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Abstract: The microtopography associated with ice-wedge polygons governs many aspects of 

Arctic ecosystem, permafrost, and hydrologic dynamics from local to regional scales owing to the 

linkages between microtopography and the flow and storage of water, vegetation succession, and 

permafrost dynamics. Wide-spread ice-wedge degradation is transforming low-centered polygons 

into high-centered polygons at an alarming rate. Accurate data on spatial distribution of ice-wedge 

polygons at a pan-Arctic scale are not yet available, despite the availability of sub-meter-scale 

remote sensing imagery. This is because the necessary spatial detail quickly produces data volumes 

that hamper both manual and semi-automated mapping approaches across large geographical 

extents. Accordingly, transforming big imagery into ‘science-ready’ insightful analytics demands 

novel image-to-assessment pipelines that are fueled by advanced machine learning techniques and 

high-performance computational resources. In this exploratory study, we tasked a deep-learning 

driven object instance segmentation method (i.e., the Mask R-CNN) with delineating and 

classifying ice-wedge polygons in very high spatial resolution aerial orthoimagery. We conducted a 

systematic experiment to gauge the performances and interoperability of the Mask R-CNN across 

spatial resolutions (0.15 m to 1 m) and image scene contents (a total of 134 km2) near Nuiqsut, 

Northern Alaska. The trained Mask R-CNN reported mean average precisions of 0.70 and 0.60 at 

thresholds of 0.50 and 0.75, respectively. Manual validations showed that approximately 95% of 

individual ice-wedge polygons were correctly delineated and classified, with an overall 

classification accuracy of 79%. Our findings show that the Mask R-CNN is a robust method to 

automatically identify ice-wedge polygons from fine-resolution optical imagery. Overall, this 

automated imagery-enabled intense mapping approach can provide a foundational framework 

that may propel future pan-Arctic studies of permafrost thaw, tundra landscape evolution, and the 

role of high latitudes in the global climate system. 
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1. Introduction 

Polygonal topography typical of the Circum-Arctic permafrost region is associated with ice 

wedges, developed by repeated frost (or thermal contraction) cracking and formation of ice veins as 

a result of filling cracks with meltwater in the spring time; this process occurs over hundreds to 

thousands of years and leads to formation of large massive-ice bodies [1–14]. Wedge ice is the most 



Remote Sens. 2018, 10, x FOR PEER REVIEW  2 of 32 

 

common type of massive ground ice in the permafrost region. While the vertical extent of 

wedge-shaped epigenetic ice wedges does not exceed the depth of frost cracking (usually 2 to 4 m), 

syngenetic wedges that have formed during continuing sedimentation may have irregular shapes 

and can be very large. For example, ice wedges in yedoma (ice-rich syngenetic permafrost formed in 

the late Pleistocene within unglaciated areas of Eurasia and North America) can reach up to 10 m in 

width and more than 40 m in vertical extent [11,15,16].  

Frost cracking and subsequent development of ice wedges create a network of polygons that 

forms archetypal polygonal patterned tundra occupying a large portion of the Arctic. Leffingwell 

[17] described two major types of ice-wedge polygons (IWP): polygons with depressed blocks and 

polygons with elevated blocks. Later, these types of polygons were renamed to low-centered (LCP) 

and high-centered (HCP) polygons, correspondingly, and since at least the 1950s, many authors 

have used these terms to distinguish major types of polygons [2,14,18–27]. In some publications, a 

third type—flat-centered (FC) polygons—has been added [28–31]. Drew and Tedrow [32] and 

Mackay [33] suggested more complicated classifications of IWP based on their morphology; both 

classifications include six types of polygons. Some authors have described “mixed” polygons; first of 

all, polygons transitional from LCP to HCP [22,23,34]. In this study, we focus on the two major 

types—LCP and HCP polygons—widely represented within the Circum-Arctic permafrost region.  

Low- and high-centered polygons have very distinctive features that can be relatively easily 

detected in satellite imagery and aerial photos. LCP polygons are framed by elevated rims that 

develop above actively growing ice wedges; sometimes the centers of the LCP polygons contain 

shallow ponds. HCP polygons have elevated (dry) centers and well-developed troughs over ice 

wedges, where the troughs often are filled with water. LCP polygons are typical of aggrading stages 

of ice-wedge formation, while HCP polygons usually indicate partly degraded ice wedges [20,35]. 

LCP polygons are commonly observed within relatively young terrain units (e.g., young 

drained-lake basins, floodplains) with actively growing ice wedges and are usually are of a larger 

diameter than HCP polygons, which prevail primarily within older terrain units (e.g., yedoma, old 

drained-lake basins) [36]. The microtopography associated with the IWPs governs many aspects of 

permafrost [34,35,37,38], vegetation [22,25,39,40] and hydrologic dynamics [27,41,42], and Arctic 

ecosystem in general [30,32,35,38] at plot-to-local scales (1–100 m), landscape (100 m–10 km), and 

regional scales (10–1000 km), mainly due to the role of polygon type on the flow and storage of water 

[27,41].  

Through satellite imagery, aerial photos, and ground observations, large-scale ice-wedge 

degradation was observed across the Arctic, and in many places, this degradation has resulted in 

transformation of LCP polygons into HCP polygons in less than a decade [27,29,37,38,43–56]. In 

most cases, ice-wedge degradation, which is extremely hazardous for both environment and 

infrastructure, has been triggered by climatic fluctuations [27,38], wildfires [57], human activities 

[48], or any other factors that lead to increase in the active-layer thickness. Degradation of ice 

wedges is a quasi-cyclic process, which includes five main stages: Undegraded 

wedges—Degradation-initial—Degradation-advanced—Stabilization-initial—Stabilization-advance

d [34,37,38]. In the continuous permafrost zone, accumulation of organic matter in the troughs 

developing on top of degrading wedges eventually leads to decrease in the active-layer thickness 

and formation of the ice-rich soil layer, protecting ice wedges from further degradation. However, 

under certain conditions ice-wedge degradation may result in complete melting of ice wedges and 

formation of large thermokarst lakes [34,48]. The probability of such transformation is higher in 

areas with warmer permafrost, like the Seward Peninsula in Alaska [58]. Understanding of 

spatiotemporal dynamics behind the evolution of ice-wedge polygonal tundra demands for 

objective and detailed maps consolidating the ice wedge extent and successional stage [56,59,60]. 

Vast geographical extent, remoteness, logistical challenges, and high cost retard field-based 

mapping of IWPs on large scales. Remote sensing (RS) provides transformational opportunities to 

observe, monitor, and measure the Arctic polygonal landscape at multiple spatial scales and varying 

temporal windows [59,61–63]. The diameter of most IWPs ranges from 5 m to 30 m [9,36,64] and 

their troughs range from 0 to >1 m depth [34,38,65]; thus, IWPs are difficult to detect in any RS 
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imagery with spatial resolution greater than 4 m [66,67]. High-resolution RS images or Light 

Detection and Ranging (LiDAR) data are commonly used in IWPs mapping applications. While the 

imagery supports the general delineation of polygon boundaries, LiDAR-based digital terrain 

models (DTM) are able further thematically discern the polygon types as HCP, LCP, or flat centered 

IWPs [67]. In a recent study that coupled ground-based surveys and imagery-based interpretations, 

Lousada et al. [60] reported that ice-wedge polygonal networks could be accurately delineated and 

characterized exclusively from very high spatial resolution (VHSR) RS imagery. 

Over the years, a considerable number of studies have been conducted to map and characterize 

IWPs from RS data coming from different sensor platforms, such as unmanned aerial system (UAS), 

manned-aerial, and satellite. (1) UAS sensor platform: Muster et al. [66] deployed a UAS augmented 

with a helium-filled dirigible to image IWPs at Samoylov Island in the Lena River Delta in the 

Russian Arctic at 0.18 m resolution in the visible (VIS) and near-infrared (NIR) ranges. Fraser et al. 

[68] utilized UAS-based imagery for vegetation classification in the low-Arctic and reported an 

overall accuracy of 82% for 11 target classes. (2) Manned-aerial sensor platform: Ulrich et al. [69] 

extracted geomorphometric parameters and topographical properties of polygons from Spitsbergen 

(Norway) and Mars using 0.2 m four-band (VIS and NIR) aerial imagery from HRSC-AX sensor and 

0.3 m imagery from NASA HiRISE mission, respectively. Haltigin et al. [70] collected 0.15 m 

resolution aerial imagery to investigate the evolution of polygonal terrain networks of Axel Heiberg 

Island and Devon Island in the Canadian High Arctic. Necsoiu et al. [43] investigated the temporal 

transformation of IWPs using historical aerial and satellite images and revealed significant 

ice-wedge degradation in Kobuk Valley National Park, Alaska from 1978 to 2005. Dafflon et al. [71] 

acquired VHSR images from a kite-based imaging system and coupled with a digital surface model 

for extracting characteristics of and analyzing the relationship between ice wedges and polygon 

troughs in Barrow on the Alaskan Arctic. (3) Satellite sensor platform: Lewkowicz and Duguay [72] 

explored the use of SPOT satellite imagery to detect permafrost features in the Fosheim Peninsula of 

northern Canadian Ellesmere Island and reported the promising usage of SPOT imagery for 

discerning large and well-developed HCP and large LCP ponds. Günther et al. [49] segmented 

polygon morphology based on ground surveyed centroid of thawed IWPs in the Muostakh, Russia 

using terrain-corrected satellite imagery. Lara et al. [29] conducted polygonal tundra geomorphic 

classification in the Barrow Peninsula, Alaska with an overall accuracy of 0.75 using hybrid 

procedures (pixel-based classification, object-based image analysis, and threshold method) in 

conjunction with images from Landsat-7 (30 m resolution) and Quickbird (0.6 m resolution). Based 

on high-resolution GeoEye-1 satellite imagery, Perreault et al. [55] assessed the extent of high Arctic 

wetlands combining normalized difference vegetation index and a threshold-based classification 

method. Remote sensing-based ice-wedge polygon mapping effort to date follow manual or 

semi-automated approaches, which quickly constrain the geographical extent of the application.  

Due to IWPs’ varying spectral and morphometric characteristics (e.g., irregular shape and 

trough spacing) [73], visual inspection and manual digitization has so far been the most widely 

adopted and promising method to delineate polygons from LiDAR or VHSR imagery 

[13,26,56,65,69,70,74]. Despite the accuracy, the intense-workload of manual digitization constrains 

the size of a study area. Some studies have proposed semi-automated approaches to leverage 

human-augmented IWP extraction from imagery. For example, Skurikhin et al. [73,75] proposed a 

semi-automated hierarchical segmentation method to classify Arctic wetland including ice-wedge 

polygon ponds in a WorldView-2 satellite image. Ulrich et al. [74] presented a method for 

calculating wedge-ice volume using Thiessen polygons automatically created in ArcGIS based on 

polygon-center points. Wainwright et al. [30] semi-automatically delineated IWPs from 

LiDAR-derived digital elevation models. Chen et al. [64] developed a semi-automated procedure to 

map IWPs as one of the land cover types in the Arctic coastal plain using high-resolution Pleiades 

satellite imagery and achieved over 90% producer’s and user’s accuracies. In addition to the efforts 

spent characterizing IWPs on Earth, Pina et al. [76] developed an algorithm to segment terrain 

polygons on the surface of Mars using the dynamics of watershed contours with higher spatial 

resolution images acquired by the Mars Orbiter Camera and Global Surveyor. Pina et al. [77] and 
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Bandeira et al. [78] further used the geometrical and topological information in Pina et al. [76] to 

analyze the polygonal networks.  

To the best of our knowledge, no study has so far developed a fully automated and scalable 

method, which is capable of accurately detecting and characterizing IWPs (polygon type: LCP and 

HCP) from VHSR imagery over large geographical areas (e.g., landscape to pan-Arctic) in an 

operational context. Developing automated methods to map ice-wedge polygonal tundra across the 

pan-Arctic requires a thinking beyond manual/conventional image interpretation approaches and, 

instead, exploiting ‘out-of-the-box’ sophisticated image processing techniques. Recently, deep 

learning (DL) [79] has shown great potential for object instance segmentation in detecting and 

delineating each distinct object in an image [80] of common objects from everyday pictures. While 

DL is securing a solid maturity in computer visions applications, its potentials are still at the 

exploratory stage in the context of remote sensing image classification. Previous studies have used 

DL with RS imagery in order to extract geographical information. For example, Penatti et al. [81] 

conducted the first study to test the transferability of CNN approaches from everyday object 

detection to remote sensing image classification and found that pre-trained CNN models can 

conceivably repurpose over remote sensing scenes. The underlying rationale is that low-level and 

mid-level descriptors of both everyday objects and geo-objects inherit quite similar behaviors, even 

though they finally attain drastically different class labels. Marmanis et al. [82] proposed a 

Convolution Neural Network (CNN)-based semantic segmentation method for VHSR aerial image 

with output as boundaries between classes and tested on ISPRS Potsdamsemantic labeling dataset. 

Ding et al. [83] developed an improved VGG16-Net-backbone Faster RCNN frame for object 

detections in Google Earth optical remote sensing images. Gevaert et al. [84] applied a fully 

convolutional network (FCN) to distinguish non-ground and ground objects from VHSR imagery. 

Accordingly, automated computer vision techniques have reached a stage that, if adopted, could 

meaningfully inform the natural sciences. Simultaneously, high-resolution (>0.25 m) imagery 

collected by DigitalGlobe has been available for over five years to the polar science community 

through a license with the U.S. Federal Government [85]. 

Designing an automated ice-wedge polygon mapping tool is the first step to allow the Arctic 

science community to characterize the transforming continuous tundra landscape. The current study 

builds on our ongoing Arctic permafrost research project that aims to understand the complex and 

interlinked processes responsible for the evolution of the pan-Arctic ice-wedge polygon tundra 

landscape. While polar geoscience stands at the precipice of revolution enabled by the petabytes of 

very high spatial resolution satellite imagery, the distribution of ice-wedge polygons and their status 

are still largely unknown. Most of the large image repositories are still used for reconnaissance and 

manual interpretation purposes. This reflects a prevalent methodological vacuum between ‘big 

imagery’ and Arctic science products. Given the sheer data volumes interlaced with scene 

complexities, conventional remote sensing image classification methods fail to fill this vacuum. Our 

overarching goal is to capitalize on ‘image-to-assessment’ pipelines that are catalyzed by deep 

learning and high-performance computational resources. Recently, He et al. [86] presented that the 

Mask R-CNN algorithm outperforms state-of-the-art instance segmentation methods such as MNC 

[87] and FCIS [88] (MNC and FCIS won the COCO 2015 and 2016 segmentation challenges 

respectively). Although the Mask R-CNN has shown superior performances in everyday object 

detection in computer vision applications, only limited studies/projects have applied the Mask 

R-CNN in RS domain. For example, Pešek [89] developed an open-source GIS tool which allows 

users to train their own network to produce vector masks from RS imagery. In 2018, Remillard 

launched a project “Images to OpenStreetMap (OSM)” focus on delineating baseball, soccer, tennis, 

football, and basketball fields from the Microsoft’s Bing imagery and OSM imagery and adding 

those delineated objects to OSM (https://github.com/jremillard/images-to-osm). In the same year, 

crowdAI started a “Mapping Challenge” aimed at translating RS imagery into thematic maps 

(https://github.com/crowdAI/crowdai-mapping-challenge-mask-rcnn). The main goal of this study 

is to explore the potential of a state-of-the-art DL CNN method (Mask R-CNN) to characterize the 

tundra ice-wedge polygon landscape. We systematically assessed the performance and 
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transferability of the Mask R-CNN in detection, delineation, and classification of IWPs by repeating 

the same inference procedure to image scenes of four different spatial resolutions (0.15, 0.25, 0.5, and 

1 m) over two study sites near the community of Nuiqsut, Northern Alaska. We conducted a 

three-step quantitative assessment and detailed visual inspections to assess the correctness and 

completeness of classification results. To assess the transferability of the Mask R-CNN, we trained 

the Mask R-CNN only using annotation from VHSR imagery for the first study site (Nuiqsut), with a 

spatial resolution of 0.15 m, and then used the trained Mask R-CNN to make instance segmentations 

on resampled VHSR imagery with 0.5 m resolution for Nuiqsut, resampled VHSR imagery with 1 m 

resolution for Nuiqsut, and VHSR imagery with 0.25 m resolution for the second study site (Crea 

Creek).  

2. Methodology 

2.1. Study Area and Image Data 

Our study encompasses two areas near the northern Alaska community of Nuiqsut, which is 

located within the National Petroleum Reserve-Alaska and about 25 km inland from the Beaufort 

Sea [90] (Figure 1). The two study areas are referred to here as ‘Nuiqsut’ (42 km2) and ‘Crea Creek’ 

(92 km2). The study areas are generally characterized by low-gradient Arctic tundra and include 

large features such as lakes and vegetated drained thaw lake basins along with the typical LCPs and 

HCPs. The VIS-NIR aerial images and LiDAR point clouds were acquired in September 2013 using a 

fixed-wing aircraft [91–93]. The original orthorectified images are in the resolutions of 0.15 m 

(Nuiqsut) and 0.25 m (Crea Creek) in NAD_1983_StatePlane_Alaska_4_FIPS_5004_Feet_and 

NAD83_Alaska_Albers coordinate system, respectively. We projected the images into the polar 

stereographic coordinate system. We synthesized two additional image scenes from the original 

scenes of Nuiqsut by downsampling following the conventional nearest neighbor resampling 

technique. The final data set collection contained: (1) the (original) 0.15 m resolution Nuiqsut scene 

(62,584 rows by 63,103 columns); (2) the (resampled from the original) 0.5 m resolution Nuiqsut 

scene (19,076 rows by 19,234 columns); (3) the (resampled from the original) 1 m resolution Nuiqsut 

scene (9538 rows by 9617 columns); and (4) the 0.25 m (original) resolution Crea Creek scene (69,185 

rows by 72,539 columns). 

2.2. Annotated Data 

We selected 340 subsets, each with the dimension of 600 × 600 pixels (i.e., 90 m × 90 m), from the 

false-color composite of the Nuiqsut image (Figure 2) for manual annotation purposes. We chose the 

dimension of annotated data as 600 × 600 pixels based on two considerations: (1) to maximize the 

number of IWPs per subset; and (2) to minimize the error from manual annotation process as a too 

small or too large subset can be difficult for annotation. To avoid a class balancing problem, we 

roughly annotated an even number of objects for HCP and LCP polygons (3728 and 3764 polygonal 

objects). We used the “VGG Image Annotator” web tool 

(http://www.robots.ox.ac.uk/~vgg/software/via/via.html) to annotate training samples for object 

instance segmentation and saved the training data in the format of JavaScript Object Notation (.json), 

which is also the data format being used in some other machine learning training data collection, 

such as COCO (http://cocodataset.org/#home). Finally, we randomly split the annotated 340 subsets 

into three sub datasets based on an 80:10:10 split, which entailed: training dataset (272 subsets 

(Figure 2a)), validation dataset for minimizing overfitting (33 subsets (Figure 2b)), and test dataset 

for evaluating the performance of the trained DL algorithm (35 subsets (Figure 2c)). 
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   Figure 1. Geographical setting of two study areas. The areas are located near the town of Nuiqsut, 

Northern Alaska (a) with the ‘Nuiqsut’ scene including the community of Nuiqsut near the Colville 

River and to the west is the scene ‘Crea Creek’ (b–d). The candidate aerial images scenes are 

presented in false color composites. 
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Figure 2. The 340 subsets of images used in manual annotation. Annotated areas (red outline) from 

the Nuiqsut scene for (a) training (272 subsets), (b) validation (33 subsets), and (c) testing (35 

subsets). 

2.3. General Workflow 

Our automated imagery-based ice-wedge polygon extraction workflow rests on four key steps 

(Figure 3): (1) division of VHSR imagery into overlapping patches; (2) object instance segmentation 

of input patches; (3) mask-to-polygon conversion; (4) eliminate duplicate polygons and compose 

unique polygons. Two block sizes of 600 × 600 pixels and 360 × 360 pixels were used to partition the 

VHSR scenes of Nuiqsut and Crea Creek with an overlap of 20% using the Geospatial Data 

Abstraction Library (GDAL, http://www.gdal.org/). It is worth noting that the two block sizes were 

selected separately in order to match the scale of the annotated data (i.e., 90 × 90 m). The DL 

algorithm performed the object instance segmentation with outputs as predicted binary mask with 

classification information. Finally, we cleaned (e.g., remove duplicates) the output polygons using 

scikit-image (http://scikit-image.org/) and GDAL. 

 

Figure 3. General workflow of automated detection, delineation and classification of ice-wedge 

polygons. 

2.4. Deep Learning Algorithm 

We chose the state-of-the-art Mask R-CNN method [86] to implement the object instance 

segmentation due to its simplicity and effectiveness [94]. The Mask R-CNN method is an extended 

method for object instance segmentation and is built on the Faster R-CNN (a fast and effective 

algorithm for object detection [95]) by including a function for predicting masks for distinct objects 

[86]. Methodologically, the Mask R-CNN is a two-stage algorithm: (1) the Mask R-CNN generates 

proposals (i.e., candidate object bounding boxes) after scanning the image; (2) the Mask R-CNN 

predicts the class, bounding box, and binary mask for each region of interest (RoI) [86]. In terms of 

structure (Figure 4), the Mask R-CNN mainly consists of (1) backbone architecture Residual 

Learning network (ResNet) [96] for feature extraction; (2) Feature Pyramid Network (FPN) [97] for 

improving representation of objects at multiple scales; (3) Region Proposal Network (RPN) for 

generating RoI; (4) RoI Classifier for class prediction of each RoI; (5) Bounding Box Regressor (BBR) 
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for refining RoI; (6) FCN [98] with RoIAlign [86] and bilinear interpolation for predicting 

pixel-accurate mask. A deeper discussion on the Mask R-CNN algorithm is beyond the scope of this 

study; thus, we refer readers to He et al. [86] for a detailed discussion on the mathematical basis of 

the algorithm. 

 

Figure 4. A simplified schematic showing the implementation architecture of the Mask R-CNN. 

2.5. Accuracy Assessment 

We conducted a three-step assessment for the trained Mask R-CNN. First, we assessed the 

mean average precision (mAP: the mean of average precision values of each class) of the trained 

Mask R-CNN with the hold-out test dataset. Second, we randomly selected additional 30 subsets 

(Figure 5) for each study site (including non-IWP samples and excluding previous selected 340 

subsets for Nuiqsut) and manually validate the accuracies of detection, delineation, and 

classification. We evaluated the accuracies of detection, delineation, and classification based on the 

following criteria: a positive detection indicates a IWP is correctly detected by the Mask R-CNN, and 

a negative detection indicates a IWP is not correctly detected by the Mask R-CNN; likewise, a 

positive delineation indicates the Mask R-CNN successfully inferences outline of an IWP based on 

interpreter’s judgement; a positive classification indicates the Mask R-CNN inferences the correct 

type of IWP of a detected IWP. Our manual validation included the following steps: in Step (1) we 

created 30 random square polygons (100 × 100 m) for the each study area with 12 attributes in 

shapefile database (true-positive, false-positive, true-negative, and false-negative for each of 

detection, delineation, and classification respectively) to assess the commission and omission errors; 

In Step (2) we manually counted all IWPs within or crossing the boundaries of the validation square 

polygons; and in Step (3) we filled the number for the each attribute based on the manual counting. 

Third, we corroborated qualitative assessments with detailed visual inspections by coupling 

imagery and LiDAR DTMs. 
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Figure 5. The thirty validation sites (red dots) selected from Nuiqsut (a) and Crea Creek (b) image 

scenes. 

2.6. Implementation 

We implemented the Mask R-CNN method using an open-source package built on Keras and 

Tensorflow developed by the team of Mask-RCNN on Github [99]. The codes are available on 

Github (https://github.com/matterport/Mask_RCNN). We conducted experiments on a customized 

server equipped with an Intel i5 CPU, 16 GB RAM, a GeForce GTX 970 graphic card, and a GeForce 

GTX 1080ti graphic card. In the training process, a graphics processing unit (GPU) (GeForce GTX 

1080ti graphic card) was used to train the adopted ResNet-101 (101 layers) backbone Mask R-CNN 

in the package with a mini-batch size of 2 images, 272 steps per epoch, learning rate of 0.001, 

learning momentum of 0.9, and weight decay of 0.0001. The accessibility of this open-source package 

was the main reason we chose the ResNet-101 rather than ResNet-152 backbone Mask R-NN. We 

modified the loading dataset function for our customized training data and left other parameters in 

default settings. For the full description of parameter settings of the used submodels of the Mask 

R-CNN (e.g., ResNet, RPN, BBR etc.), we refer readers to the model part of the Mask R-CNN 

repository on Github (https://github.com/matterport/Mask_RCNN). Instead of building the Mask 

R-CNN from scratch, we trained our model using the pre-trained weights of the Mask R-CNN for 

COCO because COCO has a large amount of training data for the Mask R-CNN to learn common 

and discriminative features (known as transfer learning). To minimize overfitting, we used the 

validation dataset to decide the most generalized Mask-RCNN. Additionally, random horizontal 

flips augmentation was used to introduce variety in the training data. In the inference process, we 

set a detection confidence threshold as 70% (i.e., detections with confidence less than 70% were 

ignored). Two GPUs were used to accelerate the process of inferencing input patches with 20% 

overlapping by using a data processing queue. As a result, the aerial imagery (63,103 × 62,584 pixels) 

of Nuiqsut with a spatial resolution of 0.15 m, a total of 8134 patches (600 × 600 pixels), was able to 

infer approximately to within 21 min (~ 6.3 fps). 

3. Results 

3.1. Model Optimization and Accuracy  

We optimized the Mask R-CNN model during the training process and evaluated the accuracy 

of the optimized model prior to its application in the case studies. We adopted an early stopping 
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strategy to minimize overfitting with the hold-out validation dataset. We trained the Mask R-CNN 

with a predefined 100 epochs so that we could record the full learning curve of the model. As seen in 

Figure 6a,c–f, the validation loss values reached their lowest and then rebounded, but the training 

loss values continued descending, which indicates that after the 8th epoch, the model tended to 

“memorize” the training data, rather than “learn” to generalize the features of IWPs. Similarly, 

Figure 6b presents that the Mask R-CNN bounding box refinement stopped improving after the 8th 

epoch. Overall, around the 8th epoch (cyan vertical lines in Figure 6) the validation loss value 

reached its lowest. This elucidates that the Mask-RCNN tended to be overfitting after the 8th epoch, 

although all training losses decayed continuously (see Figure 6). Therefore, we selected a Mask 

R-CNN trained for 8 epochs. The convergence at the 8th epoch can be explained by two main factors. 

First, we trained our model using the pre-trained weights of the Mask R-CNN for COCO instead of 

training a Mask R-CNN from randomized weight. Most learning processes for the weights of 

low-level features were skipped. Therefore, our training goal was focused on adjusting the Mask 

R-CNN to recognize IWPs. Second, the relatively small size of our training data directly resulted in 

this early convergence because of the depth of the used network. Finally, we evaluated the Mask 

R-CNN trained for 8 epochs with the hold-out test dataset (35 subsets including 799 IWPs (i.e., 385 

HCPs and 414 LCPs)) (Figure 3). It reported mean average precisions (mAPs) of 0.695 and 0.601 

when intersection-over-union (IoU: the ratio between the intersection and the union of the inferred 

outline and the ground truth outline of an object) thresholds are greater than 0.5 and 0.75.  

 

Figure 6. Loss graphs for Mask R-CNN optimization. (a) Smooth-L1 loss; (b) Mask R-CNN bounding 

box refinement loss; (c) Mask R-CNN classifier loss; (d) mask binary cross-entropy loss; (e) RPN 

bounding box loss; (f) RPN anchor classifier loss. 
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3.2. Case Studies 

We conducted four case studies to systematically assess the performance and transferability of 

the Mask R-CNN by repeating the same inference procedure of the Mask R-CNN over the four 

image scenes: (1) VHSR imagery with 0.15 m resolution for Nuiqsut; (2) resampled VHSR imagery 

with 0.5 m resolution for Nuiqsut; (3) resampled VHSR imagery with 1 m resolution for Nuiqsut; 

and (4) VHSR imagery with 0.25 m resolution for the Crea Creek. The Mask R-CNN was only trained 

on the 0.15 m resolution imagery to support each of the four case studies. 

3.2.1. Case Study 1: 0.15 m Resolution Image Scene 

The total numbers of delineated LCPs and HCPs from the result of 0.15 m image for Nuiqsut are 

32,299 and 11,449. Figure 7 presents the enlarged examples of delineation and classification, and 

geographical distribution of automatically mapped IWPs from the 0.15 m resolution VHSR image of 

Nuiqsut. Table 1 provides the accuracies of detection, delineation, and classification with precision, 

recall and overall accuracy (OA). The OA of the detection is 79% and the precision and recall are 0.98 

and 0.8, respectively. This indicates that approximately 80% of IWPs can be automatically detected 

from the test subset. Within the detected bounding boxes, the OAs of the delineation and 

classification are around 97%. Based on the observation of the enlarged examples, IWPs with clear 

rims, troughs, or other linear boundaries (Figure 7d,f,h,l,n) are easier to be detected than incomplete 

or disjoint IWPs (Figure 7b,j,p). The Mask R-CNN can delineate the boundaries of most IWPs even 

though they exhibit different shape and contextual characteristics. 

3.2.2. Case Study 2: 0.5 m Resolution Image Scene 

The total numbers of delineated LCPs and HCPs from the result of 0.5 m image for Nuiqsut are 

25,037 and 7757. The OA of detection has decreased from 79% to 54% after downsampling the 

Nuiqsut image from 0.15 m to 0.5 m (Table 2). This is likely to mainly be because the Mask R-CNN 

was trained based on the 0.15 m resolution samples; thus, it fails to discern some of the key low-level 

features, which are imperative to defining IWPs at 0.5 m resolution. However, the precision of 

detection improved by 0.01 compared to the case study 1. Similar to case study 1, the Mask R-CNN 

can make accurate delineation and classification regardless of resampling issue. In the resampled 

imagery, linear features between incomplete or disjoint IWPs prone to disappear (Figure 8a,g,i). In 

fact, fewer IWPs are detected in the 0.5 m resolution scenes with incomplete or disjoint IWPs (Figure 

8b,h,j). The effect of resampling does not drastically affect the performance of the Mask R-CNN in 

the scenes with clearly visible troughs or rims (Figure 8d,f,l,n). 

3.2.3. Case Study 3: 1 m Resolution Image Scene 

The total numbers of delineated LCPs and HCPs from the result of 0.5 m image for Nuiqsut are 

10,763 and 1318. Case 3 is based on the resampled VHSR imagery in a 1 m resolution for Nuiqsut. 

The increase of pixel size from 0.15 m to 1 m results in substantial disappearance of IWPs’ edge 

information (Figure 9a,g,i). Therefore, compared the case studies 1 and 2, fewer IWPs are detected 

using the same Mask R-CNN (Table 3). The OA and recall of detection are 0.15, which is more than 5 

times lower than the case study 1 (0.15 m resolution). For the LCPs with wide-span rims and 

troughs, the approach is still able to detect, accurately delineate, and classify IWPs when the widths 

of rims and troughs are greater than 1 m (Figure 9d,f,l). The OAs of the delineation and classification 

are 88% and 100%, respectively. In addition, the number of detected HCPs decreases dramatically as 

the pixel size of the imagery increases, even though the troughs between HCPs are still visible to the 

human eye at 1 m resolution (Figures 7h,p, 8h,p, and 9h,p). 



Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 32 

 

 

Figure 7. Example delineation and classification results using the 0.15 m Nuiqsut image. 

(b,d,f,h,j,l,n,p): detected, delineated, and classified IWPs by the Mask R-CNN where the IWP type 

(low- or high-centered) is given a number 1 (LCP) or 2 (HCP) in the polygon center; (a,c,e,g,i,k,m,o): 

corresponding portions of enlarged VHSR Imagery for Nuiqsut as visual references; (q): their 

locations in the study area; and (r) geographical distribution of all detected, delineated, and classified 

IWPs including both LCP and HCPs. 

Table 1. Accuracy assessment for the original (0.15 m) Nuiqsut image. 

   

Prediction 
Precision Recall 

Overall 

Accuracy (%) Positive Negative 

Ground Truth Detection True 613 151 0.98 0.80 79 
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False 10 0 

Delineation True 597 16 
0.98 0.97 96 

 
False 10 0 

Classification True 606 7 
0.98 0.99 97 

 
False 10 0 

 

Figure 8. Example delineation and classification results using the 0.5 m Nuiqsut image. 

(b,d,f,h,j,l,n,p): detected, delineated, and classified IWPs by the Mask R-CNN where the IWP type 

(low- or high-centered) is given a number 1 (LCP) or 2 (HCP) in the polygon center; (a,c,e,g,i,k,m,o): 

corresponding portions of enlarged VHSR Imagery for Nuiqsut as visual references; (q): their 

locations in the study area; and (r) geographical distribution of all detected, delineated, and classified 

IWPs including both LCP and HCPs. 
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Table 2. Accuracy assessment for the resampled (0.5 m) Nuiqsut image. 

   

Prediction 
Precision Recall 

Overall 

Accuracy (%) Positive Negative 

Ground Truth 

Detection True 419 345 
0.99 0.55 54 

 
False 5 0 

Delineation True 400 20 
0.99 0.95 94 

 
False 4 0 

Classification True 414 5 
0.99 0.99 98 

 
False 5 0 
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Figure 9. Example delineation and classification results draped using the 1 m Nuiqsut image. 

(b,d,f,h,j,l,n,p): detected, delineated, and classified IWPs by the Mask R-CNN where the IWP type 

(low- or high-centered) is given a number 1 (LCP) or 2 (HCP) in the polygon center; (a,c,e,g,i,k,m,o): 

corresponding portions of enlarged VHSR Imagery for Nuiqsut as visual references; (q): their 

locations in the study area; and (r) geographical distribution of all detected, delineated, and classified 

IWPs including both LCP and HCPs. 

Table 3. Accuracy assessment for the resampled (1 m) Nuiqsut image. 

   

Prediction 
Precision Recall 

Overall 

Accuracy (%) Positive Negative 

Ground Truth 

Detection True 113 650 
1.00 0.15 15 

 
False 0 0 

Delineation True 100 14 
1.00 0.88 88 

 
False 0 0 

Classification True 114 0 
1.00 1.00 100 

 
False 0 0 

3.2.4. Case Study 4: 0.25 m Resolution Image Scene 

The total numbers of delineated LCPs and HCPs from the result of 0.25 m image for Crea Creek 

are 77,874 and 45,183. The OAs of detection, delineation, and classification are 72%, 97%, and 95%, 

respectively (Table 4). Based on our manual validation, around 72% of total IWPs can be detected 

with an approximate precision of 0.98. Very similar to the previous case studies, the OAs of 

delineation and classification of IWPs are high, even in this new image scene with slightly coarser 

resolution, particularly for IWPs with clear edges (Figure 10b,f). The Mask R-CNN approach is 

missing incomplete or disjoint IWPs (Figure 10h,l,n), which is reasonable because those IWPs are not 

distinct objects. Disjoint IWPs might be detected and classified more effectively using scene 

classification or semantic classification. 

Table 4. Accuracy assessment for the original (0.25 m) Crea Creek image. 

   

Prediction 
Precision Recall 

Overall 

Accuracy (%) Positive Negative 

Ground Truth 

Detection True 582 221 
0.98 0.72 72 

 
False 9 0 

Delineation True 567 15 
0.99 0.97 97 

 
False 4 0 

Classification True 559 22 
0.99 0.96 95 

 
False 7 0 

3.3. Transferability 

Case studies 1–3 depict the degree of transferability of the Mask R-CNN with respect to the 

spatial resolution and scene content of the input imagery (Figure 11 and Table 5). We trained the 

Mask R-CNN using annotation from VHSR imagery for Nuiqsut with a spatial resolution of 0.15 m. 

The OA of the Mask R-CNN decreases as the pixel size of the imagery increases (Figure 12). The total 

numbers of delineated LCP and HCPs decrease with increasing imagery resolution (Table 5). HCP 

and LCP had various degrees of reaction to the increasing pixel size. The numbers of missed LCP 

and HCPs with 0.15–0.5 m resampling are much lower than with 0.5–1 m resampling. Table 5 also 

shows that HCPs are more sensitive to the resampling than LCPs. For example, 83% of delineated 

HCP in the 0.5 m imagery was missed in the 1 m imagery, compared to 57% for LCPs. This is mainly 

because LCPs have more distinguishable features than HCPs, such as a wet center and a dry rim. 

Case study 4 demonstrates the transferability of the Mask R-CNN in terms of microtopography. The 

two study areas (Nuiqsut and Crea Creek) are geographically close to each other, but they still 

manifest fine-scale variations in the microtopography. The trained Mask R-CNN based on the VHSR 

imagery for Nuiqsut can still achieve 72% OA in a new area and with a different spatial resolution. 
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Figure 10. Example delineation and classification results draped over the corresponding 0.25 m Crea 

Creek image. (b,d,f,h,j,l,n,p): detected, delineated, and classified IWPs by the Mask R-CNN where 

the IWP type (low- or high-centered) is given a number 1 (LCP) or 2 (HCP) in the polygon center; 

(a,c,e,g,i,k,m,o): corresponding portions of enlarged VHSR Imagery for Crea Creek as visual 

references; (q): their locations in the study area; and (r) geographical distribution of all detected, 

delineated, and classified IWPs including both LCP and HCPs. 
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Figure 11. Visual comparison of geographical distribution of delineated LCPs (upper panel) and 

HCPs (lower panel) using VHSR imagery at different spatial resolutions. Here, the results represent 

imagery at 0.15 m (a,d), 0.5 m (b,e), and 1 m resolution (c,f) near the community of Nuiqsut. 

 

 

Figure 12. Summary of overall accuracies for detection (a), delineation (b), and classification (c) for 

Nuisqut and Crea Creek. 

Table 5. The effect of spatial resolution on the performances of Mask R-CNN in the Nuiqsut study 

site to identify low- and high-center ice-wedge polygons. The rate of change represents the change in 

the total number of IWPs compared to the original 0.15 m resolution image. 

Pixel Size of 

Image (m) 

Number of 

Delineated LCP 

Rate of 

Change (%) 

Number of 

Delineated HCP 

Rate of 

Change (%) 

0.15 32,299 - 11449 - 

0.5 25,037 −22 7757 −32 

1 10,763 −57 1318 −83 

3.4. Ice-Wedge Polygons’ Convolutional Feature Maps 

The advent of CNN has led to breakthroughs in image processing [79]. Similarly to other DL 

applications in computer vision, the backbone architecture of the Mask R-CNN relies on 
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convolutional feature map (CFM) from CNN. A CFM is the output layer using a given filter (also 

known as kernel) to the previous layer. During the process of computing CFMs, sliding-window 

operations translate current window-size pixel information to a stack of the same number of CFMs 

by computing and generating the dot product (Figures 13 and 14) with an optimized number of 

selected filters (such as horizontal/vertical filters, sum/average pooling etc.). The ResNet-101 of the 

used Mask R-CNN has five stages (a stage is used to name a layer in the ResNet depending on its 

position in the network): c1, c2, c3, c4, and c5. Figure 13 depicts four CFMs from each of the last 

output layers of the Mask R-CNN stage from 1 to 5 for HCPs. Each stage in the ResNet consists of a 

certain number of residual blocks, and each residual block has three layers. For example, Figure 14 

(4th row) presents four feature maps from the last layer of the w block (i.e., 23th) in the 4th stage. A 

101-layer ResNet includes 23 residual blocks in its 4th stage. Through the proper use of CFMs, the 

Mask R-CNN can detect the locations of HCPs (Figure 13 (4th row)) and LCPs (Figure 14 (4th row)) 

based on the high-level features, which then allows delineation and classification of HCPs and LCPs 

using other representative features from CFMs. 

 

Figure 13. Four selected convolutional feature maps (CFM) from the last output layer of the Mask 

R-CNN stage 1 to 5 for HCPs. Each feature map includes learned features detected across the image. 

The third CFM in the 4th row provides the geospatial location features for HCPs. 
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Figure 14. Four selected convolutional feature maps (CFM) from the last output layer of the Mask 

R-CNN stage 1 to 5 for LCPs. Each feature map includes learned features detected across the image. 

The fourth CFM in the 4th row provides the geospatial location features for LCPs. 

3.5. Visual Inspection 

We qualitatively compared enlarged views for automatically detected IWPs to LiDAR DTM (1 

m spatial resolution) of polygons in the Crea Creek area (Figures 15–17). The LiDAR DTM study 

included a Canny edge raster analysis, which is a widely used edge detector, and terrain profiles in 

the XX’ and YY’ directions. The LiDAR was compared to a false color composite VHSR image for 

HCP, LCP, and incomplete/disjoint IWP (Figures 15a, 16a, and 17a). The troughs of HCPs are 

indistinguishable in the 1m VHRS image because of the surrounding mixed pixels (Figure 15a). HCP 

becomes more visible with the help of LiDAR DTM and derived Canny edge from LiDAR (Figure 

15b,c). We highlighted the breakpoints where the automated delineation spotted the boundaries in 

the microtopography to depict a successful agreement between automated delineation and Canny 

edge information from LiDAR (Figure 15c–e). The exact boundary for a LCP is almost invisible in 

optical imagery at 1 m resolution (Figure 16a). LiDAR DTM and derived Canny edge from LiDAR 

can only detect the “inner circle” edge in a LCP; therefore, the slight disagreement with the 

automated delineation (Figure 16b,c). In contrast, the automatic method captures the actual 

boundary (Figure 16d,e). Incomplete/disjoint IWPs are difficult to detect because they usually do not 

show distinct edges. The Canny edge raster for incomplete/disjoint IWP presents highly 

disorganized edges across the scene (Figure 17). However, the Mask-RCC was able to detect small 

proportions of incomplete/disjoint IWPs (Figure 17a,d,e), despite the image lacking distinct and 

organized boundaries. 
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Figure 15. Qualitative assessments of HCP extent derived from automated optical imagery mapping 

(red lines and arrows) to LiDAR data. (a) False color composite of VHSR image in 1 m resolution; (b) 

LiDAR-derived DTM at 1 m resolution; (c) Canny edge raster from LiDAR DTM; and terrain profiles 

of LiDAR derived XX” (d) and YY’ (e). The number “2” inside each polygon represent an automated 

classification as a HCP. The yellow arrows indicate the degree of agreement between automatic 

delineation and Canny edge. 



Remote Sens. 2018, 10, x FOR PEER REVIEW  21 of 32 

 

 

Figure 16. Qualitative assessments of LCP extent derived from automated optical imagery mapping 

(red lines and arrows) to LiDAR data. (a) False color composite of VHSR image in 1 m resolution; (b) 

LiDAR-derived DTM at 1 m resolution; (c) Canny edge raster from LiDAR DTM; terrain profile of 

XX” (d) and YY’ (e). The number “1” inside each polygon represent an automated classification as a 

LCP. The yellow arrows indicate the degree of agreement between automatic delineation and Canny 

edge. 
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Figure 17. Qualitative assessments of incomplete/disjoint IWP extent derived from automated 

optical imagery mapping (red lines and arrows) to LiDAR data. (a) False color composite of VHSR 

image in 1 m resolution; (b) LiDAR-derived DTM at 1 m resolution; (c) Canny edge raster from 

LiDAR DTM; terrain profile of XX” (d) and YY’ (e). The number “1” inside each polygon represent an 

automated classification as a LCP. 

4. Discussion 

Deep learning leverages computational models to learn representations of data with multi-level 

abstractions. Choosing the right computational model and data is important in deep learning 

applications. In this exploratory study, we selected the Mask R-CNN, which is an object instance 

segmentation method, to conduct automated characterization of ice-wedge polygons. The 

simplicity, effectiveness, and the method’s proven success in processing everyday images have 

previously been reported by He et al. [86] and Liu et al. [94]. To the best of our knowledge, this is the 

first study that used the Mask R-CNN method (or any other object instance segmentation methods 

such as PANet [94] and MaskLab [100]) to detect, delineate, and classify IWPs from VHSR remote 

sensing imagery. However, future efforts should include a systematic experiment of Mask R-CNN 

performance to other CNN-driven semantic segmentation methods in IWP mapping. Also, we need 
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to compare how well CNN methods perform compared to well-established knowledge-driven 

paradigms such as object-based image analysis (OBIA [101]) and other conventional classification 

methods (e.g., pixel-based). It would also be valuable to conduct a detailed analysis on the CNN 

model optimization procedures to improve the processing time by examining a variety of 

combinations of hyperparameters. Optimization is considered to be a critical part of choosing the 

right computational model, because there are many parameters (e.g., regularization and training 

schedule) that control the performance of the overall model. In this study, besides all other default 

regularization settings, we only chose early stopping strategy to minimize overfitting. Without 

proper implementation, the model could either not function or only function with the training data. 

The quality of model outputs pivot to the quality of annotated data. Production of accurate and 

stable annotated data sets is time-, labor-, and cost-intensive, with manual mapping representing 

one extreme. Therefore, it is advantageous to conduct a comprehensive study on the minimum 

requirements and quality of the training datasets, which intend to use in the Mask R-CNN training 

purposes. Here, we only used a training dataset in 0.15 m resolution, while the automated mappings 

in the coarser resolutions may have benefitted from a training dataset in a comparable resolution. 

Mask R-CNN was a successful method in characterizing the Arctic ice-wedge polygonal 

landscape from VHSR images (Figure 12). The algorithm successfully utilized the multi-level feature 

representations learned from the training data for detection, delineation, and classification of targets 

of interest (Figures 13 and 14). However, there is a negative correlation between the overall 

accuracies of detection and (the coarser) spatial resolution of input imagery. This is likely to be due 

to the resolution dependency of the training dataset (0.15 m) in the Mask R-CNN approach. This 

means that the consistency of spatial resolution of both training data and predicting data could 

significantly impact the Mask R-CNN’s performance. Sub-meter resolution commercial satellite 

imagery (<0.25 m) is available across the pan-Artic domain. Thus, a Mask R-CNN derived product, 

with a relaxation to spatial resolution, could potentially be of high value for science applications that 

can benefit from a pan-Arctic ice-wedge polygon map. 

The case studies with their OAs of delineation and classification elucidate the robustness of the 

model to the spatial resolution of the training data. We envision two possible ways to improve the 

detection ability of the Mask R-CNN: (1) enriching training data from the aspects of size and source 

such as training data from multiple spatial resolutions (e.g., UAS, aerial, and satellite imagery, 

because only relatively small amount of annotated data were prepared for the Mask R-CNN due to 

the costly annotation process; or (2) lower the confidence threshold for object detection. In this 

study, we deliberately selected the two extremes of the ice-wedge polygon types—low-centered and 

high-centered polygons—to investigate the preliminary insights related to the feasibility and 

appropriateness of the Mask R-CNN. We expect to progressively enhance the thematic depth of the 

model to discern other polygon classes, such as flat-centered, transitional, and mixed polygons, and 

conical mounds (i.e., thermokarst mounds or baydzherakhs that form as a result of deep melting of 

large ice wedges, predominantly in yedoma regions). It is not surprising that all the OAs of the IWP 

classification are above 95% (Figure 12). Increasing thematic complexity by considering additional 

types of IWPs (such as types A–F [6]) could potentially lower the OAs of classification.  

So far, human-augmented ice-wedge polygon mapping has been the most widely used method 

in Arctic science applications. Mapping ice-wedge polygons can be challenging. In many instances, 

flat- and low-centered polygons exhibit ill-developed polygon boundaries. Traditional methods 

coupled with shallow classifiers (such as nearest-neighbor, support vector machine, and random 

forest) are incompetent in coping with subtle scene variations, especially in the context of 

regional-scale mapping applications. Edge detectors, such as Canny, can decode some of the hidden 

discontinuities in the LiDAR DTM. For example, Canny edge detector can effectively outline the 

boundary of a HCP polygon (Figure 15c). Based on our observations, the Mask-RCNN can still 

successfully detect a small proportion of incomplete/disjoint IWP with an inconspicuous edge, 

which is believed to be the contribution of the feature maps from CNN (Figures 13 and 14). Scene 

classification might be a solution to detect incomplete/disjoint IWP as a complement to the Mask 

R-CNN. Here, we systematically tasked the Mask R-CNN algorithm with the original and spatially 
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synthesized imagery as a stress test to observe the behavior against lost spatial detail. Future efforts 

could expand the stress test by coupling spatial artifacts with spectral, radiometric, and structural 

artifacts. Such experiments could unravel the susceptibility of the automated algorithm to scene 

content variations, which are common in remote sensing imagery due to multitude drivers, such as 

sensor characteristics (e.g., spatial resolution, spectral widths, bit depth), acquisition parameters 

(e.g., low-angle imaging), seasonal variations (e.g., early Summer versus late Summer), and 

pre-processing steps (e.g., pansharpening and data compression).  

Human interpreters are highly capable of seeking high-level semantics while suppressing 

unrelated natural variations and process-induced artifacts in an image scene. We ideally expect the 

automated algorithm to respond in the same manner. Otherwise, the scene dependency could 

greatly impede the scalability of the mapping task over a large domain with multiple sensors and 

varying imaging conditions. When the trough network is pronounced and well connected, 

ice-wedge polygons exhibit bona fide [102] object characteristics in which the object boundaries are 

crisp and can be demarcated clearly and unambiguously from their respective environment. In some 

instances, ice-wedge polygons lack a distinct physical border and blend with the landscape. This 

forces the model to realize an indeterminate (fuzzy) border zone (or boundary-like region), rather 

than a crisp discontinuity delimiting the object of interest. High-centered polygons circumscribe a 

spectrally/texturally homogenous entity resembling the real-world representation (Figure 15). In 

contrast, low-centered polygons sometimes exhibit a repulsion to fidelity. Inundated polygon 

centers and the dissipating wetness along their boundaries are the readily available cues that 

support a positive detection of an IWP and a thematic recognition as a low-centered IWP (Figure 16). 

However, its exact physical boundary is largely undefined in the imagery. The detection would be 

far more challenging in the absence of water at the polygon center. Vogt et al. [103] coupled 

spatio-structural properties with functional dispositions and temporal developments when deciding 

the crispness of the object boundaries. Tundra vegetation is closely linked to moisture status [104], 

which in turn is closely linked to microtopography [105]—both which can vary dramatically within 

just a meter. An overly coarse image, such as the 1 m VHRS in the LCP scenario (Figure 16c), blurs 

the contrasts and spectrally homogenizes the center-rim and trough polygon features, which are 

actually functionally heterogeneous entities in the landscape. Albrecht et al. [106] experimentally 

showed the variability in manual object delineations of scale and generalization and emphasized the 

necessity for degrees of freedom related to fuzziness in the object boundaries. This conceptually 

aligns with Vogt et al. [103], who argued that indeterminacy of object boundaries comes in various 

degrees of abruptness and, thus, discontinuity is a matter of scale and granularity. Accordingly, a 

slight geometrical disagreement between automatically detected polygon boundaries from the 

imagery and DTM-derived polygon edges would probably even persist in a manual delineation. 

Very high spatial resolution remote sensing imagery is radically transforming our ability to 

understand the most remote, logistically challenging, and ecologically fragile landscapes in Polar 

Regions, at greater details than ever before [107]. These image data products and their derivatives 

(e.g., stereo DEMs) result in unprecedented opportunities to map, model, and forecast biological, 

geological, and hydrological functioning in Arctic and Antarctic in an intensive fashion at extensive 

spatial scales. The general notion of ‘topography is stationary with respect to climate change’ does 

not hold true for the Arctic, because microtopographic changes in polygonal tundra due to 

increasing permafrost temperatures are now visible at sub-decadal scale [41]. Thawing of ice-rich 

permafrost can be visible in RS imagery because of subsequent ground subsidence and development 

of troughs in ice-wedge polygon tundra. The entire Arctic has been imaged by commercial satellites 

in sub-meter resolution four times, on average, in the last six years, some places every month, and 

the collection is set to continue for at least another three years [85]. Arctic researchers now have 

access to approximately 2 petabytes of VHSR commercial satellite image repositories, such as Polar 

Geospatial Center (PGC) at University of Minnesota. Moreover, we now have an opportunity to 

observe permafrost thaw and disturbance across the Arctic region in a near real-time fashion due to 

recent and increasing number of launches of SmallSats.  
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However, scientific opportunities of ‘big imagery’ have so far been poorly explored. Shifting 

from megabytes to petabytes of imagery demands novel computational approaches to interpretation 

coupled with efficient use of high-performance parallel and distributed computing resources [108] 

and reliance on an ecosystem of integrated digital resources and services [109], such as National 

Extreme Science and Engineering Discovery Environment (XSEDE, https://www.xsede.org/). These 

cyberinfrastructure platforms can support data discovery and access. Parallel to the revolution of the 

spatial resolution of commercial satellite imagery, we are experiencing a radical valence towards 

computer vision approaches that successfully link low-level motifs with high-level semantics. Deep 

learning approaches excel at identifying higher-order texture features and contextual characteristics 

critical for uncovering complex data representations in satellite imagery. These methods are 

promising compared to standard remote sensing classification approaches (e.g., object-based image 

analysis) at the expense of greater computational complexity. For example, Witharana and Lynch 

[107] systematically showed the conceptual and implementation caveats of the OBIA framework in 

autonomous censusing of Antarctic wildlife based on sub-meter satellite imagery using continental 

scale, repeatable mapping applications. 

The efficient use of GPUs is essential for the success of the CNN [79]. Conducting pan-Arctic 

scale characterization ice-wedge polygons from commercial satellite imagery demands a 

computationally scalable and efficient solution. Here, the performance of I/O and the Mask R-CNN 

prediction must be optimized and the image data streamed directly from the data repositories to 

computing clusters in order to minimize the I/O bound issue. Strategies such as the Message Passing 

Interface (MPI, a distributed memory parallel model) may allow the implementation of the Mask 

R-CNN predictions on a large number of available GPUs (Figure 18). A master node would control 

data flow, such as images distribution and result collection using job queue. Each GPU-node would 

then receive an assigned image and execute prediction process across the whole image and return 

the final result in the master node.  

 

Figure 18. A tentative high-performance computational solution for characterizing IWPs from 

commercial satellite imagery across the pan-Arctic domain. 
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5. Conclusions 

Imagery-based IWP mapping is still largely constrained to time- and labor-intensive 

human-augmented workflows. The rapid influx of sub-meter resolution commercial satellite 

imagery to the polar science community demands high-performance image analysis workflows to 

meet the ever-increasing demand for imagery-enabled science products. We applied the Mask 

R-CNN to automatically detect and delineate ice-wedge polygons and identify their type. Four case 

studies from two study sites were used to assess the performance and transferability of the Mask 

R-CNN for the mission of characterizing the tundra ice-wedge polygon landscape. Our results 

report that: (1) the Mask R-CNN can detect up to 79% of IWPs in study sites with a VHSR imagery 

pixel resolution of 0.15 m and around 72% of IWPs with the imagery with a pixel resolution of 0.25 

m; (2) besides promising performance in detection, the Mask R-CNN can delineate and classify 

detected IWPs accurately; (3) the pressure test of the Mask R-CNN on resampled imagery shows the 

flexibility and potential in automatically mapping IWPs in coarser RS images. Findings of this study 

provide an extensible framework for imagery-enabled intense mapping of ice-wedge polygons at 

extensive spatial and temporal scales.  

While the Mask R-CNN presents promising ability in automatically characterizing IWPs, 

further studies are necessary to fully understand the use of deep learning-driven object instance 

segmentation in characterizing IWPs. Our future work will focus on four main directions: (1) a 

comprehensive comparison study on how well the Mask R-CNN performs compared to other 

methods (e.g., OBIA, PANet, and MaskLab etc.); (2) a full analysis on model optimization 

procedures by examining a variety of combinations of hyperparameters; (3) a detailed analysis on 

the minimum requirements and quality of the training datasets, which intend to use in the Mask 

R-CNN training purposes; (4) a stress analysis by coupling spatial artifacts with spectral, 

radiometric, and structural artifacts. 
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