters #3 and #4). We
generated CG31676-GAL4 by inserting into the first intron of
CG31676 a cassette containing a splice acceptor (SA) sequence
followed by a T2A peptide sequence and the GAL4 coding
sequence (Figure 4E). After intersecting with GH7146-Fip,
CG31676-GAL4 labeled a similar number of PNs at 24 hr,
48 hr, and 72 hr APF, which targeted dendrites to VA1d, but
not DC3 (Figure 4F). Thus, Mz19+, acj6+, and CG31676+
cluster #3 corresponds to VA1d PNs; the Mz719+, acj6+, and
CG31676— cluster #4 corresponds to DC3 PNs.
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Figure 3. Mapping Clusters to PN Classes Using Known Markers
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(A and B) Intersecting GH146-Fip with 91G04-GAL4 (A) or with Mz19-GAL4 (B) labels only one PN class (DC2) or 3 PN classes (acj6+ VA1d and DC3; acj6— DA1),
respectively, at 24 hr APF and in adults. Driver schematics are shown on the right. Scale for (A), 20 um; for (B), 50, 50, and 20 pm.

(C) Visualization of GH146+, 91G04+, and Mz19+ PNs using tSNE as in Figure 2D. Cells are colored according to driver (left) or by expression level of acj6 (right).
91G04+ cells (green) map to a single cluster (#1) of GH146+ cells (orange); thus, cluster #1 corresponds to DC2 PNs. DA1 PNs (Mz719+ and acj6—) map to two
clusters, #2 and #2'. VA1d and DC3 PNs (Mz19+ and acj6+) map to two clusters, #3 and #4.

In addition to DA1 (#2 and #2') and VA1d (#3), CG31676-GAL4
also strongly labeled DL3, which is targeted by acj6— IPNs (Fig-
ures 4F and S3A) (Jefferis et al., 2001). Among the 30 clusters,
only two clusters (#6 and #6') were CG31676+ and acj6— (Fig-
ures 4D and S3B); these two clusters displayed highly similar
transcriptomes, as reflected in their close proximity in the tSNE
plot. We therefore mapped clusters #6 and #6' to DL3 PNs.
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CG31676-GAL4 transiently labeled two other glomeruli targeted
by acj6+ adPNs (Figure S3A), but we could not unambiguously
assign them to corresponding clusters.

Among the six glomerular classes we have mapped, four
corresponded to a single transcriptome cluster each, but
DA1 and DL3 PNs each corresponded to two clusters (Figures
4D and 4G). All PN classes are born in a stereotyped order
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Figure 4. Mapping Clusters to PN Classes Using Newly Identified Markers

(A) Visualization of GH146+ PN cells using tSNE as in Figure 2D, showing expression of trol enriched in one cluster (#5). Clusters #1-#4 from Figure 3 are also
indicated.

(B) After intersecting with GH146-Flp, trol-GAL4 labels 2-3 PNs in each hemisphere at 24 hr and 72 hr APF, which project dendrites to the VM2 glomerulus.
(C) Visualization of GH146+ and trol+ PNs using tSNE based on 561 genes previously identified using ICIM (Figure 2D). Cells are colored according to driver (left)
or by expression level of trol (right; color bar in A). trol-GAL4+ PNs map to one GH746+ PN cluster (left), which expresses high levels of trol (right). Thus, cluster #5
corresponds to VM2 PNs.

(D) Visualization of GH7146+ PNs using tSNE as in (A) showing expression of CG31676 (color bar in A). Among two Mz19+ and acj6+ clusters, CG31676 is highly
expressed in cluster #3, but not #4. Several acj6— (see Figure S3B) clusters also express CG37676, including #2 and #2' (DA1) and #6 and #6'.

(E) Schematic of CRISPR/Cas9-mediated insertion of T2A-GAL4 into the first intron of CG31676.

(F) CG31676-GAL4 expression in PNs after intersecting with GH146-Fip. Similar numbers of PNs are labeled at 24 hr, 48 hr, and 72 hr APF. VA1d, but not DC83, is
labeled, enabling us to map cluster #3 to VA1d (CG371676+) and cluster #4 to DC3 (CG31676—). In addition, DA1 and DL3 are labeled. Thus, the remaining acj6—
and CG31676+ cells (clusters #6 and #6') correspond to DL3 PNs.

(legend continued on next page)
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within a specific lineage, and most PN classes are born consec-
utively within a single time window (Jefferis et al., 2001; Yu et al.,
2010; Lin et al., 2012). DA1 and DL3 PNs are the only two excep-
tions: they are born in two time windows separated by more than
24 and 12 hr, respectively (Figure S3D; Lin et al., 2012). This
birth-timing difference may contribute to the transcriptome het-
erogeneity of DA1 and DL3 PNs. For DA1 PNs, we found that
fruitless (fru), encoding a TF and a key regulator of male sexual
behavior (Dickson, 2008), was expressed only in the large clus-
ter (#2). This is consistent with a previous finding that NP27-
GAL4 (inserted into a fru intron near the sexually dimorphic
splicing site) only labels DA1 PNs after intersecting with
GH146-Flp (Potter et al., 2010). On the other hand, CG45263
was only expressed in the small cluster (#2') (Figure S3C). We
also identified genes that were expressed only in one of the
two DL3 clusters (Figure S3B). It remains to be determined
whether the transcriptional differences between clusters #2
and #2' and between clusters #6 and #6’ reflect only differences
in birth timing or also potential differences in biological functions.

In summary, by using a combination of existing markers and
new markers discovered using single-cell RNA-seq, we have
unambiguously mapped six PN classes to corresponding tran-
scriptome clusters (Figure 4G). Our results indicate that the com-
bination of genetic drivers and single-cell RNA-seq offers a
simple strategy for mapping transcriptome clusters to cell types.

A New Lineage-Specific TF Regulates Dendrite
Targeting

Our single-cell transcriptome analysis identified many TFs that
were differentially expressed in separate clusters. For example,
prospero mRNA was expressed in a majority of PNs, including
all Mz19+ PNs, whereas cut mRNA was expressed in a few
PNs, all of which were Mz19— (Figure S4A). Indeed, antibody
staining validated these observations (Figure S4B), and the
expression of Cut is consistent with our previous finding (Ko-
miyama and Luo, 2007).

Our analysis also identified new lineage-specific expression
for several TFs. Specifically, C15 and knot mRNAs were
observed only in adPNs, and unplugged (unpg) was observed
only in IPNs (Figure 5A). We confirmed these results by immuno-
staining using antibodies against C15 and Knot and a lacZ re-
porter for unpg (Figure 5B). knot plays a critical role in controlling
dendrite development of Drosophila sensory neurons (Jinushi-
Nakao et al., 2007), and unpg is a marker for specific neuroblast
sublineages in the Drosophila embryonic ventral nerve cord (Cui
and Doe, 1995). C15, encoding a homeobox-containing protein,
is a homolog of human Hox11 critical in regulating a gene
network in the developing Drosophila leg (Campbell, 2005), but
its neural function is unknown. We tested whether C15 plays a
role in PN dendrite targeting.

In aloss-of-function experiment, we used elav-GAL4 to knock-
down C15 in all neurons, Mz19-QF-driven QUAS-mCDS8GFP to
monitor dendrite targeting of VA1d and DA1 PNs (Mz79-QF labels

DA1 and VA1d, but not DC3 PNs in wild-type [Hong et al., 2012]),
and Or88a promoter-driven myristolated tdTomato (Or88a-mtdT)
to monitor axon targeting of VA1d ORNs (Ward et al., 2015). Pan-
neuronal knockdown of C15 using a strong RNAi line (Figure S4C)
caused a highly penetrant dorsal shift of the VA1d glomerulus
without affecting DA1 dendrite targeting (Figures 5C, 5D, and
S4D), concomitant with a loss of dendrites in the VA1d glomer-
ulus. This loss could be because (1) C15 controls the expression
of Mz19-QF in VA1d PNs, (2) VA1d neurons die or are not born, or
(3) VA1d dendrites mistarget to the DA1 glomerulus.

In a gain-of-function experiment, we used the Mz19-GAL4-
based MARCM system to misexpress C15. Control Mz19+
adPNs target to the VA1d and DC3 glomeruli, and IPNs target
to the DA1 glomerulus (Figures 3B and 5E, left panels). However,
when C15 was misexpressed, Mz19+ IPNs (DA1 PNs only) sent
dendrites to regions outside the DA1 glomerulus, including
VA1d, DC3, DAS, and DA4I, that are all normally targeted by
adPNs, while Mz19+ adPNs targeted dendrites correctly (Fig-
ures 5E [right panels], S4E, and S4F). These data suggest that
the TF C15, as with Acj6 and Vvl (Komiyama et al., 2003), in-
structs lineage-specific PN dendrite targeting.

Transcriptomes of Closely Related PN Classes Exhibit
the Largest Differences during Circuit Assembly

How do neuronal transcriptomes change as development pro-
ceeds? By mapping clusters from single-cell RNA-seq data to
specific PN classes at different developmental stages, we can
address this key question at the resolution of single PN classes.
We focused on the three classes of Mz79+ adPNs and IPNs,
which have been unequivocally mapped to specific transcrip-
tome clusters (Figure 4G).

Following the coarse patterning of PN dendrites at 24 hr APF,
ORN axons invade the antennal lobe to identify their PN partners
beginning ~30 hr APF, until they match with cognate PNs and
establish discrete glomerular compartments first visible ~48 hr
APF (Jefferis et al., 2004). Following further expansion of terminal
branches of ORN axons, PN dendrites, and synaptogenesis, pu-
pae become adults at ~100 hr APF. Using the intersection of
Mz19-GAL4 and GH146-Flp, we sequenced and analyzed 485
single cells from five time points (~100 cells each): 24-30 hr,
36-42 hr, 48-54 hr, 72-78 hr APF, and 1-2 days adult (Figure 6A).

Clustering analysis using ICIM and tSNE revealed that Mz19+
and acj6+ (VA1d and DC3) and Mz19+and acj6— (DA1) PNs were
clearly separable at all times (Figure 6B). Interestingly, VA1d and
DC3 PNs formed distinct clusters at the four pupal stages but
merged into a single cluster in the adult (Figures 6B and 6C).
To confirm this observation quantitatively, we calculated cell-
type identity scores using the 22 most differentially expressed
genes (p < 107%) between VA1d and DC3 PNs across all
pupal stages and found that the difference between the tran-
scriptional states of these two PN classes was maintained
from 24-48 hr APF but began to shrink at 72 hr APF and were
indistinguishable in the adult (Figure 6D). Using an alternative,

(G) Summary of the mapping of six PN classes to corresponding transcriptome clusters. Markers used for unambiguous mapping (A-D and Figures 3, S3B, and

S3C) are listed.
Ncad is used as a neuropil marker. Scale, 20 um.
See also Figure S3.
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unbiased genome-wide method, we calculated the Pearson cor-
relation between the expression profiles of all pairs of cells based
on 497 genes identified by ICIM. This analysis confirmed that
transcriptome differences between VA1d and DC3 PNs disap-
peared in the adult (Figure 6E). Indeed, clustering analyses using
only adult VA1d and DC3 PNs failed to find distinct populations
(data not shown). Collectively, these data indicate that VA1d and
DC3 PNs exhibit peak transcriptome differences during early pu-
pal stages (24-48 hr APF) when PNs are refining their dendrite
targeting and presenting cues for ORN axon targeting. These dif-
ferences progressively diminish in late pupal and adult stages
(Figure 6F).

These observations suggest that PN subtype identity genes,
which distinguish VA1d and DC3 during the wiring stages, are
downregulated once wiring specificity is established. To test
this, we systematically identified differentially expressed genes
at different stages in all Mz19+ PNs. Gene ontology (GO) analysis
indeed revealed that downregulated genes consisted of factors
associated with development and differentiation, whereas
most upregulated genes were associated with metabolic pro-
cesses (Figure S5A). Clustering of genes based on their dynamic
expression pattern revealed transcriptional waves consisting of
genes that were coordinately turned down or up at different
developmental stages (Figure S5B). Notably, many more TFs
and cell-surface and secreted molecules (CSMs) were downre-
gulated than upregulated (Figure S5B); CSMs were drawn
from a database curated for relevancy to cell recognition and
wiring specificity but excluding ion channels, transporters, and
secreted enzymes (Kurusu et al., 2008). CG31676, which was
expressed in VA1d, but not DC3, PNs at 24 hr APF (Figures 4D
and 4G), was turned off in both PN classes in the adult while
its expression in DA1 persisted (Figure S5C); this was validated
with CG31676-GAL4 expression analysis across developmental
stages (Figure S5D).

Next, we asked if transcriptomes of PN classes from the same
neuroblast lineage are more similar than those from different lin-
eages. We found that the transcriptome differences between
VA1d and DC3 PNs (both adPNs) were consistently smaller
than that between VA1d and DA1 PNs (adPNs and IPNs, respec-
tively) across developmental stages (Figure 6G). Similarly, the
transcriptome differences at 24 hr APF between DA1 and DL3
IPNs were similar to those between VA1d and DC3 but smaller
than those between VA1d and DA1 PNs. All four PN classes
target to adjacent glomeruli in the dorsolateral antennal lobe
(Figure BA, right). Thus, lineage origin correlates to transcriptome
similarities more than dendrite targeting position does, high-

lighting the important contribution of cellular ancestry to tran-
scriptome state.

PN Subtype Identity Is Encoded by a Combinatorial
Molecular Code

How is cell-type identity encoded in the transcriptome? It is
possible that (1) each cell type expresses at least one unique
gene, or (2) each cell type expresses a unique subset of a shared
pool of genes. The strategy used for encoding cell-type identity
in the nervous system remains an unresolved question. To
comprehensively address how neuronal subtype identity is en-
coded in 24-hr-APF pupal PNs, we approximated the 30
GH146+ transcriptome clusters as 30 subtypes and searched
for marker genes that were uniquely expressed in a single
subtype. We designed two criteria: (1) the gene must be robustly
expressed within a cluster (> 7 counts per million [CPM], or
logo(CPM+1) > 3, in > 50% of the cells of a cluster), and (2) the
gene must not be expressed in any other cluster (> 7 CPM
in < 10% of the cells of any other cluster). Only 6 genes fulfilled
these criteria were (Figure S6A), sufficient to encode 5 of the
30 clusters. With relaxed criteria, we quickly entered a regime
where identified genes were expressed in multiple clusters and
hence not unique (Figure S6B). The inability to detect unique
markers in most cell types was not due to transcript dropouts
(Figure S6C). Thus, with few exceptions, GH146+ PNs lack
marker genes that uniquely encode subtypes.

Next, we sought to identify combinatorial molecular codes for
cell type identity. We searched for a minimal set of genes that
could uniquely encode PN subtypes using an information theo-
retic approach. We calculated the information content of each
gene with respect to PN subtype identity, formally defined as
the mutual information between the binarized expression state
of the gene (ON/OFF) and PN-cluster identity (STAR Methods).
We ranked genes by their information content and then selected
a minimal set of genes by greedy search, iteratively drafting the
gene carrying the most non-redundant information about identity
into the set until 95% of the uncertainty of subtype identity was
explained. The result of this search is a set of genes for which
knowledge of their expression states (ON/OFF) alone is sufficient
to classify subtype identity with high accuracy. We first applied
this strategy to the three Mz79+ PN classes. Only two genes,
C15 and CG31676, were sufficient to distinguish these three
subtypes (Figure 7A), explaining 92% of the uncertainty of clas-
sification of individual Mz719+ PN cells into subtypes. Both C15
and CG31676 were independently identified and characterized
earlier in our study (Figures 4D and 5). This finding demonstrates

(B) Consistent with RNA-seq data in (A), 24 hr APF expression of C15 and Knot (antibody staining) in GH746+ PNs (green) is restricted to adPNs, while unpg

(anti-B-gal staining) is restricted to IPNs.

(C) Loss-of-function analysis of C15 using elav-GAL4 driven UAS-C15-RNAI (line #2; see Figure S4C). Wild-type (WT) control: elav-GAL4 x w'’"®. When C15 is
knocked down, the VA1d glomerulus (visualized by VA1d ORN axons labeled by Or88a-mtdT) displays a dorsal shift. In addition, GFP signal in VA1d PN dendrites

(visualized by Mz19-QF-driven QUAS-mCD8GFP) is undetectable.

(D) Quantification of position shift of the VA1d glomerulus due to C15 knockdown in (C). 6 is the angle between the dorsoventral axis and a line drawn through the
centers of the VA1d and DC3 glomeruli. Error bars are SEM. ***p < 0.001 (Student’s t test).

(E) Gain-of-function analysis of C15 in Mz19-GAL4+ MARCM misexpression clones. In WT, dendrites of adPN neuroblast (adNB) clones target VA1d and DC3,
and IPN neuroblast (INB) clones target DA1. When C15 is misexpressed, dendrite targeting of adNB clones is not affected, while dendrite targeting of INB clones is

affected with 100% penetrance.
Ncad is used as a neuropil marker. Scale, 20 pm.
See also Figure S4.
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that this approach can identify gene sets that robustly encode
cell-type identity in a combinatorial manner.

Applying this strategy to the 30 GH7146+ PN subtypes, we
identified 11 genes whose expression states uniquely identified
every PN subtype (Figures 7C and S7A). Knowledge of the
expression states of these genes alone is sufficient to resolve
95% of the uncertainty in classification of individual GH7146+
PN cells into subtypes (Figure 7B, pink line). Similar results
were obtained using a range of different thresholds for binariza-
tion of expression state (Figures S7B and S7C) or when we
examined combinatorial codes based on gene expression levels
after discretization into four states (OFF, Low, Medium, High)
instead of binary states (ON/OFF) (data not shown). Indeed, a
multinomial classifier using these 11 genes correctly classified
82% of individual GH7146+ PN cells into subtypes despite mea-
surement noise (Figure S7D). Together, these analyses indicate
that GH746+ PN subtype identity can be distinguished using a
combinatorial code composed of expression states of only 11
genes. This code is more compact than a code distinguishing
each subtype using a unique marker (30 genes required), but
substantially above the theoretical minimum of 5 genes (which
can encode 2° or 32 binary states).

TFs and CSMs Are Highly Informative in Encoding PN
Identity and Enriched among Differentially

Expressed Genes

What types of genes distinguish neuronal subtypes? It is widely
thought that TFs establish and maintain cell-type identity, while
CSMs determine wiring specificity. But there has not been, to
our knowledge, genome-wide analysis to show this in an unbi-
ased manner. Strikingly, 8 of the 11 genes in the minimal combi-
natorial code identified by our information theoretic analysis
above were TFs (Figure 7C), supporting a central role for TFs in
specifying cell-type identity. To further explore the roles of TFs
and CSMs in class identity, we searched for minimal codes for
cell-type identity consisting only of TFs or CSMs, using our infor-
mation theoretic approach along with previously annotated lists
of TFs (FIyTF database) and CSMs (Kurusu et al., 2008), each

containing ~1,000 genes. Minimal codes consisting of 13 TFs
(Figures 7D and S7A) or 12 CSMs (Figures 7E and S7A) were suf-
ficient to resolve 95% of the uncertainty in classifying GH146+
cells into PN subtypes (Figure 7B). That is, GH146+ PNs can
be reliably classified into 30 subtypes based on the expression
states of either 13 TFs alone or 12 CSMs alone. The compact-
ness of these minimal codes was similar to that of the most
compact code obtained in our genome-wide search (Figure 7C).

To evaluate whether TFs and CSMs are particularly informa-
tive with respect to subtype identity, we measured the amount
of information contained within minimal combinatorial codes
built from other genes (not TFs or CSMs) chosen at random
from the genome (sampling 1,000 genes at random with 100 rep-
licates). Randomly chosen genes carried significantly less infor-
mation than TFs or CSMs (Figure 7B) despite having similar
expression level distributions (Figure S7E). These findings indi-
cate that, on average, TFs and CSMs carry more information
about GH146+ subtype identity than other genes.

To test this idea further, we asked whether TFs and CSMs
were enriched in differentially expressed genes among PN sub-
types. Among Mz719+ adPNs and IPNs, TFs and CSMs ac-
counted for a large proportion of differentially expressed genes
(Figure 7F). Representation of CSMs peaked during the circuit
assembly state (24-48 hr APF), consistent with a role for differen-
tial expression of CSMs in determining wiring specificity. We also
analyzed differentially expressed genes separating every pair of
30 clusters, comprising 435 (30 x 29/2) pairs altogether. TFs and
CSMs were highly enriched among differentially expressed
genes, with the strongest enrichment found among the most
significantly differentially expressed genes (Figure 7G). These
findings support the notion that expression of TFs and CSMs
plays key roles in determining PN subtype identity and wiring
specificity.

DISCUSSION

Single-cell RNA-seq has recently emerged as a powerful tech-
nique to investigate cellular heterogeneity, discover new cell

Figure 6. Transcriptome Analysis of Mz19+ PNs across Developmental Stages

(A) Representative confocal projections of Mz19+ PNs from five stages. Schematic (right) shows cell body and glomerular targets of Mz79+ PNs. Ncad, red.
D, dorsal; L, lateral. Scale, 20 um.

(B) Visualization of Mz19+ PNs from all developmental stages using tSNE based on 497 genes identified using ICIM. Color shows expression of acj6 and CG31676
(CPM, counts per million). acj6+ cells are adPNs (VA1d and DC3, outlined), and acj6— cells are IPNs (DA1). Within adPNs, CG31676+ cells are VA1d PNs, and
CG31676— cells are DC3 PNs. CG31676 is turned off in all adult adPNs (see also C).

(C) Visualization of Mz19+ PNs as in (B), with color indicating developmental stages. Expression patterns of acj6 and CG31676 (B) enabled unambiguous
identification of three PN classes. Dashed lines indicate the developmental trajectories of these classes. VA1d and DC3 PNs are distinct at all pupal stages, but
merge to form one cluster in the adult. The densely and sparsely dashed red lines represent the trajectories of cluster 2 and 2/, respectively, which become
indistinguishable by 72 hr APF and remain so in the adult.

(D) Type identity score of VA1d and DC3 PNs from five developmental stages. Each dot represents a cell. Colors show developmental stages as in (C). The identity
score is calculated as a scaled sum of the 22 most significantly differentially expressed genes between VA1d and DC3 PNs (STAR Methods). Scores range
from —1 (high expression of the DC3 signature genes and no expression of the VA1d signature genes) to +1 (the opposite expression profile).

(E) Violin plot showing the distribution of transcriptome similarity between all pairs of Mz19+ adPNs. Peaks are indicated by asterisks. The upper peak consists of
pairs in which both cells are from the same class. The lower peak consists of pairs in which the two cells are from different classes. The adult distribution is
unimodal, indicating a lack of transcriptome differences between the two classes.

(F) Schematic summary. VA1d and DC3 PNs derive from a common neuroblast (NB) lineage. Their transcriptomes are distinct at pupal stages and become
indistinguishable in the adult.

(G) Differentially expressed genes between PN classes belonging either to the same lineage (VA1d and DC3; DL3 and DAT1) or different lineages (VA1d and DA1).
Adult data do not exist for VA1d versus DC3 PNs, as they are indistinguishable. For DL3 PNs, we only have data for 24 hr APF.

See also Figure S5 and Table S1.
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Figure 7. Combinatorial Molecular Codes of PN-Subtype Identity

(A) Minimal combinatorial code for subtype identity among Mz19+ PNs identified using an information theoretic approach. (Left) Mean expression level of each
gene among cells belonging to each Mz19+ class. (Right) Binarized expression levels of the same genes (cutoff: log,(CPM+1) = 3). Each Mz19+ PN class
expresses a distinct combination of these two genes.

(B) Information contained in minimal combinatorial codes for GH146+ subtype identity. x axis is the number of genes included in the code. y axis is the amount of
uncertainty (entropy) of cell type classification that is explained by the code. Colors denote codes constructed from different sets of genes. The genome-wide
code (pink) is constructed from all genes, while the TF (green) or CSM (orange) codes use only 1045 TF or 955 CSM genes. Gray denotes codes constructed from
1,000 randomly sampled non-TF and non-CSM genes, with the line indicating the median and the shading indicating the standard deviation across 100 replicates,
respectively.

(C-E) Minimal combinatorial codes for GH146+ subtype identity constructed from (C) all genes, (D) TFs, or (E) CSMs. Heatmap indicates the binary expression
state of genes in each cluster, as in (A). Clusters and genes are arranged by hierarchical clustering.

(F) Representation of TFs and CSMs among the top 30 differentially expressed (DE) genes between pairs of Mz19+ PN subtypes as indicated. y axis shows the
fraction of the 30 most differentially expressed genes that are TFs (green), CSMs (orange), or TF + CSM (blue) at each developmental stage. Adult stage is absent
from the VA1d versus DC3 comparison because their transcriptomes cannot be distinguished.

(G) Enrichment of TFs and CSMs among the top differentially expressed genes between pairs of clusters of GH146+ cells (435 pairs). x axis shows the number of
top differentially expressed genes under consideration. y axis shows the distribution of enrichment of either TFs or CSMs within these genes. Enrichment is
calculated relative to the genomic representation of TFs (6.7 %) and CSMs (6.2%), indicated by the horizontal line.

See also Figures S6 and S7.
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types, and identify cell-type-specific markers. We established a
robust single-cell RNA-seq protocol for Drosophila neurons
and glia. By focusing on olfactory PNs, among the best-charac-
terized cell types in all nervous systems, we established un-
equivocally that transcriptomic identity corresponds with the
anatomical and physiological neuronal subtypes defined by con-
nectivity and function.

Several lines of evidence support the sensitivity and reliability
of our single-cell RNA-seq protocol. First, differential gene
expression identified by single-cell RNA-seq is highly consistent
with previous literature. We found highly correlated expression of
two male-specific RNAs at the level of individual cells (Figure S1E)
and mutually exclusive expression of two lineage-specific TFs
(Figure S2F), as previously reported. Second, we validated five
differentially expressed TFs derived from single-cell RNA-seq
data (Figures 5A, 5B, S4A, and S4B). Third, sequencing of cells
marked by known or newly identified PN-class-specific markers
matched well with specific transcriptome clusters (Figures 3
and 4), enabling us to unequivocally match transcriptome clus-
ters with glomerular classes. We expect that this approach can
be generally applied to single-cell transcriptome analyses of
many tissues and developmental stages in Drosophila and other
organisms with small cell size, thus expanding the use of single-
cell transcriptomics for addressing diverse biological questions.

We have developed a machine-learning algorithm called ICIM
for unbiased identification of genes that distinguish subtypes.
Because this algorithm recursively examines finer-grained sub-
populations, it is capable of detecting genes that distinguish
small subpopulations. ICIM is conceptually similar to previously
described iterative analysis methods (Usoskin et al., 2015; Zeisel
etal., 2015; Gokce et al., 2016; Tasic et al., 2016). However, ICIM
may discriminate highly similar cell types with greater sensitivity
than methods based on PCA would because it reduces the
feature space to only those genes that are informative for distin-
guishing cell types. ICIM allowed us to distinguish 30 clusters for
40 GH146+ PN classes. Our classification is limited by sampling
depth because 17 classes contain only 1 cell per hemisphere (Yu
et al., 2010). Sequencing of many more cells may resolve these
classes into distinct clusters, resulting in a more complete
description of PN transcriptome diversity.

Our analyses of transcriptome changes of identified PN clas-
ses across developmental stages demonstrate that transcrip-
tomes of neuronal subtypes exhibit the largest difference during
development, coincident with circuit assembly (Figure 6). This
could be because key features of different PN classes are their
input and output partners. Once PNs establish differential con-
nectivity during development, they may use largely the same
signaling machineries to convey different olfactory information
in adults. This finding has important implications for using sin-
gle-cell RNA-seq to classify neuronal types, since most studies
have focused on adults (see Introduction). While these studies
have been highly successful in classifying major neuronal types,
functionally distinct subtypes may have been overlooked, result-
ing in an underestimate of neuronal type diversity.

TFs and CSMs are widely considered to be key determinants
of cell fate and wiring specificity, respectively. Our single-cell
transcriptome analyses provided objective data to support these
notions. First, TFs and CSMs together account for more than
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50% of the top 30 differentially expressed genes (Figures 7F
and 7G). Second, information theoretic analyses revealed that
among the top 11 information-rich genes for distinguishing
different PN subtypes, 8 are TFs. Third, TFs or CSMs alone
contain nearly as much information in distinguishing different
PN subtypes as all genes contain (Figure 7B). A key readout of
TFs in determining neuronal subtype may be to control differen-
tial expression of CSMs such that different subtypes differentially
respond to a common extracellular environment to achieve their
wiring specificity. However, we did not find a simple relationship
between TFs and CSMs (Figure S7F). Supporting a role for TFsin
regulating wiring specificity, we show that a newly identified line-
age-specific homeobox-containing C15 can instruct lineage-
specific dendrite targeting (Figure 5).

Finally, our analyses of PN transcriptomes shed light on the
nature of the coding strategies that distinguish closely related
neuronal subtypes. PN subtype identity is largely determined
by a combinatorial code that utilizes a number of genes between
the number of subtypes and the theoretical minimum for a maxi-
mally compact code, suggesting redundancy. The transcrip-
tomes of closely related PN classes differed substantially during
development (Figure 7F and Table S1), consistent with a recent
report that closely related retinal cells have dozens of differen-
tially expressed CSMs (Tan et al., 2015). A certain degree of
redundancy can provide robustness to wiring precision (Hong
and Luo, 2014) but creates challenges for dissecting genetic
control of wiring specificity using single-gene manipulation.
The transcriptomes of identified PN classes can inform design
of more precise experiments in which simultaneous manipula-
tion of multiple genes through loss- and gain-of-function ap-
proaches allows experimental testing of the combinatorial TF
and CSM codes.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Rat anti-DNcad Developmental Studies Hybridoma Bank RRID: AB_528121
Chicken anti-GFP Aves Labs RRID: AB_10000240
Rabbit anti-DsRed Clontech RRID: AB_10013483
Rat anti-C15 (Campbell, 2005) N/A

Guinea pig anti-knot (Jinushi-Nakao et al., 2007) N/A

Deposited Data

Sequencing reads This paper GEO: GSE100058
Preprocessed sequence data This paper GEO: GSE100058
Experimental Models: Organisms/Strains

D. melanogaster: Mz19-GAL4 Bloomington Drosophila Stock Center RRID: BDSC_34497
D. melanogaster: Alrm-GAL4 Bloomington Drosophila Stock Center RRID: BDSC_67032
D. melanogaster: C15-RNAi #1 Bloomington Drosophila Stock Center RRID: BDSC_27649
D. melanogaster: C15-RNAi #2 Bloomington Drosophila Stock Center RRID: BDSC_35018
D. melanogaster: GH146-GAL4 (Stocker et al., 1997) RRID: BDSC_30026
D. melanogaster: UAS-STOP-mCD8GFP (Potter et al., 2010) RRID: BDSC_30125
D. melanogaster: Mz19-QF (Hong et al., 2012) RRID: BDSC_41573
D. melanogaster: 91G04-GAL4 (Jenett et al., 2012) RRID: BDSC_40588
D. melanogaster: trol-GAL4 Kyoto Stock Center RRID: DGRC_113584
D. melanogaster: GH146-Fip (Hong et al., 2009) N/A

D. melanogaster: unpg-lacZ (Cui and Doe, 1995) N/A

D. melanogaster: UAS-C15 (Campbell, 2005) N/A

D. melanogaster: nos-Cas9 (Diao et al., 2015) N/A

D. melanogaster: CG31676-GAL4 This paper N/A
Oligonucleotides

Actin5C (QPCR forward primer): This paper N/A
5-CTCGCCACTTGCGTTTACAGT-3

Actin5C (9PCR reverse primer): This paper N/A
5'-TCCATATCGTCCCAGTTGGTC-3'

C15 (qPCR forward primer): This paper N/A

5'- AGCGCTTCCACAAGCAAAAG-3’

C15 (gQPCR reverse primer): This paper N/A

5'- CCGTCTGTCGTCTCCACTTG-3'

Recombinant DNA

Plasmid: pT-GEM(1) Addgene 62893

Plasmid: pU6-Bbsl-ChiRNA Addgene 45946

Plasmid: TOPO-CG31676-T2A-GAL4 This paper N/A

Software and Algorithms

Custom analysis software This paper https://github.com/felixhorns/FlyPN
Iterative Clustering for Identifying Markers This paper https://github.com/felixhorns/FlyPN

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Liqun Luo
(lluo@stanford.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly stocks

In all experiments, both male and female flies were used. The following fly lines were used in this study: Mz19-GAL4 (BL#34497) (Jef-
feris et al., 2004), C15-RNAi (line1, BL#27649), C15-RNAI (line2, BL#35018), Alrm-GAL4 (BL# 67032). Mz19-QF (Hong et al., 2012),
GH146-GAL4 (Stocker et al., 1997), UAS-STOP-mCDS8GFP (Hong et al., 2009), GH146-Flp (Potter et al., 2010), unpg-lacZ (Cui and
Doe, 1995), trol-GAL4 (NP5103-GAL4, Kyoto Stock Center #113584), UAS-C15 (gift from Dr. Gerard Campbell) (Campbell, 2005),
and 91G04-GAL4 (gift from Gerry Rubin) (Jenett et al., 2012).

CG31676-GAL4 was generated using CRISPR/Cas9 based insertion of SA-T2A-GAL4 into the first intron of CG371676 gene
following the method described by Diao et al. (2015). In brief, a 2.5kb DNA fragment, containing a PAM site in the middle within
the first intron of the CG31676 gene, was PCR amplified from wild-type genomic DNA, and inserted into Blunt TOPO vector (Invitro-
gen). Then, SA-T2A-GAL4 was PCR amplified from the pT-GEM(1) plasmid (Addgene #62893) and was inserted (NEBuilder HiFi DNA
assembile kit) into the TOPO-CG31676-intron construct three nucleotides before the PAM site of the intron. This construct and a
gRNA plasmid (pU6-Bbsl-ChiRNA, Addgene #45946) containing a 20-nt target sequence upstream of the PAM inserted into the
Bbsl site were co-injected to nos-Cas9 (gift from Dr. Ben White) (Diao et al., 2015) embryos to obtain transgenic flies.

METHOD DETAILS

MARCM analysis

hsFip based MARCM analyses were performed as previously described (Lee and Luo, 1999; Jefferis et al., 2001). Briefly, transgenic
flies linked with a FRT chromosome were crossed with MARCM-ready flies (containing hsFip, UAS-CD8GFP, Mz19-GAL4, TubP-
GALS80 and desired FRT). Mz19-GAL4 was used to label VA1d, DC3 and DA1 PNs. Larvae (24h to 48h after hatching) from the cross
were heat shocked for 1h in a 37°C water bath. Both single-cell and neuroblast clones could be observed in this fashion.

Immunostaining

Tissue dissection and immunostaining were performed following previously described methods (Wu and Luo, 2006). Briefly, fly pupal
and adult brains were dissected in 1x PBS and then fixed in 4% paraformaldehyde (20% paraformaldehyde diluted in PBS with
0.015% Triton X-100) for 20 min at room temperature. Fixed brains were washed three times with PBST (PBS with 0.3% Triton
X-100) and incubated in PBST twice, each time for 20 min. The samples were incubated in blocking buffer (5% normal goat serum
in PBST) for 30 min at room temperature or overnight at 4°C. Then, primary antibodies diluted in blocking buffer were applied and
samples were incubated for 24-48 h at 4°C. Then, samples were washed with PBST for 20 min twice, and secondary antibodies
diluted in blocking buffer were applied and samples were incubated in the dark for > 24 h at 4°C. Samples were washed with
PBST for 20 min twice and mounting solution (Slow Fade Gold) was added. Samples were left in mounting solution for at least
1 h before mounting them onto glass slides. All wash steps were performed at room temperature. Primary antibodies used in this
study include rat anti-DNcad (DN-Ex #8; 1:40; DSHB), mouse anti-Prospero (1:200; DSHB), mouse anti-Cut (2B10; 1:50; DSHB),
mouse anti-B-gal (1:500; Promega), chicken anti-GFP (1:1000; Aves Labs), rabbit anti-DsRed (1:250; Clontech), mouse anti-ratCD2
(OX-34; 1:200; AbD Serotec), rat anti-C15 (1:200; gift from Dr. Gerard Campbell) (Campbell, 2005), and guinea pig anti-knot (1:200;
gift from Dr. Adrian Moore) (Jinushi-Nakao et al., 2007). Secondary antibodies were raised in goat or donkey against rabbit, mouse,
rat, and chicken antisera (Jackson Immunoresearch), conjugated to Alexa 405, 488, FITC, Cy3, Cy5, or Alexa 647.

Quantitative PCR
Total RNA from 3-5 day old adult fly heads was extracted using a MiniPrep kit (Zymo Research, R1054). Complementary DNA was
synthesized using an oligo-dT primer. qPCR was performed on a Bio-Rad CFX96 detection system. Relative expression was normal-
ized to Actin5C. Primer sequences used for gPCR were:

Actin5C (F): 5-CTCGCCACTTGCGTTTACAGT-3'

Actin5C (R): 5-TCCATATCGTCCCAGTTGGTC-3'

C15 (F): 5'- AGCGCTTCCACAAGCAAAAG-3

C15 (R): 5- CCGTCTGTCGTCTCCACTTG-3'

Imaging and quantification procedure

Confocal images were collected with a Zeiss LSM 780 and processed with ImageJ and Adobe lllustrator. For quantification of the
angles in Figure 5C, the vertical line was drawn based on the position of two antennal lobes and the intersecting line was drawn
through the centers of gravity of the VA1d and DA1 glomeruli, then the intervening angle was measured using Imaged.

Single-cell RNA-sequencing

Drosophila brains with mCD8GFP-labeled cells using specific GAL4 drivers were manually dissected, and optic lobes were removed.
Single-cell suspensions were prepared following Tan et al. (2015) with several modifications (see detailed procedure below). Single
labeled cells were sorted via Fluorescence Activated Cell Sorting (FACS) into individual wells of 96-well plates containing lysis buffer
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using an SH800 instrument (Sony Biotechnology). Full-length poly(A)-tailed RNA was reverse-transcribed and amplified by PCR
following the SMART-seqg?2 protocol (Picelli et al., 2014) with several modifications. To increase cDNA yield and detection efficiency,
we increased the number of PCR cycles to 25. To reduce the amount of primer dimer PCR artifacts, we digested the reverse-tran-
scribed first-strand cDNA using lambda exonuclease (New England Biolabs) (37°C for 30 min) prior to PCR amplification. Sequencing
libraries were prepared from amplified cDNA using tagmentation (Nextera XT). Sequencing was performed using the Illlumina
Nextseq 500 platform with paired-end 75 bp reads.

Fly brain dissociation

Before the fly brain dissociation, make sure following essential reagents and supplies are readily available: Schneider’s medium
(Thermo Fisher, 21720024), papain (Worthington PAP2, LK003178), liberase TM (Roche, 5401119001; liberase TM was reconstituted
in 1x sterile PBS on ice to get final concentration 2.5mg/ml and aliquots of 20ul were stored at —20°C), Falcon tubes with cell strainer
(85um), microfuge tube shaker, and syringes with 25G 5/8 needles.

Make fresh papain solution for every dissociation experiment. Get 1 vial of papain (Worthington PAP2, LK003178), dissolve the
powder using 1x sterile PBS (final concentration 100 units/ml), and re-suspend papain by gently shaking the vial (if use pipet, avoid
bubbles which will decrease the enzyme activity). Then make aliquots of 300 puL papain solution for each EP tubes, and activate it in
37°C water bath for 10-30 min. Add 4.1 uL of liberase TM solution (2.5mg/ml) into 300 pL papain solution to obtain a final concen-
tration of about 0.18 units/ml. Cool down the solution to room temperature before adding it to brain samples. Since it takes 10-30 min
to activate the papain solution, coordinate this step with fly brain dissection.

To estimate how many brains are required during sample preparation, please refer to recovery rates in Figure S1C for calculation. In
our current study, we dissected about 120 pupal brains from GH146-GAL4,UAS-mCD8GFP flies to collect about 10 plates of cells
(10%96). For the rare population labeled by 91G04-GAL4 or trol-GAL4 (2-3 cells each hemisphere), we dissected about 200 pupal
brains to get half plate of cells (~50).

To prepare a single-cell suspension:

Dissect pupal/adult fly brains in ice-cold Schneider’s medium. Remove the optical lobes if all desired cells are in the central brain
(e.g., GH146+ PNs). Transfer every brain using P20 pipet into the EP tube containing 500ul Schneider’s medium and keep the tube
on ice. The brains can be in the cold Schneider’s medium for up to 2 hours before the next step.

After dissecting a sufficient number of brains, spin them down using bench-top microfuge for 10 s and remove Schneider’s
medium. Wash brains for 3 times at room temperature with 1x sterile PBS to completely remove Schneider’s medium.

Add 300 pL papain solution (37°C activated and 4.1ul liberase added) to each sample and incubate it in a microfuge tube shaker
(25°C, 1,000rpm) for 20 min in total. At 5 and 10 min time points, pipet the solution up and down 30 times (avoiding bubbles), and
then continue shaking. At 15 min time point, pass solution through 25G 5/8 needles for 7X (avoiding bubbles). Shake the tube for
another 5 min. To increase yield, use spare papain solution to coat the tips/needles before passing the brain sample.
Inactivate the enzyme by adding 400 uL cold Schneider’s medium (total 700ul). Filter solution through cell strainer (35 um) into a
5ml falcon tube (keep tapping the tube until the solution go through the filter). Wash the EP tube with 800 uL cold Schneider’s
medium and filter through cell strainer (total 1,500 pl).

Transfer the 1,500 pL solution to an EP tube and centrifuge for 7min at 4°C, 600xg. Discard supernatant, re-suspend cells with
1,000 pL (or desired volume depending on cell density) Schneider’s medium, and transfer it to 5ml FACS tube. Add desired flores-
cent dye (e.g., Ethidium homodimer-1, Initrogen L3224, as a dead cell marker) and keep the tube on ice until FACS sorting.

QUANTIFICATION AND STATISTICAL ANALYSIS

For RNA-seq data analysis, we first provide an overview of our methods, then describe how these methods were applied to create
each figure. All analysis was performed in Python using Numpy, Scipy, Pandas, scikit-learn, and a custom single-cell RNA-seq mod-
ule. Sequencing reads and preprocessed sequence data are freely available from the Gene Expression Omnibus (accession number
GEO: GSE100058). Code is freely available from Github (https://github.com/felixhorns/FlyPN).

Sequence alignment and preprocessing

Reads were aligned to the Drosophila melanogaster genome (r6.10) using STAR (2.4.2a) (Dobin et al., 2013) with the ENCODE
standard options, except “—outFilterScoreMinOverLread 0.4-outFilterMatchNminOverLread 0.4-outFilterMismatchNmax 999-
outFilterMismatchNoverLmax 0.04.” Uniquely mapped reads that overlap with genes were counted using HTSeg-count (0.7.1)
(Anders et al., 2015) with default settings except “-m intersection-strict.” Cells having fewer than 300,000 uniquely mapped reads
were removed. To normalize for differences in sequencing depth across individual cells, we rescaled gene counts to counts per
million (CPM). All analyses were performed after converting gene counts to logarithmic space via the transformation Log>(CPM+1).
Cells that were labeled with neuron-specific GAL4 drivers (GH146+, Mz19+, 91G04+, and Trol+) were filtered for expression of ca-
nonical neuronal genes (elav, brp, Syt1, nSyb, CadN, and mCD8GFP), retaining only those cells that expressed at least 4/6 genes at >
15 CPM. After filtering, 97.3% of GH146+ PN cells express mCD8GFP (at > 15 CPM).
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Dimensionality reduction and clustering

Single-cell RNA-seq yields high dimensional gene expression data. To visualize and interpret these data, we obtained two-dimen-
sional projections of the cell population by first reducing the dimensionality of the gene expression matrix using principal component
analysis (PCA), then further reducing the dimensionality of these components using t-distributed Stochastic Neighbor Embedding
(tSNE) (van der Maaten and Hinton, 2008). We note that tSNE is a nonlinear embedding that does not preserve distances, so one
cannot directly interpret the distances in the projected space directly as distances between gene expression profiles (i.e., in the
pre-transformation space).

We performed PCA on a reduced gene expression matrix composed of the top 500 overdispersed genes (as described below). To
identify significant principal components (PCs), we examined the distribution of eigenvalues obtained by performing PCA after shuf-
fling the gene expression matrix (with 100 replicates). A PC was considered significant if the magnitude of its associated eigenvalue
exceeded the maximum magnitude of eigenvalues observed in the shuffled data. Significant components (typically 7-12 PCs) were
used for further analysis. We further reduced these components using tSNE to project them into a two-dimensional space.

ICIM (see detailed description of ICIM below) is an unsupervised machine learning algorithm that identifies a set of genes which
distinguishes transcriptome clusters, which may correspond to cell types (described below). In our analysis of GH146+ PNs, this
set typically includes ~500 genes. To visualize and interpret the single-cell gene expression data, we further reduced its dimension-
ality using tSNE to project the reduced gene expression matrix (consisting of only the genes identified by ICIM) into a two-dimen-
sional space.

Overdispersion analysis
Genes that are highly variable within a population often carry important information for distinguishing cell types. We were interested in
identifying such genes and using them for dimensionality reduction and clustering analyses. Variability of gene expression depends
strongly on the mean expression level of a gene. This motivates the use of a metric called dispersion, which measures the variability of
a gene’s expression level in comparison with other genes that are expressed at a similar level. Overdispersed genes are those that
display higher variability than expected based on their mean expression level.

To identify overdispersed genes, we binned genes into 20 bins based on their mean expression across all cells. We then calculated
a log-transformed Fano factor D(x) of each gene x

D(x) =logso[0? (x) /n(x)]

where 2(x) is the variance and p(x) is the mean of the expression level of the gene across cells. Finally, we calculated the dispersion
d(x) as the Z-score of the Fano factor within its bin

d(x) = (D(x) — Mean[D(x)])/Std[D(x)]

where Mean[D(x)] is the mean log-transformed Fano factor within the bin and Std[D(x)] is the standard deviation of the log-trans-
formed Fano factor within the bin. We then ranked genes by their dispersion and selected the top genes for downstream analysis.

Iterative Clustering for Identifying Markers

To identify subpopulations of cells corresponding to PN subtypes, we developed an unsupervised machine-learning algorithm, which
we call Iterative Clustering for Identifying Markers (ICIM). We observed that standard dimensionality reduction and clustering
methods using PCA and tSNE failed to discriminate subpopulations that corresponded to known PN lineages and molecular features.
We attributed the failure of these methods to the high degree of similarity of transcriptional states among PN subtypes, which repre-
sent closely related neurons having similar functions. All PN subtypes are born from one of the two common progenitor cells (neuro-
blasts) and have similar functional roles in the adult fly. Thus, PN subtypes may be distinguished by a small number of genes.

In the language of machine learning, the performance of dimensionality reduction and clustering methods depends critically on
feature selection. Selection of informative genes that vary among cell types can improve discrimination in dimensionality reduction
and clustering analysis.

We developed ICIM as a strategy to identify the most informative genes for distinguishing subpopulations within a population of
closely related cells in an unbiased way. Starting with a population of cells, we first identify the top 100 overdispersed genes within
this population. Next we expand this set of genes by finding genes whose expression profiles are strongly correlated with the over-
dispersed genes (Pearson correlation > 0.5). We also filter this set of genes by (1) removing those having < 2 correlated partners, and
(2) those that are expressed in > 80% of cells. Filter (1) removes noisy genes based on the idea that genes that carry information about
cell type are expressed within gene modules and therefore have expression profiles that are correlated with other genes. Filter (2) re-
moves housekeeping genes that are detected in nearly all cells, and have variation in expression levels due to biological and technical
noise, but this variation is not informative for purposes of distinguishing cell types. Cells are then clustered based on their expression
profiles of these genes (average-linkage clustering using correlation metric). We cut the dendrogram at the deepest branch and parti-
tion the population into two subpopulations. The same steps are then performed iteratively on each subpopulation. lteration con-
tinues until a population cannot be split into subpopulations because it is “homogeneous.” The termination condition is defined
as the minimum terminal branch length (the most similar nearest-neighbor correlation distance between the expression profiles of

e4 Cell 771, 1206-1220.e1-e9, November 16, 2017



cells) being larger than 0.2. This condition arises when the algorithm attempts to discover genes within a homogeneous population
and finds a very large number of genes (typically > 1000 genes) that vary in an incoherent manner between cells. When the algorithm
terminates, we collect all genes that were identified at any stage. The result of this analysis is a set of genes that discriminate sub-
populations within a population, which can be used for dimensionality reduction (as described above). We note that this algorithm
identifies informative genes in an unbiased manner without knowledge of the ground truth of the number of cell types and their dif-
ferences. The results of the algorithm were robust across a wide range of parameters.

Why does ICIM outperform previously used approaches, such as PCA? PCA reduces the feature space in a manner that assigns
weights to genes based on their information content. This has two consequences: (1) downstream analysis uses the weighted gene
expression information, which imposes assumptions about the statistical relationships between genes, and (2) while less informative
genes are assigned smaller weights, they nevertheless can contribute to downstream analysis. In contrast, ICIM explicitly removes
genes that are deemed uninformative from further consideration and assigns equal weights to those that are kept. These attributes
make ICIM a more effective feature selection strategy for analysis of highly similar cellular subtypes.

Differential expression analyses

To find differentially expressed genes, we used the Mann-Whitney U test, a non-parametric test that detects differences in the level of
gene expression between two populations. The Mann-Whitney U test is advantageous for this application because it makes very gen-
eral assumptions: (1) observations from both groups are independent and (2) the gene expression levels are ordinal (i.e., can be
ranked). Thus the test applies to distributions of gene expression levels across cells, which rarely follow a normal distribution. Using
the Mann-Whitney U test, we compared the distributions of expression levels of every gene separately. p values were adjusted using
the Bonferroni correction for multiple testing. Different significance thresholds for determining whether a gene is differentially ex-
pressed were used for various analyses in this work.

TF and CSM lists

To identify genes that are transcription factors (TFs) or cell surface molecules (CSMs), we used manually curated lists. We obtained a
list of Drosophila TFs from the FIyTF v1 database, (http://www.mrc-Imb.cam.ac.uk/genomes/FlyTF) and CSMs from (Kurusu et al.,
2008). These lists were manually curated to remove spurious annotations and redundancies according to Flybase annotation, result-
ing in 1045 TFs and 955 CSMs.

Analysis methods for figures

Single-cell transcriptome analyses of neurons and glia in Figure 1

We formed a population consisting of 946 GH146-GAL4+ cells and 67 alrm-GAL4+ cells. We performed dimensionality reduction and
clustering analysis using PCA and tSNE as described above. We identified the top 500 overdispersed genes in the population. We
used PCA to reduce dimensionality, retaining 7 significant PCs. Then we projected the population into a two-dimensional space using
tSNE with perplexity 30 and learning rate 500 (Figure 1E). We also performed hierarchical clustering using complete linkage and a
Euclidean metric based on manually selected neuronal and glial marker genes (Figure 1D).

Removal of GH146+ vPNs and APL neurons in Figure 2

We initially formed a population consisting of 946 GH146+ cells. Using ICIM, we identified 158 genes that distinguish subtypes. We
then projected the population into a two-dimensional space using tSNE. We observed several distinct subpopulations corresponding
to GH146+ neuronal types that do not belong to the adPN or IPN lineages. Specifically, two clusters were composed of ventral PNs
(VPNs), which robustly express several specific markers (Gad1, Lim1, and toy). Three other clusters were composed of APL neurons,
which robustly express other specific markers (Wnt4, VGlut, and fd102C), and are arranged adjacent to one another by tSNE, reflect-
ing the similarity of expression profiles among these cells. For subsequent analyses of GH746 + adPNs and IPNs, we removed these
cells by excluding cells expressing 2/3 of these marker genes at > 15 CPM.

Single-cell transcriptome analyses of GH146+ cells in Figure 2

We initially attempted to identify distinct subpopulations representing PN subtypes using PCA and tSNE for the 946 GH146+ PNs
(including vPNs and APL neurons). We began by identifying the top 500 overdispersed genes and performing PCA to reduce the
gene expression data to 10 significant PCs. Then we projected the population into a two-dimensional space using tSNE with perplex-
ity 30 and learning rate 500. We observed that this analysis fails to separate distinct subpopulations (Figure 2B).

We next attempted to distinguish subpopulations corresponding to PN subtypes using ICIM and tSNE. Using ICIM (Figure 2C), we
identified 561 genes for the 902 GH146+ PNs (representing adPNs and IPNs, after removing vPNs and APL neurons as described
above). We projected these cells into a two-dimensional space using tSNE using as a distance matrix the pairwise Pearson corre-
lation of the expression profiles of these genes, and perplexity 10, learning rate 250, and early exaggeration 4.0 (Figure 2D). Because
tSNE computes a nonlinear embedding that does not preserve distances in the original space, the distances between cells cannot be
directly interpreted in terms of similarity of expression profiles. As a consequence, there are cases where cells belonging to the same
cluster are separated by larger distances than cells belonging to different clusters. We classified cells into clusters in an unbiased
manner using HDBSCAN with min_cluster_size = 5 and min_samples = 3 on coordinates after tSNE projection.
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Mapping clusters to PN classes in Figure 3

We formed a population consisting of 902 GH146+ cells, 123 Mz19+ cells (at 24h APF), and 23 971G04+ cells. Using the 561 genes
identified using ICIM on GH146 + cells, we projected this population into a two-dimensional space using tSNE with perplexity 15 and
learning rate 1000. For visualization, we colored the cells according to their genotype, revealing that the Mz19+ and 97G04+ cells
belong exclusively to 5 clusters (Figure 3C).

Mapping clusters to PN classes in Figure 4

We formed a population consisting of 902 GH146+ cells and 41 trol-GAL4+ cells. trol-GAL4+ cells that were not expressing tro/
(CPM < 7) were removed, leaving 28 cells for further analysis. Using the 561 genes identified using ICIM on GH146+ cells, we pro-
jected this population into a two-dimensional space using tSNE with perplexity 15 and learning rate 1000. For visualization, we
colored the cells according to their genotype, revealing that the vast majority of trol+ cells belong exclusively to 1 cluster (Figure 4C).
Analysis of transcriptome changes during development in Figure 6

To understand how transcriptional state changes during development and maturation of PN subtypes, we collected Mz19+ cells from
flies at 5 stages of development: 24h, 36h, 48h, and 72h after puparium formation (APF), and 1-2 day adults. We formed a population
consisting of 485 cells (123, 83, 92, 92, and 95 cells at each stage, respectively), after filtering to remove low quality cells and those not
expressing neuronal markers (as described above). Using ICIM, we identified 497 genes that distinguish cell subtypes and develop-
mental stages. We projected this population into a two-dimensional space based on these genes using tSNE with perplexity 10 and
learning rate 500. Cells formed several distinct subpopulations corresponding to different PN subtypes and developmental stages
(Figures 6B and 6C). We assigned subpopulations to subtypes (DA1, VA1d, and DC3) based on the expression of key lineage factors
(Figure 6B).

To quantify transcriptome changes in the closely related PN subtypes VA1d and DC3 during development, we devised a metric
called the type identity score, which is the scaled sum of expression levels of genes that distinguish VA1d and DC3 cells. We identified
these genes using differential expression analysis comparing VA1d and DC3 populations at all times that the two populations are
distinct as determined by ICIM and tSNE (24h, 36h, 48h, and 72h APF). 78 cells were included in the VA1d group and 64 cells
were included in the DC3 group. This analysis yielded 22 genes of which 13 are highly expressed in VA1d and 9 are highly expressed
in DC3 cells at a significance level of p < 10~° after the Bonferroni adjustment for multiple testing. We rescaled expression levels of
these genes to the range 0 to 1 (by dividing each expression level by the maximum among the population), then calculated the type
identity score | of each cell as the mean normalized expression level,

1 1
Zx—m ZX

‘XVMd | xeXyaq xeX,
d DC3

where Xya14 is the set of genes that are highly expressed in VA1d and Xp¢3 is the set of genes that are highly expressed in DC3, and |X|
is the cardinality of set X. We then plotted the type identity scores of each cell at each developmental stage (Figure 6D).

As an alternative method to analyze transcriptome differences, we also examined correlations in transcriptome states in an unbi-
ased genome-wide manner. This method has the advantage that it does not require the choice of a p value cutoff for determining
significance. We formed a population consisting of Mz19+adPNs (belonging to both subtypes VA1d and DC3) at each stage of devel-
opment. Then we calculated the Pearson correlation of the expression profiles of the 497 genes identified by ICIM for every pair of
cells (Figure 6E). These plots revealed a bimodal distribution containing two distinct peaks, corresponding to pairs of cells that both
belong to the same subtype (more similar peak) and pairs of cells which belong to different subtypes (less similar peak). As devel-
opment proceeds, the transcriptome similarity of these two subtypes diminishes until vanishing, as reflected in the merging of these
two distinct peaks and the emergence of a unimodal distribution in adulthood.

To compare transcriptome differences between neuroblast lineages, we performed differential expression analysis comparing
VA1d and DC3, VA1d and DA1, and DL3 and DA1 PNs across developmental stages. Because the p values of a differential expres-
sion test depend strongly on the number of cells involved in the test, we sampled cells so that all populations had the same number of
cells. Specifically, for each comparison, we sampled 12 cells from each population without replacement and performed differential
expression analysis, then repeated this procedure (100 replicates) and calculated the median p value across the replicates for each
gene. We then counted the number of differentially expressed genes at p < 0.001 based on the median p value (Figure 6G). All cells
used for this analysis were Mz19+ PNs, except DL3 cells were GH746+ PNs.

To characterize transcriptome changes distinguishing PNs in the wiring stages of development from PNs in adulthood, we per-
formed differential expression analysis comparing the population of Mz19+ PNs at 24h APF to the population of Mz79+ PNs in adults.
We found 1097 differentially expressed genes at significance level of p < 10~° after the Bonferroni adjustment for multiple testing. This
included 592 genes that were highly expressed in 24h APF cells, and 478 genes that were highly expressed in adult cells. We per-
formed Gene Ontology (GO) analysis on these genes using Flymine and removed the redundant GO terms using REVIGO (Supek
et al., 2011). We report the number of genes corresponding to and the p value of enrichment of each term (Figure S5A).

To identify transcriptional waves during Mz19+ PN development, we considered the 1097 genes that were differentially expressed
between 24h APF and adult cells. We calculated the median expression of each gene at each time point. We normalized these median
expression values by dividing by the maximum value across time points, such that each expression value became a relative expres-
sion level between 0 and 1. We then performed dimensional reduction on the expression profiles of the genes using TSNE with
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perplexity 20, learning rate 1000, and early exaggeration 6.0. We identified clusters among the genes using HDBSCAN with
min_cluster_size 25 and min_samples 5 on the projected coordinates. This resulted in the identification of 13 distinct waves, of which
6 involved upregulation and 7 involved downregulation from 24h APF to adult cells (Figure S5B). We plotted the mean relative expres-
sion level of each gene at each time point (black dots connected by black lines). The relative expression profile of each individual gene
belonging to each wave was also plotted (gray lines). We calculated the fraction of genes within each wave that are transcription fac-
tors (TFs) or cell surface molecules (CSMs) using the lists of TFs and CSMs that were obtained as described above.
Characterizing genes that distinguish PN subtypes in Figure 7

To identify genes that distinguish closely related PN subtypes, we performed differential expression analysis comparing the Mz19+
VA1d and DA1 populations and the Mz719+ VA1d and DC3 populations at each developmental stage. These genes are presented in
Table S1. Because the significance level of expression level differences depends on the number of cells involved in the comparison
and the number of cells varies across developmental stages, we analyzed the top 30 differentially expressed genes regardless of their
significance level. We note that the significance values of these genes were nearly all p < 107, We calculated the fraction of genes
within each wave that are transcription factors (TFs) or cell surface molecules (CSMs) using the lists of TFs and CSMs that were ob-
tained as described above (Figure 7F).

We next performed a similar differential expression analysis comparing all pairs of subtypes. For each subtype, we formed a pop-
ulation consisting of GH146+ cells belonging to that subtype at 24h APF. For each pair of subtypes we calculated differential expres-
sion for each gene and ranked the genes by their significance level (p value). We then calculated the fraction of TFs or CSMs among
the top N genes for varying N from 30 to 1000. We calculated the enrichment of TFs or CSMs compared to their genomic represen-
tation by dividing the fraction of TFs or CSMs by the genomic fraction of TFs (6.7%) or CSMs (6.2%). We plotted the distribution of
these enrichment values for various values of N (Figures 7G).

Searching for unique marker genes for PN subtypes in Figure 7

We sought to identify unique markers for each GH146+ PN subtype. We formed populations each consisting of GH746+ cells
belonging to a cluster identified using ICIM and tSNE (Figure 2D). We then performed differential expression analysis comparing
each cluster to all other GH146+ cells. We selected genes that were differentially expressed at a significance level of p < 0.05 after
the Bonferroni adjustment for multiple testing and having median expression within the cluster of interest of > 7 CPM, resulting in 1103
genes. We then filtered for genes that were identified as significantly enriched in only one cluster, resulting in 257 genes. This step
was necessary because some genes were identified as significantly enriched in multiple clusters, which is consistent with reuse of
genes as identity factors within a combinatorial code. Finally, we identified genes that were robust and unique markers for a single
cluster. To do this, we calculated the fraction of cells within each cluster expressing a given gene at > 7 CPM. We then filtered for
genes that were expressed in > 50% of the cells within a given cluster and in < 10% of the cells in any other cluster. We plotted
the distribution of expression levels of these genes in each cluster (Figure S6A). We also attempted to search using less strict criteria.
For example, Figure S6B shows the result when we required that the gene is expressed in > 50% of the cells (> 7 CPM) within a given
cluster and in < 25% of the cells in any other cluster.

Technical artifacts such as dropouts can hinder the identification of unique markers. We therefore estimated the probability that our
failure to identify unique markers can be accounted for by dropout. To do so, we assumed that each of the 30 molecularly distinct
GH146+ PN subtypes expresses a single unique marker gene at a low level of expression (7 CPM) in a ubiquitous fashion (i.e., in all the
individual cells belonging to that subtype). In our data, genes expressed at an average level of 7 CPM are not detected in ~60% of
cells. We can fail to detect a gene because (1) the cell is not expressing the gene, or (2) because of noise in gene expression (biological
noise) or technical dropout (measurement noise). We therefore can estimate an upper bound at 60% on the probability of dropout of a
gene thatis expressed at 7 CPM on average. Our approach for identifying unique markers requires that the gene is detected in 50% of
cells within a cluster. The probability of failure to detect the marker gene for a given cluster due to dropout is therefore given by the
probability of dropouts in 50% of the cells in a cluster. This probability is:

I:)failure = PdropoutNdmpoms
where Pgropout IS e€stimated to be 60% and Ngropouts = 0.5 * Neeiis is the number of cells in which the gene must drop out. We calculated
this probability based on the number of cells N¢gs in every cluster, ranging from 5 to 108. Then we calculated the probability that 25
out of 30 clusters do not have a unique marker gene by multiplying the probabilities of failure in 25 randomly sampled clusters. We
performed this sampling 10,000 times and report the average (p = 10~ '%9). This value represents the probability of failing to detect a
unique marker gene for 25 out of 30 clusters given that each cluster is expressing a single unique marker at 7 CPM on average.
These calculations are conservative in several ways. First, we assumed that each cluster expresses a single marker gene. Real-
istically, each subtype may express multiple unique markers. This would increase the probability of detecting at least one of
them. Second, unique markers may be expressed at levels higher than 7 CPM. We observed that the unique marker genes that
we discovered are expressed at levels well above 7 CPM (Figure S6A) and biologically it is unlikely that a type identity factor would
be expressed at extremely low levels. Thus, we estimate that the likelihood that our failure to detect marker genes can be explained
by dropouts alone is very small.
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Information theory-based analyses in Figure 7
We sought to identify minimal sets of genes that can encode the subtype identity of GH746+ PNs in a combinatorial fashion. Our
motivation was to determine by direct search whether such molecular combinatorial codes exist.

To address this, we devised an algorithm that finds a minimal set of genes that is sufficient to encode the subtype identity of cells in
a combinatorial manner drawing upon ideas from information theory. An introduction to information theory is outside the scope of this
work. Nevertheless, we provide a brief description of the basic concepts. Then we describe the algorithm and how it was applied in
this work.

Entropy measures the uncertainty of a random variable (Shannon, 1948; Cover and Thomas 2006). Conditional entropy measures
the uncertainty of a random variable given the knowledge of another variable (i.e., after conditioning on another variable). Condition-
ing on data never increases uncertainty (on average), which agrees with our intuition that additional information never hurts.

We use the notion of entropy H(C) to describe the uncertainty of cell type classification C. We use conditional entropy to describe
the reduced uncertainty in classification due to knowledge of the expression state of a gene, H(C|G). The information gain due to
knowledge of the expression state of the gene is the mutual information between the gene and the classification (G;C), which
can be defined as

I(G; C) =H(C) — H(C|G),

where H(C) is the entropy of cell type classification (without knowledge of the expression states of any genes) and H(C|G) is the en-
tropy of cell type classification after conditioning on the expression state of gene G. Mutual information 1(G;C) describes how much
our uncertainty about classification C decreases when we observe the gene G.

Mutual information 1(G;C) can also be calculated directly from the probability distributions of cell type classes and expression
states. For two discrete random variables G and C with their joint probability density function (pdf) p(x,y), the mutual information
of G and C is defined as

ey p(g,c)log p(g,c)
16:0=3 Y e

=H(C) — H(C|G).

We often calculate the information content of a gene G with respect to the cell type classification C using this equation. Throughout
this work, the base of the logarithm is 2 and so the unit of entropy and information is bit.

We now describe the algorithm for finding a minimal combinatorial code. This problem is closely related to the Feature Reduction n-
k (FRn-k) problem in machine learning (Battiti, 1994). To solve this problem, we employ a greedy algorithm using mutual information
similar to that described in (Kwak and Choi, 2002). The problem is formulated as follows:

Given an initial set F with n features and set C of all output classes, find the subset S = F with k features that minimizes H(C|S),
which is equivalent to maximizing the mutual information 1(C;S).

Our algorithm is as follows:

1
2
3
4

Initialize S as the empty set and F as the initial set of n features.

For all f; in F, compute I(C;f).

Find the feature f; that maximizes I(C; f;). Add f; to set S. Remove f; from set F.
Repeat until the desired number of features k is selected:

(4.1) For all f;in F, compute I(C;f;|S).

(4.2) Find the feature f; that maximizes I(C; f;|S). Add f; to set S. Remove f; from set F.
(5) Return the set S containing the selected features.

Py
= =

We repeat this computation with increasing k until the output set S explains a chosen amount of uncertainty in the classification C.
Typically, we choose this termination condition as 99% of the entropy H(C) of classification C.

We note that the computation of mutual information is dramatically more efficient when G and C are discrete. We therefore binar-
ized expression levels using a cutoff of logo(CPM+1) = 3. This cutoff was chosen based on the minimum in the distribution of expres-
sion levels across all genes and all cells (Figure S7A). We varied the cutoff value between 2 and 6 and found that our results were
essentially unchanged. The compactness of the minimal codes for GH146+ PN subtype identity and the genes included in the
code were nearly identical to that obtained using the cutoff of 3 (data not shown). We also calculated the correlation between the
information carried by each gene under different values of the cutoff with the information carried under the cutoff of 3 (Figure S7B)
. This analysis revealed that the information content of genes is not very sensitive to the precise choice of cutoff for binarization across
the range of 2 to 6. We also found that other discretization schemes, such as a different number of levels of expression (e.g., OFF,
Low, Medium, High), yielded similar results (data not shown).

Combinatorial coding of PN subtype identity in Figure 7
We initially applied the information theory-based algorithm to Mz79+ PN cells to test whether it is capable of identifying a set of genes
that is sufficient for a combinatorial code of cell type identity. We formed a population consisting of the 175 GH7146+ cells that belong
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to the classes labeled by Mz19-GAL4 (108 DA1, 35 VA1d, and 32 DC3 cells). We created a binary expression matrix consisting of the
ON/OFF states of all 15,522 genes that remained after removing genes that were not detected in any cells. We calculated the mutual
information of each gene with respect to the GH7146+ subtype classification. We then used the greedy algorithm described above to
find a minimal set of genes for encoding GH146+ subtype identity (Figure 7A). The initial set of features F was the top 30 most infor-
mative genes among the 15,522 genes in the expression matrix.

We next applied this approach to all GH7146+ PNs. We formed a population consisting of the 902 GH146+ cells belonging to the
adPN and IPN lineages (Figure 2D). We created a binary expression matrix consisting of the ON/OFF states of all 15,522 genes that
remain after removing genes that are not detected in any cells. We calculated the mutual information of each gene with respect to the
GH146+ subtype classification (Figure 2D). We used the greedy algorithm described above to find minimal sets of genes for encoding
GH146+ subtype identity with k varying from 1 to 20. The initial set of features F was the top 30 most informative genes among all
15,522 genes (genome-wide), among the 1045 TFs, or among the 955 CSMs. We plotted the uncertainty explained by the minimal
codes obtained with each value of k (Figure 7B). We then chose minimal codes that explained 95% of the uncertainty of GH146+
subtype classification (Figures 7C-E). For plotting, we binarized the mean expression level of each gene in each cluster using the
cutoff of log,(CPM+1) = 3 (Figures 7C-E).

To evaluate the performance of classifiers using these minimal codes, we performed leave-one-out cross-validation. We formed a
training set consisting of 901 GH146+ cells, after leaving out a single cell. We then searched for a minimal combinatorial code for
subtype identity using these cells and chose a minimal code that explained 95% of the uncertainty in subtype classification. We
then performed multinomial classification of the test cell based on its expression states of the genes in the code. Specifically, the
predicted class of the test cell was the class having the minimum Hamming distance to the expression state of the cell. In the event
of atie, we assumed that the classifier would make a random, uniformly weighted choice between the tied classes. Performance was
plotted as a confusion matrix (Figure S7D), which depicts the fraction of cases having each true label that are classified as each pre-
dicted label.

To evaluate whether TFs and CSMs carry more information than other genes, we found minimal sets of genes using an initial set of
features F consisting of 1,000 genes chosen at random from among the 13,631 expressed in the genome after excluding the genes
annotated as TFs and CSMs. We performed this search with 100 replicates. We plotted the mean uncertainty explained at various
values of k and the standard deviation across the replicates (Figure 7B). We evaluated the distribution of expression levels of TFs,
CSMs, and other genes by calculating the median expression of each gene in all GH746+ PN cells, and plotting the distribution across
all genes in each category (Figure S7E).

To identify regulatory relationships between TFs and CSMs, we performed clustering of the expression state profiles of TFs and
CSMs across the clusters of GH146+ cells. The top 30 TFs and CSMs ranked by mutual information with cell type identity were
selected. The binary expression state of each gene in each cluster was calculated using the cutoff of log>(CPM+1) = 3 based on
the mean expression level in the cluster. We performed average linkage clustering using the Hamming distance metric on these
expression states (Figure S7F).

DATA AND SOFTWARE AVAILABILITY

Sequencing reads and preprocessed sequence data are freely available from the Gene Expression Omnibus (GEO: GSE100058).
Code is freely available from Github (https://github.com/felixhorns/FlyPN).
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Figure S1. Single-Cell RNA-Seq Protocol for the Drosophila Pupal Brain, Related to Figure 1

(A) Image of single-cell suspension after brain dissociation. Pupal brains were dissected and dissociated. Sample was imaged using epifluorescence microscopy.

DNA was stained using Hoescht 33342 (blue). Scale bar, 50 pm.

(legend continued on next page)



(B) Representative image of cDNA size distribution for 96 wells as measured using the Fragment Analyzer automated capillary electrophoresis system (Advanced
Analytical).

(C) Summary of efficiency for key steps of the single-cell RNA-seq protocol based on PNs. We note that the reliability of generating full-length cDNA material from
single glia (30%) was not as high as from single neurons (90%), suggesting that individual glia may contain fewer mRNA molecules, or dissociation procedure may
cause more damage to glia than neurons.

(D) Distributions of the number of uniquely mapped reads (left) and genes detected (right) per cell. On average, 1 million reads mapped uniquely to the Drosophila
genome per cell, and 3000 genes were detected (CPM > 3).

(E) Heatmap showing expression of housekeeping genes, Act5c and a-Tub84B, and stress-related Hsp70 superfamily genes in individual cells. GH146-GAL4+
cells robustly express housekeeping genes, but stress-related genes are not widely induced, supporting the faithfulness of our RNA-seq measurement. Colors
above columns indicate the cluster assignment of each cell, using color code shown in Figure 2D, revealing that Hsp70-related genes do not drive clustering.
(F) Heatmap showing co-expression of the male-specific genes roX7 and roX2 in individual cells.

In (E) and (F), each column is one cell. Cells were ordered using hierarchical clustering.
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Figure S2. Single-Cell RNA-Seq Analysis of GH146+ PNs, Related to Figure 2

(A) Visualization of GH146+ PN cells using tSNE based on 158 genes identified using ICIM. Each dot is one cell. Cells are arranged according to similarity of
expression profiles of the selected genes. Cells are colored by expression levels of Lim1 (left), Gad7 (middle) (see B for color bar), and by cluster identity as
determined using HDBSCAN, which is a hierarchical density-based clustering algorithm (right). Two distinct clusters express Gad1, one of which also expresses
Lim1; both genes are unique to vPNs, indicating that these clusters correspond to GH746+ vPNs.

(B) Visualization of GH746+ PN cells as in Figure S2A with cells colored according to expression of VGlut (CPM, counts per million). Three adjacent clusters
express VGlut (outlined), which is a unique marker for anterior paired lateral (APL) neurons (Figure S2C and Figure S2D), indicating that these clusters correspond
to APL neurons.

(C) Confocal images showing that APL neurons (indicated by arrows) are labeled by GH146-GAL4 driven UAS-mCD8GFP.

(D) Confocal image showing that APL neurons (arrow) are labeled by VGIut-GAL4 (after intersecting with GH146-Flp). Ncad staining labels neuropil (red), and
antennal lobes are outlined.

In (C) and (D), scale bar, 50 um.

(E) Distribution of sequencing depth across GH146+ cells belonging to each cluster.

(F) Heatmap showing expression of the lineage-specific transcription factors acj6 and vv/ in GH146+ adPN and IPN cells. Cells are ordered by acj6 expression,
then vv/ expression.
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Figure S3. Mapping Clusters to PN Classes Using Newly Identified Markers, Related to Figure 4
(A) Systematic characterization of CG371676-GAL4 expression in PNs after intersecting with GH746-Flp at 48h and 72h APF, and 10d adult. Expression patterns
are summarized in the table: +, expressed; —, not expressed; +/-, expressed in a subset of flies. CG31676-GAL4 stably labels DA1 and DL3 from pupa to adult.

(legend continued on next page)



Note that CG31676-GAL4 also transiently labels DL2a and DA4l adPNs, but we could not unambiguously map them to corresponding clusters. Ncad staining
labels neuropil (red). Scale bar, 20 pm.

(B) Visualization of GH7146+ PN cells using tSNE as in Figure 4A showing expression levels of acj6, mirr, and CG7358 (CPM, counts per million). Clusters #6 and #6’
are both acj6-. Cluster #6’, but not Cluster #6, is mirr+ and CG7358+.

(C) Visualization of GH146+ PN cells using tSNE as in Figure 4A showing expression levels of fru and CG45263 (see color bar in [B]). fru is expressed in Cluster #2,
but not Cluster #2', while CG45263 is expressed in Cluster #2', but not Cluster #2. Both Clusters #2 and #2' map to DA1 PNs.

(D) Schematic summary of birth order and timing of the lateral neuroblast (NB) lineage. Both DA1 and DL3 PNs are born in two different periods, separated by
antennal mechanosensory and motor center (AMMC) neurons (Lin et al., 2012). ALH, after larval hatching.
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Figure S4. Validation of Transcription Factor Expression Patterns, Related to Figure 5
(A) Visualization of GH146+ PN cells using tSNE as in Figure 4A showing expression of prospero (pros) and cut (ct). pros is expressed in Mz19+ PNs, while ct is not.
(B) Antibody staining shows that Mz79+ PNs (arrowheads) express Pros but not Cut at 24 APF, consistent with RNA-seq data, as shown in (A).

(legend continued on next page)



(C) Quantitative PCR (QPCR) measurement of the knockdown efficiency of two UAS-C15-RNAI lines. elav-GAL4 was crossed with either w’’"® (control) or two

C15-RNAI lines, and mRNA was extracted from 5-day-old adult fly heads (n = 3 replicates of 10 heads pooled for each condition). Expression levels are
normalized to actin5C. Error bars show SEM. *p < 0.05; ***p < 0.001 (t test).

(D) Two additional examples of dendrite targeting of Mz19-QF+ PNs in WT and C15 knockdown, as in Figure 5C. DA1 and VA1d glomeruli are outlined in yellow.
(E) Three additional examples of gain-of-function analysis of C15 misexpression in Mz19-GAL4+ MARCM lateral neuroblast (INB) clones, as in Figure 5E.
Mistargeted regions are outlined and corresponding glomeruli are indicated.

(F) Summary of mistargeting phenotypes for UAS-C15 INB clones. ++, fully targeted; —, not targeted; +/-, partially targeted. Lower panel is a schematic of
mistargeting phenotypes. Note that all mistargeted glomeruli are normally innervated by adPNs.

Ncad staining labels neuropil (red). Scale bar, 20 um.
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Figure S5. Analysis of Mz19+ PN Development and Maturation, Related to Figure 6

(A) Gene Ontology (GO) analysis of genes that were up- or downregulated between 24h APF and adult in Mz19+ PNs (p < 10~°). For the top 10 most significantly
enriched GO terms, the significance of enrichment and the number of genes corresponding to each term are shown.

(B) Expression dynamics of the genes identified in (A) spanning the 24h, 36h, 48h, and 72h APF, and adult stages. Genes were classified based on their dynamical
profiles (STAR Methods), revealing 7 distinct dynamical patterns of expression among the downregulated genes (waves 1-7) and 6 such patterns among up-
regulated genes (waves 1-6). For individual genes, the median expression level at each developmental stage is shown in light gray (normalized to maximum
expression across developmental stages). Black line shows the mean expression profile across the genes assigned to a wave. For each wave, the number and
fraction of genes that were TFs and CSMs are indicated.

(C) Visualization of Mz19+ PN cells from developmental stages ranging from 24h APF to adult as in Figure 6B showing expression of CG31676 (CPM, counts per
million). In DA1 PNs, CG31676 is expressed at all stages. In VA1d PNs, CG31676 is expressed at all pupal stages, but not in adult.

(D) Confocal images (anterior stacks) showing CG31676-GAL4 expression after intersecting with GH746-Flp, at various pupal and adult stages. DA1 and VA1d
glomeruli are outlined and adPN cell bodies are indicated (arrow). Consistent with our RNA-seq data (C), CG31676 is expressed at all time points in DA1 PNs,
while in VA1d PNs CG31676 is expressed at all pupal stages and then turned off in 10-day-old adult flies. We observed very weak expression in 3-day-old adult
flies, likely due to perdurance of mMCD8GFP. Ncad staining labels neuropil (red). Scale bar, 20 um.
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Figure S6. Searching for Unique Markers of Individual PN Subtypes, Related to Figure 7

(A) Violin plots showing expression of genes identified as unique marker genes for single GH746+ PN clusters. These 6 genes were identified using the
criteria: (1) > 50% cells within a cluster express the gene, and (2) < 10% cells in any other cluster express the gene. Expression was defined as > 7 CPM, or
log>(CPM+1) > 3. These genes specify 5 distinct PN clusters.

(B) Violin plots showing expression of genes that were identified as unique markers using less stringent criteria than (A). The criteria used here were: (1) > 50% of
the cells in the cluster express the gene, and (2) < 25% of the cells in any other cluster express the gene. 20 genes were found, but many of these genes are clearly

(legend continued on next page)



not unique to a single cluster. This indicates that a search with relaxed stringency yields many genes which are not in fact unique markers. See (A) for scale of
expression level, which is common to all plots.

(C) Relationship between mean expression level and detection failure. Each dot is a gene. Detection was defined as > 7 CPM, or logo(CPM+1) > 3. Detection
failure events can occur because either (1) the gene is not expressed in the cell, or (2) failure to detect expression of the gene despite the presence of mMRNA
transcripts due to technical artifact (called dropouts). Thus, the fraction of detection failure events provides an upper bound on dropout rate. We used this upper
bound to calculate the probability that we failed to detect unique markers for 25 PN clusters due to dropout alone (STAR Methods). mCD8GFP and the 5 neuronal
markers are indicated; they were used for quality filtering (STAR Methods) and shown in Figure 1D.
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Figure S7. Combinatorial Molecular Codes of PN Subtype Identity, Related to Figure 7

(A) Expression levels of genes in the minimal combinatorial codes for GH746+ PN subtype identity. Each column is a cluster and each row is a gene. Color
indicates mean expression of the gene among the GH746+ cells within the cluster (CPM, counts per million). These plots correspond to Figures 7C-7E before
binarization. Cells and genes are arranged by hierarchical clustering on binarized expression states (dendrograms shown in Figures 7C-7E).

(B) Distribution of expression levels across all genes and all GH7146+ cells. We chose to binarize expression levels using a cutoff of logo(CPM+1) = 3 (equivalent to
CPM = 7) because this is a minimum of the distribution.

(C) Robustness of information content of genes to the choice of binary cutoff. We calculated the Pearson correlation between the mutual information of a gene
under various binarization cutoffs and the mutual information at the binarization cutoff that we used for analysis [logo(CPM+1) = 3]. For binarization cutoffs ranging
from 2 to 6, the mutual information was highly similar (p > 0.95), indicating that the precise choice of binarization threshold does not affect our results.

(legend continued on next page)



(D) Performance of multinomial classifier using 11 genes discovered in the genome-wide search for a minimal combinatorial code. Classifier performance was
assessed by leave-one-out cross-validation (STAR Methods). Overall, 82% of individual GH146+ cells were classified correctly. Errors can be attributed to
measurement noise (e.g., dropouts), which gives rise to ambiguity between classes that are distinguished by expression of only one gene (see Figure 7C). Note
that inclusion of additional redundant genes in the coding set would confer robustness to both measurement and biological noise.

(E) Distribution of median expression levels of TFs, CSMs, or other genes (not TF or CSM) in GH146+ cells. No significant differences between the distributions
were found (p > 0.05; Kolmogorov-Smirnov test, two-sample).

(F) Clustering of expression state profiles across clusters of GH146+ cells of TFs and CSMs that are highly informative with respect to cell identity. Average linkage
clustering based on Hamming distance was performed on the binarized expression profiles of the top 30 TFs and CSMs, ranked by mutual information with cell
type identity. Colors next to columns indicate TFs (green) or CSMs (orange). Colors next to rows indicate cluster identity, as shown in Figure 7C-7E. No TF and
CSM pairs display identical expression profiles, suggesting a lack of simple regulatory relationships.
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