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Abstract— Physical sampling of water for off-site analysis is
necessary for many applications like monitoring the quality of
drinking water in reservoirs, understanding marine ecosystems,
and measuring contamination levels in fresh-water systems. In
this paper, the focus is on algorithms for efficient measurement
and sampling using a multi-robot, data-driven, water-sampling
behavior, where autonomous surface vehicles plan and execute
water sampling using the chlorophyll density as a cue for
plankton-rich water samples. We use two Autonomous Surface
Vehicles (ASVs), one equipped with a water quality sensor and
the other equipped with a water-sampling apparatus. The ASV
with the sensor acts as an explorer, measuring and building a
spatial map of chlorophyll density in the given region of interest.
The ASV equipped with the water sampling apparatus makes
decisions in real time on where to sample the water based on
the suggestions made by the explorer robot.

We evaluate the system in the context of measuring chloro-
phyll distributions. We do this both in simulation based on
real geophysical data from MODIS measurements, and on real
robots in a water reservoir. We demonstrate the effectiveness
of the proposed approach in several ways including in terms of
mean error in the interpolated data as a function of distance
traveled.

I. INTRODUCTION

In this paper we propose and evaluate the design of a

multi-robot system composed of two heterogeneous robots

– one equipped with a water quality sensor to measure a

phenomenon, the other one equipped with a water sampling

apparatus for collection of water samples in real time.

Collection of water samples is an essential element of

marine science, marine biology, limnology, public health, and

related disciplines. While some measurements can be made

in situ and in real time, many important measurements can

only be accomplished by collecting physical samples in the

domain of interest and doing the analysis at a suitable remote

facility (i.e., “back in the lab”). In many cases, the selection

of suitable sampling locations can have a large impact on

the quality and accuracy of the estimation process: for

example if pollutant extrema are being estimated. Traditional

methods for sampling depend heavily on manual labor, are

time consuming, and can be fraught with risks of human

error. Robotic sampling systems allow scientists to collect
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Fig. 1. Two Clearpath Heron ASVs (a), one equipped with a water quality
sensor (b), another with a water sampling apparatus (c).

richer and more complete data sets that would normally be

impossible using traditional manual data collection [1].

In this paper, we address the problem of estimating a

spatially-varying phenomenon over a region and collecting

water samples with emphasis on good sampling locations

without any prior knowledge of the spatial field. This task

is completed by a heterogeneous robotic team, composed

of two robotic boats, an explorer that measures variables to

suggest sample utility and a sampler that collects physical

samples (Figure 1). Das et al. [2] proposed a probabilistic

method for a single Autonomous Underwater Vehicle (AUV)

that can monitor and sample. In our case, we divide the

task between two robots. This provides an efficient trade

off between system complexity, payload capacity, and run

time, besides improving the quality of the collected samples

– where quality is expressed as the sum of measured values

of the samples collected.

In particular, such a task leads to two related subprob-

lems: exploration and sampling. We propose an exploration

strategy for the explorer that makes real time observations

to create a preliminary map and suggest potential locations

that are good for sampling. The sampler then uses these

suggestions to decide on the best location and collects water

samples at these locations. Our exploration technique is

based on the concept of frontier-based exploration, similar to

that introduced by Yamauchi [3] for indoor map building and

exploration. In this approach, the robot makes exploratory

decisions based on the latest information gathered. This

frontier-based technique scales well with the size of the

region, differently from common coverage approaches that

employ a boustrophedonic coverage path [4], [5]. Notice that

the absence of prior information on the spatial distribution of

the data prevents us from using alternative powerful selective

coverage methods [6]–[10].

We design a strategy for the sampler to choose among the

locations where measurements were taken by the explorer,
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so that the physical sample is also associated with a prior

sensor measurement. Note that in the scenario considered,

it is not ideal to wait until the end of exploration: first, the

physical sample should be collected temporally close to the

measurement; second, in this way the total time spent on

sampling is optimized. There are many variants and solutions

for this problem in the field of spatial sampling. Girdhar et

al. propose a multi-choice hiring algorithm [11] for making

irrevocable hiring decisions from a stream of candidates.

Another approach is to use multiple time windows and treat

sampling within each window as a classic secretary hiring

problem as proposed by Bateni et al. in submodular secretary

algorithm [12]. We will further discuss the submodular

analysis of the secretary algorithm in Section III-B.

There is a body of existing work on using multi-robot

systems to explore and map a spatial phenomenon. In [13],

Valada et al. developed a low-cost multirobot autonomous

platform, and tested the proposed system for monitoring

water quality. The paper proposes a discretization of the area

and a strategy based on maximum uncertainty. Girdhar et al.

demonstrated a heterogeneous multirobot system composed

of Unmanned Aerial Vehicle (UAV), Autonomous Surface

Vehicle (ASV), and an AUV covering an area of interest [14],

where the regions to cover are given by a human expert.

Many systems have been proposed that are capable of

collecting water samples. A catamaran with a water sampling

system was proposed by Caccia et al. [15] and tested near

Antarctica. Ore et al. [16] presented a UAV equipped with

a water sampling apparatus. Robotic physical sampling has

also been approached in domains other than marine robotics,

such as planetary robots or mining robots to collect samples

of rocks, ores, and other terrestrial samples (e.g., [17]). These

papers focus more on the hardware design of the sampling

platform and the autonomy that allows robots to navigate

environments and collect samples, and not on the sampling

location selection strategy as proposed in this paper.

Exploration techniques have a key application in ad-

dressing search and rescue problems [18], and gas leakage

detection [19]. Some methods [6], [20] assume to have a

priori information available so that areas can be selectively

explored to increase the reward over time. However, in our

scenario, prior information is not available and is estimated

in real time by the explorer. Our focus is on building

a representation of the spatial field and making informed

decisions about when and where to collect a water sample.

The paper is organized as follows. An overview of the

problem and the proposed methods for the robotic team

are presented in the next two sections. In Section IV,

we validate the proposed method both in simulations and

field experiments. Finally, Section V concludes the paper

discussing some of the lesson learned and outlining future

work.

II. PROBLEM STATEMENT

Two ASVs are deployed in a continuous two-dimensional

area of interest E ⊂ R
2 with user-defined boundaries.

We assume that such an area is obstacle-free as in many

marine science expeditions. Both the vehicles navigate using

differential drive and are equipped with GPS to localize

and WiFi channel for communication. The explorer ASV

is equipped with a water quality sensor and is assigned with

the task of exploring the region by building a representation

of the spatial phenomenon, and thus suggesting interesting

locations where to collect water samples. The sampler ASV

has a water sampling apparatus with k sampling units to

collect water samples to be analyzed a posteriori in the lab.

As the mission evolves, the explorer selects a series of desti-

nation poses to get more measurements and builds a reliable

model of the area by taking measurements at locations with

high uncertainty. At the same time, the sampler receives

measurements from the explorer and uses this information

to decide where to take a sample. The mission progresses

up to the mission duration Tm, which generally depends on

the specific application. All k units of the water sampling

apparatus should be used within the mission duration Tm.

Even if the ultimate objective of the multirobot team is

to maximize the total value of the collected samples, this

process leads to two related problems addressed in this paper:

1) Exploration: explorer selects a sequence of poses Q =
〈q0, q1, . . . , qn〉, with qi ∈ E , so that the model of

the area converges to the true phenomenon. Note that

this process is run on-line, and the explorer makes

decisions as new measurements yi associated with GPS

locations x
i are collected. The goal is to improve the

quality of the map and reduce the traveled distance.

2) Sampling: based on all the measurements Y, the sam-

pler selects a number of locations L to collect physical

samples, where |L| = k and l ∈ L ⇐⇒ ∃yi ∈
Y | xi = l. The final objective is to maximize the

sum of the values at sampled locations (
∑

l∈L∗ f(l))
within the maximum duration of the mission Tm.

Intuitively, the performance of the sampler can be improved

by improving the performance of the explorer.

III. INFORMED STRATEGIC SAMPLING

The proposed system is based on using two robots that

coordinate with each other to achieve the ultimate goal of

sampling. Frontier-based exploration is used by the explorer,

while a variant of the secretary hiring problem is used for

the sampler. The following subsections report the details of

both components.

A. Gaussian Process Frontier-based Exploration

The explorer’s objective is to select locations L∗ =
[x1,x2, . . . ,xm] over time such that the phenomenon is

mapped efficiently. Note that, while the robot is traveling

to those locations, measurements Y = [y1, y2, . . . , yt] with

associated GPS locations X = [x1,x2, . . . ,xt] are collected.

The goal is to optimize the time and the traveled distance,

yet create a good model f̂(x) of the spatial phenomenon

f(x).
With finite time and finite battery life of the robot,

it is not feasible to take measurements at every loca-

tion in the region of interest E . Hence, we use Gaus-
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Fig. 2. Candidate locations for the explorer generated by two techniques
at a mission time step. The colormap represents the variance in the spatial
representation of the field. Red circles represent the potential candidate
locations l. Black lines show the contours. (a) Contour-based location
selection. (b) Fixed-window location selection.

sian Processes (GP) [21] to model the spatial field. In

particular, a phenomenon over locations W can be esti-

mated as a posterior distribution p(f(W) | W,X,Y) ∼
N (μW,ΣW) fitted over a set of noisy observations Y

made at locations X. The mean vector μW is obtained

as μW = μ(W) + K(X,W)TK(X,X)−1(Y − μ(X))
and represents the estimate of the phenomenon, while

the covariance matrix is given by ΣW = K(W,W) −
K(X,W)TK(X,X)−1K(X,W). Mean and covariance

functions should be formulated to completely define a GP.

As done in mainstream approach, mean is assumed to be

zero, and the covariance function k(x,x′), is a radial basis

kernel (RBF):

k(x,x′) = σ2

f exp
(

−
|x− x

′|2

2l2

)

, (1)

where signal variance σ2

f and length scale l2 are hyper-

parameters that encode amplitude and smoothness. Note that,

with a GP, it is possible to quantify the uncertainty of the

estimates in W by looking at the main diagonal of ΣW,

also called predictive variance.

Our exploration technique uses a one-step look ahead,

where the robot decides on a set of locations to visit at

epoch m only after reaching the chosen location of epoch

m − 1. We propose two methods to generate a list of

locations (Figure 2). One of the approaches is to consider

locations on the outer-most contour between a region with

high variance and a region with low variance (Figure 2(a)).

An easier method is to consider all the locations on a fixed

planning window centered on the current position of the

robot (Figure 2(b)).

The list of new locations is added to the list of candidate

locations L, thus the algorithm chooses among all the loca-

tions around the current trajectory of the explorer. The ratio-

nale is that every measurement decreases the variance within

a window; as such, the ASV should go to the boundary of

that window to build an efficient representation of the spatial

field with minimum distance traveled. Candidate locations

L are then evaluated based on the predicted variance at

these locations according to the learned GP model and

their distance from the current robot location. The location

with highest predicted variance and least distance is chosen

as the current step target. We use a normalized blending

function (Eq. (2)) to resolve the trade-off between distance

Fig. 3. RMSE of the generated map of Chlorophyll density plotted against
distance traveled by the robot. The comparison is between multiple sized
fixed windows. Error bars indicate standard deviation over five real time
simulation trials. Note that the x-axis starts at 100m.

Fig. 4. RMSE of the generated map of Chlorophyll density plotted
against distance traveled by the robot. The comparison is between fixed
window technique and contour based technique. Error bars indicate standard
deviation over five real time simulation trials. Note that the x-axis starts at
100m.

and variance.

l∗ = argmin
l∈L

((1− w(t)) ∗ d̃(xm, l) + w(t) ∗ ṽ(l)), (2)

where d̃(xm, l) = d(xm, l)/maxl∈L d(xm, l) is a normal-

ized distance between the current robot position and candi-

date location l; and ṽ(l) = 1 − (v(l)/maxl∈L v(l)) is the

normalized variance at location l. With time, it is beneficial

to explore the locations with higher variance even if they

are far from the robot’s current location. We need to weigh

the variance higher as the time proceeds. Hence, we use a

function for weight w over time, giving more importance to

the variance criterion as exploration time proceeds:

w(t) =
t

t+ r
, (3)

where r ≥ 0 is a constant that tunes the steepness of the

curve.

We evaluated both the techniques to generate a set of

candidate locations mentioned in Figure 2 using a simulated

world with chlorophyll measurements. The details about the

simulations will be discussed in Section IV-A. We built

a representation of the world as the robot was traveling

and collecting measurements. Figures 3 and 4 show the

root mean squared error (RMSE) of the phenomenon model
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f̂(x) with the ground truth f(x) plotted against the distance

traveled. Figure 3 presents a comparison between differently

sized fixed windows and Figure 4 presents a comparison

between the fixed window and contour-based candidate se-

lection methods. The contour-based method travels longer

distances to improve the quality of the map, thus compro-

mising the minimum distance criterion. Because of its better

performance, we will consider the fixed window candidate

selection technique in the rest of this paper.

B. Look-back Selective Sampling

The explorer robot, while exploring the region to build

the model, communicates potential candidates for collecting

water samples. Then the sampler’s task is to maintain a list

of these candidate locations and strategically decide on k
locations to collect water samples from – recall that k is the

maximum number of samples that can be collected. There are

at least two approaches that one can think of for this scenario:

the first one is to start making decisions as soon as candidate

suggestions come from the explorer; the second is to wait

until the explorer has completely mapped the scalar field

and then use all the candidate locations to pick k locations.

However, in our application of sampling water from the

surface of the water body based on its current properties,

it is very important that the water quality measurement and

the physical water sample are gathered temporally close to

each other. This is because of the dynamic behavior of the

phenomenon that we are trying to capture. Hence, in this

paper we discuss a technique to collect physical samples

in parallel with the explorer and achieve a good sampling

score by collecting samples within the peaks (hotspots) in

the spatial field.

Given M measurements – i.e., candidate sampling posi-

tions – we need to choose k sample locations that optimize

the quality of the final result. Since we are looking at

simultaneous decision making along with the explorer, there

is a need for optimal stopping criteria – in other words,

when the sampler decides to use one of the remaining water

sampling units to collect a physical sample. This problem

has similarities with the classic Secretary Problem that uses

optimal stopping theory. The basic form of the secretary

problem has n applicants who are interviewed in random

order, and a decision is to be made immediately after every

interview. Once rejected, an applicant cannot be recalled.

So, the problem is to choose an optimal stopping rule to

maximize the probability of selecting the best candidate.

Our problem is a variant of this problem as we need to

choose k sample points instead of just one. Moreover, we

have an advantage: the robot can look back and choose an

old candidate if it is the best location to sample water from.

In our case, we want to maximize the sum of the values at

sampled locations (
∑

l∈L∗ f(l)) with a minimum distance

constraint (Td). The threshold Td prevents acquisition of

spatially neighboring samples. The value for Td is application

specific and also depends on the possible error in robot

localization. We still need a stopping rule to make our

decision. Hence, we use a variant of the standard secretary

problem algorithm that suggests we reject the first n/e
candidates and then stop at the first candidate with a higher

ranking than all the ones evaluated until now. In this way,

the probability of success is maximized and is 1/e [22]. In

our case, we need to choose k samples, hence the stopping

threshold becomes n/(ke).

Algorithm 1 Look-back Selective Sampling Algorithm

Input: Number of water sampling units k
Measurements frequency in Hz, f

Mission duration in seconds, Tm

Distance threshold in meters, Td

Output: List of selected candidates L∗ where sampler should

take samples

1: τ = Tm∗f
k

� Total maximum number of measurements

for each water sampling unit

2: L = ∅ � List of candidates suggested by the explorer

3: L∗ = ∅ � List of selected candidates

4: Cc = 0 � Current candidate counter

5: found = false � Flag to identify sample chosen within

τ
6: repeat

7: l = receiveMeasurementFromExplorer()
8: Cc = Cc + 1
9: if ( Distance(l, L∗) > Td ) then

10: L = L ∪ l
11: end if

12: if Cc == τ/e then

13: ymax = maxl∈L(yl) � yl: measured value at l
14: else if Cc > τ/e then

15: if yl > ymax then

16: l∗ = l
17: found = true

18: else if Cc == τ then � Time slot expired for k
19: l∗ = argmaxl∈L yl
20: found = true

21: end if

22: if found == true then

23: goToAndSample(l∗)

24: L∗ = L∗ ∪ l∗

25: remove l∗ and its neighbors within Td from

L
26: Cc = 0
27: found = false

28: end if

29: end if

30: until |L∗| ≥ k

Kleinberg [24] suggested an algorithm that works by

splitting the candidates in approximately two half intervals

chosen randomly using a binomial distribution B(n, 0.5).
Then, the algorithm proceeds by recursively applying the

classic secretary algorithm. The submodular secretary algo-

rithm proposed by Bateni et al. [12] provides a mechanism

to select the set of candidates with the highest cumulative

rating. This algorithm could be a good fit for our problem of
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Fig. 5. (a) Gazebo simulation for the ASV [23] used in our experiments. (b) Simulated chlorophyll density map overlaid on top of the water surface.
The colorbar shows the simulated chlorophyll density. (c) Part of the Lake Nighthorse, Durango used for running simulation experiments.

making online decision about the water sampling. However,

the submodular algorithm splits the samples uniformly into

k equal windows and the samples from one window are

not considered while making a decision for another window.

We would like to have an option to look back into all the

windows while making the decision. This is because, in our

application, we are not bound by the trajectory followed

by the explorer. The sampler robot is free to go back and

visit any old measured location if it does not find any

eligible candidate as the time proceeds. Hence, we propose

a look-back selective sampling technique, where the robot

appends new candidates into a list and uses the list to look

back if there are no eligible candidates within the time

threshold. The pseudo-code for our approach is presented

in Algorithm 1.

Line 1 divides the maximum number of measurements

over the mission in k uniform time slots. Line 9 checks if a

new measurement taken at location l is far enough from the

currently selected sampling locations. Line 12 is the secretary

problem threshold to get optimal probability. Line 15 makes

an irrevocable decision, following the secretary problem

algorithm. However, if the time slot (τ ) for a water sampling

unit expires (Line 18), then the sampler samples from the

location with value ymax. The rationale is that given k water

sampling units, full mission time (Tm) should not be spent

on just one unit.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We implemented the proposed algorithms in the Robot

Operating System (ROS) framework [25] and we evaluated

the system both in simulation and in the field on real robots.

The simulation environment allows us to report repeatable

controlled measurements of performance using realistic data

with perfect ground truth. The field deployment lets us

observe the performance and feasibility of our approach in

practice and confirm its utility and usability. Three different

setups are used in this paper to extensively evaluate the

proposed system: 1. Simulated robots exploring and sam-

pling from a synthetically created world, 2. Real world

data (chlorophyll concentration in the flood plains of the

Amazon) is used to create a world for simulated robots, and

3. deployment of two robotic boats in a reservoir to map the

Fig. 6. Chlorophyll concentration dataset used for validating our ex-
periments : (a) Flood plains of Amazon river. Considered region is ap-
proximately 2 km× 2 km (b) Chlorophyll concentration (mg/m3) map
generated from MODIS reflectance values [27] for the area in (a).

chlorophyll density distribution and collect water samples

rich in chlorophyll content.

A. Simulations

Gazebo with an ASV plugin [26] that simulates a physi-

cally realistic Clearpath Heron robotic boat (Figure 5(a)) is

used in our experiments due to its capabilities of simulating

the vehicle dynamics to reasonable precision. We created

a ROS node to simulate a water quality sensor, returning

measurements at given GPS locations, according to some

data source.

The synthetic world, along with the simulator, are shown

in Figure 5. In particular, Figure 5(b) shows synthetic data

simulating a chlorophyll density field overlaid on top of

the water surface. To generate such data, we used multi-

Gaussian models to imitate the chlorophyll dense regions and

its diffusion on the water surface. GPS data from a region

(100m× 90m) in Lake Nighthorse, Durango, CO (shown

in Figure 5(c)) is used as the underlying localization for our

simulations. We performed five repetitions for each of the

experiments in real time simulation.

The real setup in our simulations uses the chlorophyll

concentration (µg/m3) map, at the flood plains of Amazon,

generated from MODIS reflectance values [27]. We chose

a bounded region of size 2 km× 2 km (Figure 6(a)) from

this dataset to build an environment for the simulated ASVs.

The spatial field from this dataset is presented in Figure 6(b).

We evaluate our system by initially comparing and testing

both the components (explorer and sampler) separately and

then we present results from the whole system coordinating
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Fig. 7. Trajectories planned and traversed (Yellow lines) by the ASV
according to: (a) Planning window based GP-frontier explorer. (b) Global
maximum variance search. (c) Lawnmower coverage.

towards the collection of water samples with high utility

measured in terms of sampling score.

1) Evaluating the explorer: To estimate the utility of

our exploration algorithm, we measure its performance in

terms of the root mean squared error (RMSE) between the

generated representation and the ground truth over distance

traveled and compare this to alternative state of the art

approaches. Note that most methods assure good data as time

(or distance traveled) approaches infinity, but one attribute

of interest is to try and acquire a good estimate as early

as possible. Prior approaches to such coverage and sampling

problems can be grouped as deterministic complete coverage

(such as the boustrophedonic coverage, or “lawnmower”

algorithm [4] or stochastic methods).

In this paper, we compare the GP-frontier based explorer

to two other exploration techniques: global maximum vari-

ance search, and lawnmower coverage. Global maximum

variance search involves predicting the variance at every

location in the region and then searching over the entire grid

world. These two operations are computationally expensive

compared to a small set of predictions needed for our

approach. As a reminder, our approach needs predictions

only at the locations that lie on the planning window bound-

ary (Figure 2(b)). Furthermore, global maximum variance

search generates longer trajectories as shown in Figure 7(b)

thus making it power inefficient compared to our approach.

The traditional approach to covering a partially observable,

obstacle-free region is to employ a boustrophedonic or

lawnmower coverage. Such complete surveys (Figure 7(c))

are infeasible as we are limited by battery life on the robots.

We compare these exploration techniques by computing

the RMSE of the generated representation relative to the

ground truth data (Figure 5(b) and Figure 6(b)):

RMSEd =

√

∑

c∈E′(f̂ t(c)− f(c))2

|E ′|
, (4)

where RMSEd is the root mean squared error of the gen-

erated map of Chlorophyll density after traveling a given

distance d, c ∈ E ′ is the set of cells from the discretized

world, f̂ t(c) is the predicted value at c with the GP at

time t, and f(c) is the ground truth value at c. The plots

in Figure 8 illustrate that, as the travel distance increases,

more of the world is explored by all techniques and they all

Fig. 8. RMSE of the generated map of Chlorophyll density plotted against
travel distance. Plots from different exploration techniques validated on
simulated data.

Fig. 9. RMSE of the generated map of Chlorophyll density plotted against
travel distance. Plots from different exploration techniques validated on real
Chlorophyll concentration data from Amazon flood plains.

converge to a good representation of the world. Nevertheless,

the GP-frontier explorer generates a good representation of

the spatial field with less traveled distance, by choosing right

locations to visit and map, thus providing better results than

other techniques compared in this paper.

Figure 9 presents the RMSE when operating in a larger

field and operating in an environment created using the

real chlorophyll concentration dataset. The GP-frontier based

explorer performs well in the beginning and later performs on

par with the maximum variance search technique. The larger

field and fast changing weight function (Eq. (2)) affect the

performance of our technique.

2) Evaluating the sampler: A smart sampler can choose

locations with a spectrum of measurements to represent

the diversity in the spatial field, or it can sample from

Fig. 10. Simulated distributions of chlorophyll density with the candidate
locations (red dots) selected for collecting water samples. (a) Look-back
Selective Sampling approach, (b) Submodular Secretary Algorithm.
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Fig. 11. (a) Rogers Reservoir, Durango, CO, where field experiments were conducted. (b) The explorer trajectory (yellow) and the chosen sampling
candidates (red circles). (c) The spatial mapping of chlorophyll density (µg/l) generated using explorer measurements. Red-dots are the chosen candidate
locations for water samples.

Fig. 12. Results from simulations with synthetic data (a) and real data (b).
The bar plots indicate the sampling score between two sampling methods.
The error bars show the standard deviation over five real time trials.

locations that give high rewards. For our application, we

want the samples from hotspot regions that are high in

chlorophyll concentration. However, we also do not want

all the samples to be from the same spot. Hence, to evaluate

such a system we propose a sample scoring metric which

evaluates the sampling techniques according to their ability

to choose non-neighboring samples from hotspot regions.

The maximum value (Mvalue) that can be achieved by any

sampling technique is computed by summing the k largest

values among all data measurements (f(x)) provided by the

explorer. The scoring function is the ratio of value achieved

by the sampling algorithm to the maximum achievable value:

Score =

∑

l∈L∗ f(l)

Mvalue

. (5)

We compare our look-back selective sampling with the

submodular secretary algorithm [12] and Figure 10 presents

the sample locations chosen (red dots) by both the algo-

rithms. Looking at the score of the two algorithms (Fig-

ure 12), the look-back selective sampling technique appears

to be more suitable for our application. This is because the

submodular secretary algorithm divides the whole segment

into windows and considers the candidates only within a

window. However, in our application of sampling from a

bounded region, we are not constrained by not being able to

go back spatially to take a sample.

Figure 13 illustrates the performance of the whole system,

explorer and the sampler working together to achieve good

sample quality. We conducted a series of experiments with

three explorer-sampler pairs. The results show that the mul-

Fig. 13. Sampling scores achieved by the complete system, using different
combinations of explorers and the look-back selective sampler on synthetic
data.

Fig. 14. Results from field experiments. Comparison of sampling scores
between the two sampling methods.

tirobot system with the proposed components performs well

by achieving samples with high sampling scores.

B. Field experiments

Our goal is to sample water from a closed water body for

ex-situ analysis. We are interested in getting samples that are

rich in chlorophyll. Rogers Reservoir, located in Durango,

Colorado (Figure 11(a)), is a drinking-water reservoir and

monitoring this water body is very essential for the city.

For our field experiments, we used two Clearpath Heron

vehicles (see Figure 1): one equipped with a water quality

sensor that collects measurements at 1Hz – the explorer

– and another equipped with a water sampling apparatus

– the sampler. Figures 11(b) and (c) show the trajectory

followed by the explorer and a reconstruction of chlorophyll

distribution in the region of survey. The candidate locations

chosen by the sampler are shown with red circles. The

field experiments also confirmed that the proposed look-

back sampling technique achieves higher sampling scores

(Figure 14).

It is worth to mention some of the additional issues that
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need to be considered during field experiments: GPS errors;

the fact that a dense coverage should be run every time before

the actual experiment to ensure that we have the most recent

data as ground truth to evaluate our method. Especially in

the marine domain, weather can affect the schedule and also

the properties of the environment.

V. CONCLUSIONS

In this paper, we proposed a heterogeneous multirobot

system for physical sampling of a water body providing

methods for two related subproblems: one exploration al-

gorithm to build the phenomenon map, which concurrently

drives the sampling algorithm to actually collect physical

samples. The core of the approach is to combine efficient real

time estimation of a variable upon which our phenomenon

of interest is conditionally dependent with the subsequent

collection of data. Our approach allows us to efficiently

collect a set of informative samples lowering the uncertainty

over it and sample from significant hotspots, as compared to

other methods. This is validated through simulations and the

feasibility and practicality of the system is demonstrated via

field experiments.

With respect to future and ongoing work, we are scaling

up the approach for application over larger regions in more

challenging outdoor environments. This entails the use of

faster and more capable marine vehicles. Explicitly modeling

and accounting for communication interruption in the deci-

sion making process is also an important next step to ensure

reliability and robustness over large regions of space and

time [28], [29]. The consideration of time-varying models

will also be an interesting step towards more large-scale

deployment in marine environments.
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