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Abstract—In this article we describe a novel enhancement
method for images containing filamentous structures. Our
method combines a gradient sparsity constraint with a fila-
mentous structure constraint for effective removal of clutter
and noise from the background. The method is applied and
evaluated on three types of data: confocal microscopy images
of neurons, calcium imaging data and images of road pavement.
We found that images enhanced by our method preserve both the
structure and the intensity details of the original object. In the
case of neuron microscopy, we find that the neurons enhanced
by our method are better correlated with the original structure
intensities than the neurons enhanced by well-known vessel en-
hancement methods. Experiments on simulated calcium imaging
data indicate that both the number of detected neurons and the
accuracy of the derived calcium activity improved. Applying our
method to real calcium data, more regions exhibiting calcium
activity in the full field of view were found. In road pavement
crack detection, smaller or milder cracks were detected after
using our enhancement method.

Index Terms—Image enhancement, Denoising, Neuron imag-
ing, Calcium imaging, Crack detection.

I. INTRODUCTION

MAGE enhancement is an important pre-processing step

required for extracting useful information from images
containing noise, clutter and other undesirable objects. Nat-
ural images exhibit significant variation in content, so the
enhancement usually takes the approach of modeling natural
scene statistics [1], [2]. On the contrary, imaging in science
and engineering typically targets a specific class of objects.
So, the structure and intensity values remain roughly simi-
lar across different acquisitions. In neuron microscopy, the
3D structure of individual neurons is of central importance
for understanding the extent of neuronal diversity [3] and
their characteristics. For instance, dendrite morphology [4]
is used by neuroanatomists to classify types of neurons.
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Fig. 1. The image in (a) is the cropped region of the CN1 neuron. (b) and (c)
show the result of enhancement using (our) CAEFI method and the vesselness
[13] method, respectively. Loss in the intensity and structure can be clearly
seen in (c).

Several functional behaviors [5] are derived from this shape-
based neuron morphology analysis. The branching patterns
[6] of serotonergic neurons are analyzed for studying their
behavior. Various labs have collaborated and shared large
quantities of neurons online [3], [7]. Neuroanatomists are
trained to manually trace neurites using features such as
intensities, branch orientations, distances between branches,
calibers, tortuosities, colors, and spines or boutons. While
autotracing algorithms [8]-[10] capture the general layout
of neurites, often it is not possible to distinguish reliably
between the processes belonging to different neurons [11].
It is because the above-mentioned features are not correctly
recovered by the autotracing algorithms. Furthermore these
algorithms can be sensitive to noise and clutter due to signal
from inessential sources such as lipids. Confocal microscopy
images are degraded by low signal to noise ratio (SNR),
clutter and non-uniform illumination. Removing these artifacts
and enhancing the desired structure can be beneficial for
automatic morphological analysis of the neurons. For example,
automatic tracing algorithms [9], [12] use all pixels with high
intensity values as possible components of neurons to develop
a skeleton for neuron classification. Having clear backgrounds
and high contrast, these tracing methods may provide more
accurate classifications.

Most existing denoising methods employ prior probability
distributions. For instance, non local denoising methods use
Gaussian [14] or Poisson [15], [16] probability distributions
as similarity measures to weight the patches around a given
site and take the weighted average to remove noise at that
site. MIDAL [17] assumes a Gamma distribution to remove
multiplicative noise. A recent Bayesian method [18] applies
denoising directly to MRI measurements in complex domain to
remove additive Gaussian noise. These methods perform better
if the noisy images follow a similar distribution. Furthermore,
these methods require tuning various parameters that are
sensitive to image contrast and geometrical structure. A non-
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Fig. 2. A sample 2D neuron input image in (a) is enhanced using different
methods. It can be seen that (d) has a clear background compared to the image
in (b) and a better intensity profile of the original neuron than the LDE [31]
image in (c).

parametric data-driven method [19] is based on empirical
Bayes estimation, in which the prior is modeled using Markov
random fields. A Rician noise model is additionally incor-
porated to denoise MRI images. Another data-driven method
UINTA [20] does not rely on any prior statistical structure
and estimates its parameters automatically, without imposing
any shape constraints. BM3D [21] uses a shape-adaptive DCT
but does not explicitly enforce filamentous shape constraints.
Therefore these methods might be ineffective in removing
clutter that does not have a filamentous shape. There exist
image enhancement methods that exploit filamentous structure
to enhance vessel-like objects in images. The Vesselness [13]
method provides a shape-constraining framework for vessel
enhancement. This method quantified the filamentous structure
using eigenvalues derived from local gradients. Similar ideas
have been exploited in [22], [23] to enhance sophisticated
vascular structures. A data-adaptive method [24] introduces a
multiscale network; it is basically similar to Vesselness, except
that the network is trainable. The Jerman filter [25] method
aims to provide robust vessel enhancement by regularizing
the filter response obtained from eigenvalues. Other methods
[26]-[28] employ specialized multi-direction and multi-scale
filters to measure the presence of filamentous structure at
each pixel location. Since a reasonable number of neurons
have filamentous shape, these approaches have been applied to
confocal microscopic neuron images as well. However, these
methods modify the intensity levels during the enhancement
process. Preserving the intensities of image structures restricts
the enhancement achievable by existing algorithms. A new
method is needed for these imaging problems. Such an in-
tensity distribution is an important clue for classifying neuron
phenotype and monitoring neuron activity [29]. Also, existing
methods do not combine gradient sparsity and filamentous
structure constraints together. The piece-wise smoothness of
filamentous structure gives rise to sparse gradients that can be
used along with structural measures to provide more effective
enhancement. In our previous work [30] we show that by
ignoring gradient sparsity, methods [13], [26] can enhance
faint clutter. We replicate the observations in Fig. 2 for
convenience.

In calcium imaging [32], the calcium ions in neurons are
used for recording population dynamics such as neuronal
signaling. Calcium imaging also can obtain functional maps of
parts of the central nervous system [33]. The calcium activity
usually occurs in cellular subcompartments, and the initial step
in automatic calcium analysis is the detection of these regions
of interest (ROIs). Typically a calcium indicator that chelates

and illuminates the calcium ions is used. The intensity infor-
mation of calcium indicators is captured by a microscope, and
then the calcium activity is deconvolved from the much slower
dynamics of the indicator in the ROI. The intensity information
is important because most of the subsequent analyses mainly
depend on the calcium activity obtained after deconvolution.
The detection and deconvolution of calcium becomes harder
due to nonspecificity of calcium ions, limited imaging rate,
low SNR of the calcium signal [34], and the presence of
unpredictable neural processes and/or neuropil activity [35].
Enhancing calcium imaging data could increase the number
of detected neurons and provide accurate ROI detection for
measuring the calcium activity. The enhanced images can
also provide accurate whole-brain activity maps [36]-[38] for
predicting network types based on animal behavior. Nonlinear
matrix factorization techniques [39], [40] deconvolve calcium
from noisy raw data. However, these methods do not ef-
fectively deal with demixing of overlapping neural sources.
The constrained non-negative matrix factorization (CNMF)
approach [35] avoids this problem by constraining calcium dy-
namics with autoregressive models. Furthermore, this method
treats denoising, demixing and deconvolution simultaneously
in one optimization framework.

Besides the necessity of image enhancement in the two
biomedical imaging techniques mentioned above, enhance-
ment is also needed in civil engineering and materials imag-
ing. One such application is the identification and analysis
of cracks in images of various materials. Cracks are often
filamentous in shape and can be seen in pavements, concrete
buildings and various other types of materials. They can
be surrounded by other materials such as sand and stones.
Detected cracks in images can be used to perform sensitivity
analyses of longitudinal cracking of pavements made from
different materials [41]. Failure modes, maximum loads of
notched concrete beams and various other assessments [42]
can be performed on detected cracks as well. Therefore
enhancement of images containing cracks can be a useful pre-
processing step for accurate crack detection and its consequent
analyses. The data acquired for crack detection can be too big
for manual analysis, so automatic crack detection techniques
are needed. Several automatic crack detection algorithms [43],
[44] for road pavement surfaces have been developed. The
overall performance of these algorithms can be improved by
feeding enhanced images, as the enhanced images will mostly
contain cracks. The number of features to be learned by a
neural network-based crack detection algorithm [45], [46] also
can be reduced since the enhancement removes unnecessary
details from training images. In road pavement crack detection,
a MATLAB toolbox named CrackIT [43] uses pre-processing
techniques like intensity normalization, histogram equaliza-
tion, and pixel saturation for improving crack detection; the
images are not enhanced otherwise. The convolutional neural
network approaches [45], [46] learn features from insignificant
image patches in background as well as important patches
containing cracks to detect the cracks in the whole image. Both
of these methods can take advantage of image enhancement
techniques.

Unlike our previous work, in this paper we apply and
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Fig. 3. The raw unenhanced image of simulated calcium data in (a) above
shows four detected ROIs by the CNMF detection algorithm [35] and the
image in (b) is enhanced by CAEFI and shows seven detected ROIs by the
same algorithm.

(a) Input (b) Unehanced

(¢) CAEFI

Fig. 4. The image in (a) above shows raw input of a road pavement. The
image in (b) above shows the cracks detected by CrackIT [43] algorithm
without any enhancement. The image in (c) shows cracks detected by the same
algorithm after using CAEFI enhancement. It can be seen near the regions
pointed by the red arrows that more cracks are found after enhancement.

evaluate our method on different types of data. We also assess
our method by adding a high amount of clutter and noise to
the images from the BigNeuron (BN) dataset. The effects of
the algorithm parameters and the algorithm convergence are
also described.

A. Our Contribution and Outline

We present a Content-Aware image Enhancement method
for Fllamentous structures (CAEFI) that includes both gradient
sparsity and structural priors. The enhancement framework
is formulated as an optimization problem with data fidelity
and the structure weighted gradient sparsity terms in Sec-
tion II. We demonstrate that our framework can be used
on various types of images, by applying it on three types
of data that have filamentous structure: neuron microscopy
images, calcium imaging data and road pavement images.
We evaluate the efficacy of our method in the presence of
different amounts of clutter and noise. We show that the
CAEFI approach is effective at removing artifacts from these
types of images. The appropriate experimental setups and the
evaluation approaches for three types of data are described
in Section III. Our approach is shown to preserve both the
structure and the intensities of the objects. The results of our
evaluation, the influence of the parameters and the convergence
of our framework are discussed in detail in Section IV. We
conclude this paper in Section V.

II. THEORY
The CAEFI method exploits two main characteristics in
a given image: gradient sparsity and filamentous structure.
These characteristics are used as regularizers in the CAEFI
framework and are described separately below.

A. Gradient Sparsity

We assume the underlying structure varies and the back-
ground remains constant. However, clutter and noise give

rise to many non-zero gradient magnitudes. By enforcing
gradient sparsity, we can eliminate these spurious gradient
magnitudes. Therefore, gradient sparsity is an effective and
valid assumption sufficient to obtain clean backgrounds free
from noise and clutter.

If 1 is the original input image and S is the enhanced image,
we formulate the enhancement task for minimizing the error
between S and I, and the gradient sparsity in the background
as: '

S=arg;nin||S—IH§ +XA-[[Do S, (1)

Here, D is an operator that computes the differences between
pixel values in vertical and horizontal directions. The value of
1 can be chosen as 0 or 1 with 57 = 1, or as 2 with j = 2.
However, many image restoration tasks [47]—[49] use ¢ as 2
because the L2-norm is differentiable. But using an L1 or L2
norm in the data fidelity tends to create layering artifacts or
retain inhomogeneous illumination. The effects of using L2
and L0 norms for the data fidelity are shown pictorially in
Fig. 5. Faint clutter and inconsistent illumination are common
in neuron images. Therefore, we use the L0O-norm for the data
fidelity.

B. Filamentous Structure

Gradient sparsity alone is not sufficient to remove clutter
while preserving the filamentous structure such as that of
neurons. The high intensity noise cannot be differentiated
from the structure of interest. There are existing methods [13],
[25], [26], [31] for neuron enhancement that claim to measure
filamentous structure using singular values. In a 2D case, the
singular values sl and s2 signify the length of the object
in horizontal and vertical directions, respectively. For a 2D
filament, the difference between sl and s2 is small; therefore
the reciprocal of Q results in a higher value for a filamentous
structure. We use the structure index [50], @), to quantify this
structure. For a 2D image, () is defined as,

Q=s1-

$17~ 82 )

S1+ 8o

where s; > so are obtained by taking an SVD on local
gradient matrices [50]. For the 3D case, the optimal version of
Q depends on the appropriate shape of filamentous structure.
In our case, we find two large and one small singular val-
ues characterize a 3D filamentous structure for our datasets.
Hence, @ is defined as:

S1 — 83

,81 = S2 > 83 3)
S1 + s3

Q=51-52"

An illustration showing the advantage of using this structural
enhancement prior is shown in Fig. 6.

C. Content-Aware Framework

The gradient sparsity and filamentous structure priors are
combined to form our content-aware image enhancement
framework:

1
S =argmin||S — I —1—)\~E ——||Do S 4)
gS H HO . Q(p) te || (p)”O
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Fig. 5. The image in (a) shows a patch from the Condron dataset and the

images enhanced using L2-norm and L0-norm are shown in (b) and (c) above,
respectively. In (b), layering artifacts can be seen in the regions pointed by
red arrows. A hand-segmented mask containing only the neuron region from
the input image was used to compute the correlation coefficient shown in the
bottom right corner.

(a) Input (b) Without Q (d) Q Map
Fig. 6. The image in (a) above is a cropped region of a neuron from the
BigNeuron dataset with added clutter; this image was used as input to the
CAEFI method. The images in (b) and (c) were generated without and with
using structural weighting (Q)) in the CAEFI framework, respectively. The
artifacts due to not applying structural weighting can be seen in the regions
pointed by red arrows in (b). In (d) pixel locations belonging to filamentous
structure have higher Q-map weightings.

(c) With Q

The variable S represents the enhanced image, I is the input
image, and p is the pixel location. (p) is the structure index
obtained from the local gradient approximated around the pixel
location p. A 3D version of Q) defined in (3) is used on calcium
and neuron data, and since the road pavement data are 2D we
use a 2D version of () defined in (2). A negligibly small value
€ is added to the denominator to avoid divide-by-zero errors.
Notice the gradient sparsity constraint in (4) is weighted by
a factor of 1. This weighting complies with our assumption
that the structure is less sparse than the background. It will
appropriately decrease the gradient sparsity near the structure
and increase it in the background region. Our optimization
problem in (4) has two terms with a nondifferentiable LO-
norm. Therefore to simplify our iteration updates, we separate
them using two auxiliary variables: £ = S—1 and U = Do S.
We rewrite our problem as in (5). Furthermore, by splitting the
optimization problem we can also apply it to larger datasets
without compromising the speed of convergence [51].

S%iflU ||E|\0+2p: ﬁ IU®)lg+n IS — I — E|3+8]DoS—U|3

(%)
To solve for each optimization variable, we further divide (5)
into three subproblems:

win|S -~ 1~ B3+ Dpes-vig. ©

A
min Do 5~ Ul +§m U@l

mEin||EHO+77||S—IfE||§. (®)

Algorithm 1 Algorithm for solving (4)
Initialize: £ =0, S = I, tol = 1073, err = oo,
1: MaxIter =60,7=0
2: while err > tol and ¢ < MaxIter do
3: calculate @ using (3) or (2) and S

T T
R > Sol. for (6)
5 H+«+ D,S, V+« D,S
6 if (H(p)* +V(p)*) < ggtmse then > Sol. for (7)
7: H(p) < 0,V(p) <0
8: end if
9: E+ S—1
10:if E(p)* < 5 then V(p) + 0 > Sol. for (8)
11: end if
12: B+—kK-B, nkKk-n
13 erre||S=8|, S« 8, i—i+1
14: end while

The gradient U has two parts, the horizontal gradient H and
the vertical gradient V. They are computed using the horizon-
tal and vertical difference matrices D, and D, respectively.
Our continuation strategy enforces equality constraints on two
auxiliary variables and scales 8 and 7 by a factor of x at every
iteration. The problem in (6) is quadratic, and the closed form
solution can be obtained by differentiating (6) with respect to
S and setting it to zero:

0(S—1I—E)+BIDL(D,S — H) + DL (D,S ~ V)] =0 (9)

Solving for S directly from (9) requires a computationally
expensive large matrix inversion. We solve for S in the Fourier
domain because the expensive inversion operation can be
replaced by element-wise division. So, S in the Fourier domain
is given as:
§— F-1 (77]"(1 + E) + B[F(Da)" F(H) + ]:(Dy)T]"(V)]) (10)
nF(1) + BIF(Dz) " F(Dx) + F(Dy) T F(Dy))

In (10), F is the Fourier operator and F(1) is the Fourier
transform of the delta function. The constants n and [ are
multiplied element-wise. The subproblems in (7) and (8)
are solved for each pixel separately using non-iterative hard
thresholding [48]. The key steps for solving all three subprob-
lems are described in Algorithm 1. The initial values of 7, 3,
k are assigned empirically, and we found them to be stable for
all experiments (see Section IV-D for details). Our Algorithm
1 stops if the L2-norm of the difference between the image at
the current iteration and the image at previous iteration does
not increase beyond a tolerance level defined in Algorithm 1.
Although we can also use the metric-Q [50] that measures
amount of cleanliness without a reference image, we did not
observe any noise after convergence by using this difference
measure. The additional maximum iterations criterion ensures
that the algorithm does not run forever. Note the non-convex
L0O-norm and the alternating minimization approach make our
framework converge to a local minimum.

III. METHODS

To demonstrate the benefits and wide applicability of our
enhancement method, we evaluate CAEFI on three types
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of datasets: neuron microscopy, calcium imaging and road
pavement datasets. The experimental setups and evaluation
approaches for these datasets are described in the following
subsections. Although the evaluation approach varies for each
dataset, the CAEFI method will generally be assessed based
on its ability to extract the desired underlying structure from
a noisy environment. We also qualitatively and quantitatively
compare the performance against existing methods.

A. Neuron Microscopy Data

Neurons acquired by confocal microscopy contain measure-
ment noise and clutter due to lipids and other unaccounted
sources, so they need to be enhanced for further analysis.
Although neurons come in a variety of shapes, we restricted
our analysis to neurons having filamentous shape due to
the underlying assumptions of our method. We considered
two versions of 3D confocal microscopy images: Drosophila
larvae neurons [31] from Dr. Barry Condron’s (CN) lab at
the University of Virginia and human pluripotent stem cell
neurons from Dr. Rick Livesey’s lab at Cambridge University,
which are part of the BigNeuron (BN) dataset [3], [52]. The
CN dataset has natural clutter, whereas the BN dataset has
some noise in the background but is mostly clean. We added
randomly generated clutter to make the background in the BN
data more challenging. A clutter dictionary is learned from
3D patches of size 7x7x5 extracted from whole images of CN
dataset using the K-SVD algorithm [53]. The error threshold
and iteration limit of K-SVD algorithm is set to 0.001 and
10 respectively. The dictionary has 500 atoms with 122, 500
dictionary coefficients. In order to add clutter to each clean
neuron, one atom is randomly picked to generate one patch of
clutter. This patch is added to the top-left region of the clean
image. Another patch is generated similarly and added to the
previous patch with an overlap size of 6x6x4; the overlapped
patches are averaged within 7x7x5 for normalization. The
process is repeated until we finish filling the background
regions with the clutter. Finally, we apply the CAEFI method
on 5 images from the BN dataset and 5 images from the
CN dataset. To evaluate our method, we test how effectively
CAEFI can suppress background while preserving the neuron
structure. We compare our method against the Vesselness
method [13], Jerman [25], PNL [15], and BM3D [21]. In
the Vesselness algorithm, there are five main parameters to
tune. Three of which are vesselness constants («, 8, C) that
determine: if a structure is a line or a plane, the deviation
from a blob-like structure, and threshold between eigenvalues
of noise and vessel structure, respectively. The two other
parameters are the vesselness filter scale range and the spacing
between the range. A brute force strategy was used to find each
of these parameters. For both datasets, the vesselness constants
were the same with values: o = 0.5, 5 = 0.5, C = 500. The
scale range and its spacing was different for two datasets. The
BN dataset gave the best results for a scale range between
[7,9] with spacing of 0.5, and the CN dataset gave the best
result for the scale range between [1, 5] with the spacing of
2. Unlike the Vesselness filter, the Jerman method aims to
amplify and provide uniform intensity profiles for filamentous

structure. For both datasets, the vesselness constants were
and the scale range were same as the Vesselness method.
However, the parameter 7 that controls the magnitude of the
filter response is set in the range of [6,10] for CN data
and in [100, 150] for BN data. The video version of BM3D
had only one parameter, i.e. the standard deviation of noise
Opm to tune. The range of oy, for the BN and CN data
was [500,1000] and [25, 100], respectively. The PNL method
normally uses PURE to find its optimal parameters; this did
not work with our data, so we manually tuned the parameters.
This method had six parameters, and the most sensitive among
these were: «,p;, which controlled the amount of Poisson
priors to be enforced; 3y, which adjusted the effect of a pre-
estimated image (refer [15] for more details); wp,,;, the search
neighborhood; and ¢p,,;, which scaled input and rescaled the
output. The ranges of i, Bpni, Wpnis ¢pni for BN data were
[0.17,0.3],[0.2,0.4],[12, 15],[0.95, 0.98], respectively. For CN
data, these ranges were [0.4, 0.5],[0.2,0.3],[9, 12], [0.25, 0.45],
respectively.

The parameters of our method are described in Section
IV-D. The values of major parameters, i.e. window size and
smoothness A parameter, are set as 9 and 0.002, respectively,
for all images in CN data. Since the BN data has high
intensity clutter, the \ value was scaled by ratio of mean
intensity of BN data to the mean intensity found in CN
data. The window size was the same as that of CN data.
The datasets include hand-segmented ground truths stored in
the ‘swc’ format so direct comparison of enhanced results
is not possible. Therefore for quantitative evaluation, we
obtain a binary mask (see supplementary material Section
2) of ground truth from the ‘swc_to_mask plugin’ of the
Vaa3D [54] software. The resulting mask had a different
neuron thickness but encapsulated most of the actual neuronal
region. A Pearson’s correlation coefficient p = % is
computed in masked regions between the ground truth image
and the enhanced images to show that intensity values are not
altered after using CAEFI. Since the data is 3D, the SSIM is
computed for each frame, and an average score of all frames
is used for evaluation and discussion of results. The SSIM,
PSNR, correlation scores for both datasets are combined, and
a matched-pairs t-test is performed to conclude if scores of
CAEFI are statistically different from other methods. Arrows
are used to show preservation of structure and the presence or
absence of noise in the enhanced images.

B. Calcium Imaging Data

Calcium imaging is a useful technique for measuring neu-
ronal firing activity by capturing illuminating calcium ions into
a series of digital images recorded by a microscope. Image
intensity represents calcium fluorescence and is the governing
factor that determines the instance of neuron firing and other
behaviors, justifying evaluation of the CAEFI method on
such data. Various methods [55], [56] exist for detection
of neurons but the CNMF method [35] recovers calcium
activity by decomposing the observed fluorescence data (F)
into spatial components (a;) containing appropriate neuron
ROIs and temporal components ¢;(t) having calcium informa-
tion of the corresponding ROI. Mathematically, the observed
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Fig. 7. Enhancement results of five neurons from BigNeuron (BN) data for different method. In the left most column are input images that were generated by
adding synthetic clutter to images. The following columns show images after being enhancement by Vesselness, Jerman, BM3D, PNL, and CAEFI methods
respectively. The SSIM and correlation scores are shown in the bottom right corner of appropriate image. The colorbars shown in the last row of each column
is the same for all images in that column.
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Fig. 8. Enhancement results of five neurons from Condron (CN) data for different methods. This figure is similar to Fig. 7, however, this data did not have
synthetic clutter.
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fluorescence is written as F'(t) = 3.5 | a;ei(t) + B(t) + €(t).
The variable B(t) represents background and e(¢) is the
zero mean Gaussian noise at the frame f¢. Additionally, an
autoregressive model is enforced on the temporal component
to recover calcium activity. These components are solved using
an alternating minimization framework. We show that this
method can be improved by pre-processing the data with
our enhancement method. Since the CNMF method is non-
convex, their algorithm is sensitive to the initial center location
of the neurons. We choose greedy initialization [35] for our
experiments. In this approach, the user roughly defines the
number of neurons to be found in the data, and the algorithm
will correlate each position with a predefined 2D Gaussian
kernel. The process will stop after passing through all positions
in a given 2D image, and then it will greedily consider the
top correlated locations. The values of parameters set for this
approach have been described in appropriate sections below.
For evaluation on real data, we do not have the ground truth
calcium activity, so we first evaluate benefits of using our
method on simulated data with known ground-truth. We then
apply it on real data obtained from the neurofinder [57] website
to measure the increase in the number of neurons detected.
Further details are given below:

1) Simulated data: Seven Gaussian shaped neurons of
various orientations are generated as shown in Fig. 9. Their
firing activity is modeled using an iid Poisson process with
firing threshold of 0.3. The calcium activity is modeled as an
autoregressive process with two parameters (0.98, 1). Gaussian
noise is added to the generated calcium activity. Finally, clutter
cropped from real data along with time varying 2D spatial
Gaussian noise is added to the simulated neurons. The BM3D
parameter was set as oy, = 25. The PNL parameters were:
opnt = 0.1, Bpny = 0.3, Wpny = 7, gprny = 0.75. The CAEFI
parameters are set as: A = 0.007, window size w = 5.
The parameters of the CNMF were fixed while comparing all
methods and are assigned as follows: an initial guess (K) is
set as 8, the standard deviation of the Gaussian kernel (used
for initialization) is set as 4, autoregressive dynamics is set
to 2, merge threshold is set to 0.7, and finally the number
of iterations is set as 3. The enhancement method is evaluated
based on the number of neurons detected. The L2-norm of the
difference between recovered calcium activity with the ground
truth is also computed.

2) Real data: The calcium imaging data set labelled as
“00.00” [57] is used. This 2D data has large dimensions
of 512 x 512 x 3024. Due to its large size, the dataset is
divided into four 128 x 128 x 3024 regions to fit into memory.
For BM3D, o3, = 35 was used. The PNL parameters
were: opn; = 0.1, Bppi = 0.3, wpn = 9, gy = 0.27.
All analysis is performed within these cropped regions. The
CAEFI parameters are set as follows: A = 0.001, window size
of 9. Due to high spatial resolution and small size of neurons
only a cropped region is shown in paper for better visibility.
For evaluation, we compare the number of extra cells detected
by the CNMF method before and after enhancement of images
from each region.

C. Road Pavement Data

The data supplied with the CrackIT toolbox [43] is used.
Unlike neuron microscopy images, these images are obtained
from a conventional digital camera. They were captured during
sunlight hours with camera’s optical axis perpendicular to the
road surface and its lateral edges parallel to the road axis. The
2D images have an image size of 2048 x 1536 pixels and each
pixel corresponds to a road area of Imm?. We use an existing
crack detection algorithm [43] to show improvements in crack
detection with our method. Parameter settings for BM3D were
obm = 90 and for the PNL were: o, = 0.17, B, = 0.27,
Wpnt = 9, gpni = 0.4. The CAEFI parameters are same as the
real calcium imaging data. All the parameters of the CrackIT
method had default values. This algorithm uses anisotropic
diffusion along with other pre-processing techniques such as
adjusting saturation levels to enhance crack detection. It also
has the ability to classify and characterize the detected crack.
The ground truth contains rough hand-segmented rectangular
blocks that include cracks and are smaller in the size compared
to the size of input images. The ground truths are of size
27 x 20, and the input images are of size 2048 x 1536 pixels.
As aresult, we did not compute quantitative metrics. Therefore
we visually evaluated the results and show improvements
with the aid of arrows. Note that results were obtained after
including CAEFI in the CrackIT pre-processing pipeline. We
also include the other pre-processing steps of the CrackIT
algorithm.

IV. RESULTS
A. Neuron Microscopy

The top row of Fig. 7 shows neurons from the BN data
with heavy added clutter and noise in the background. The in-
tensities of Vesselness and Jerman method have been adjusted
for better visibility (See colorbars in Fig. 7 and 8). It can be
seen that all methods remove noise-like patterns, however the
residual clutter can be seen near red arrows in Vesselness and
Jerman methods. The PNL method effectively removes clutter
for most cases; however, noise can be seen in regions pointed
by red arrows. Although the CAEFI method did not have noise
and clutter for most cases, boundaries of the neuron (pointed
by the red arrows) show hairy structures. These structures
cause the neurons to appear wider than their ground truth.
This effect can be reduced by tuning the A\ parameter for each
image. The SSIM and correlation values of PNL and CAEFI
methods were close to each other for the BN data. The images
of BM3D method show significant clutter and loss of structure
in all neurons, especially in case of BN4 and BNS5. This
method has the lowest scores among all other methods. There
are cases where all methods fail to remove isolated structure
pointed by yellow arrows. In case of real data, i.e. the CN
data in Fig. 8, higher performance of CAEFI can be clearly
seen, especially in the cases CN1 and CN3 neurons where the
background clutter is higher. The green arrow shows CAEFI
better preserves structure compared to all other methods.
However, some aliasing can also be seen near this region. For
the PNL method, structure and intensity loss can be clearly
seen near the red arrows. The performance of Jerman method
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was lower on average compared to Vesselness as seen in the
SSIM and correlation values. The Vesselness and the Jerman
methods remove clutter. However, we observed intensity loss;
therefore, we scaled the images for better visibility for CN data
as well. Some structural loss can be seen near the red arrows.
The SSIM and correlation values shown in Fig. 7 and Fig.
8 for the CAEFI enhanced neurons are higher than for other
competing methods. The average scores of both datasets are
summarized in tables I and II. Multiple comparison pairwise
t-tests were performed using SSIM, PSNR and correlation
values of each method against CAEFI. The t-tests indicated
that values of CAEFI were significantly different from other
methods. The p-values comparing CAEFI against PNL were
higher than for the other existing methods (see supplementary
material Section 3).

TABLE I TABLE II
AVERAGE SCORES OF BIG NEURON  AVERAGE SCORES OF CONDRON
DATA DATA
Method ~ SSIM  PSNR(dB)  Corr. Method ~ SSIM ~ PSNR(dB)  Corr.
Vesselness ~ .7826 29.9 0.7272 Vesselness ~ (.7785 32.55 0.703
Jerman  0.6311 21.34 0.5474 Jemran  0.7897 31.39 0.7587
BM3D  0.3211 19.61 0.229 BM3D  0.6917 18.81 0.664
PNL 0.87 3537 0.8654 PNL 0.839 38.14 0.822
CAEFL 09022 36.19 0.8764 CAEFL 09185 45.51 0.922

Frame 653 Frame 904 Frame 1957

*1._

Frame 737
.

PNL CAEF| Raw Inputs

BM3D

Fig. 9. The top row shows sample frames from 2000 frames of raw neuron
data and their results after using various enhancement methods referred by
their labels in the following rows. It can be seen that CAEFI provides cleaner
background than other methods. It also does not cause blurring that is seen
in other methods.

(a) Without Enh.

(b) CAEFI

(c) PNL (d) BM3D

Fig. 10. A maximum intensity projection of simulated data without en-
hancement in (a) is followed by the projection images after using different
enhancement techniques. It can be seen that neuron detections increase after
using enhancement. Unlike other methods, CAEFI detects overlapped neurons
6 and 5. The ROI detected for neuron 7 and 2 by the PNL method includes
some of the background regions.

B. Calcium Imaging

1) Simulated data: The image in Fig. 10a is the maximum
intensity projection showing contours of neurons detected by
the CNMF method without using CAEFI enhancement; each
of the four detected neurons are labelled. Comparing this
result to the image in Fig. 10b, we can see the number of
detected neurons increases from 4 to 7. We observe that the
contours of detected neurons do not perfectly match those of
the simulated ground truth, but the number of neurons detected
after enhancement is exact. The clutter below neuron 2 that
appears like a neuron is present before and after enhancement;
however, in Fig. 10c the PNL method considers it as a part of
neuron 2. This phenomenon can also be seen near neuron 7.
In Fig. 9, CAEFI produced some structure and intensity loss
in frames 737 and 1957, although without the blur visible with
other methods. Consequently, the intensity loss also is visible
in the projection plot (Fig. 10b). Aliasing effects near neuron
boundaries can also be seen in CAEFI as compared to PNL in
Fig. 9 and 10. Tuning the parameters of CAEFI trades off be-
tween background clutter and structure/intensity preservation.
The calcium activity deconvolved from the region within the
contours is plotted in Fig. 10 for all methods. The peak firing
locations match the ground truth (shown in black dotted line).
Comparing the calcium activity of neuron 6 of the unenhanced
case (magenta) with the activity of CAEFI enhanced neuron 6
(green), the presence of noise can be seen in the CAEFI case
since the detected ROI is not accurate as in the unenhanced
case. The error in recovery can be compared from table III.
However, all other methods fail to detect neuron 6, and merge
it with neuron 5, except CAEFI. We argue that this separation
is achieved by enforcing structural constraints. For neuron 7,
only PNL and CAEFI have activities close to the ground truth,
with CAEFI being more accurate. Furthermore, the activity of
neuron 2 in the PNL case is noisy due to inaccurate detection
of the ROL. It can be observed from the table III that CAEFI
reduces calcium activity recovery errors for a majority of the
neurons more than the other methods.

2) Real data: Similar observations were found in the case
of real data. The Fig. 12 shows an increase in the number
of neuron detections from 46 in Fig. 12a to 57 in Fig. 12b
after using CAEFI. The exact evaluation of extracted activity
of these neurons could not be evaluated, as we lack the ground
truth. The PNL in Fig. 10c did not detect some neurons near
regions pointed by the white arrows and ROIs appeared to be
smaller than other methods. On the other hand, the BM3D
method in Fig. 12d had larger ROIs. CAEFI had similar ROIs
as that of unenhanced case. The total number of neurons
detected in the cropped regions for each method is reported in
table IV. As there are 16 regions (4 x 4), we sum the number
of detected cells in each row, which corresponds to a region
of size 128 x 512 x 3024, and report the value for each row
of regions in table IV to reduce the table length.

C. Crack Detection

The top row of Fig. 13 shows a high resolution input
image with significant noise-like background along with the
cracks in the road. It can be seen near regions pointed by
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Fig. 11. Calcium activity of the detected neurons shown in Fig. 10

TABLE III
CALCIUM RECOVERY ERRORS (L2-NORM) OF ACTIVITIES SHOWN IN THE
FIG. 11 FOR DIFFERENT METHODS

Neuron No Enh. BM3D PNL CAEFI
1 4.08 5.76 4.48 3.38
2 n/a 5.81 6.33 3.36
3 n/a 7.33 4.036 3.58
4 4.32 6.21 4.18 3.39
5 n/a 14.47 8.81 2.74
6 5.13 n/a n/a 6.42
7 6.23 4.32 5.02 3.33

(a) Without Enh.

(b) With CAEFI ~ (c) With PNL  (d) With BM3D

Fig. 12. Maximum intensity projections of a 200 x 128 cropped region of real
calcium data with red contours showing neuron parts detected for different
scenarios. The number of neuron parts detected for each scenario is shown on
the top right corner. The white arrows shown in CAEFI case shows parts that
are not detected by CAEFI but are detected by PNL. The converse is shown
by the white arrows in the PNL case.

green arrows that more cracks are detected after incorporating

CAEFI enhancement in the CrackIT algorithm. Comparing the

images in the second row of column 1, 3 and 4 in Fig. 13 with

the images in the third row of the corresponding columns, at

least two smaller cracks were undetected before enhancement.

This is shown using the green arrows in the images of the third
TABLE IV

NUMBER OF DETECTED NEURONS IN ROWS OF CROPPED REGIONS OF
REAL DATASET BEFORE AND AFTER USING DIFFERENT ENHANCEMENT

METHODS.
Region Row  Wihout With With With
Name Enh. BM3D PNL CAEFI
R1 80 140 145 150
R2 123 150 159 199
R3 114 146 149 151
R4 86 138 140 185

row. The red arrows show structures that did not resemble
cracks. The green arrows in BM3D method show some extra
filamentous structure being detected by BM3D which was not
seen in CAEFI. Conversely, green arrows in the first column
of Fig. 13 show CAEFI detecting smaller cracks better than
BM3D. The validity of these cracks could not be evaluated as
we lack the ground truth.

D. Parameter selection and Convergence

There are five parameters in the CAEFI framework (see
algorithm 1). The parameters (3,7, x that control numerical
stability and the convergence rate of the solution were the
same for all datasets. We observed only minor changes
in enhancement for all CN data for S values in the range
[0.1X,10)], for 7 values in the range [103),10°)], and for
k in the range [1,4] (see supplementary material Section
4 for more details). However, our method has two major
parameters, A and window size, that need to be tuned.
These two parameters influence the removal of clutter
and preservation of the original structure in the images.
For all three datasets, we found A\ to lie within the range
of 0.001 to 0.007. The sensitivity of A was assessed
on all samples from 3D CN dataset. We calculate the
foreground error (fger~) and background error (bg.;,) for
each image at different A\ values using the equations below.
o — VZier, T~ Tenn ()2 VEien, HG)—Tenn?

Jorr = T e, 102 N
The unenhanced input image is I, and I, is the enhanced
image. The 7 and j are the pixels locations belonging to
the foreground F; and the background B, respectively. The
average error values of all samples are shown in Fig. 14b.
It can be observed that a trade-off between fge. and bge,,
needs to be achieved. While conducting our experiments,
we found that once the A is selected (often between 0.001
and 0.007), it doesn’t vary much within samples of same
dataset. For the Fig. 14b the average variance across samples
was 0.0092 and 0.0039 for foreground and background error
respectively. The window size for all datasets except the
simulated calcium imaging data was set as 9. Increasing or
decreasing the windows size by 2 did not significantly alter
the results. For simulated data, we set the window size as
5 because the maximum size of the ROI of the simulated
neurons was 4; this size is smaller than the ROI size typically
seen in the real calcium imaging data. We found that our
algorithm converges before 35 iterations for images from all
datasets. To observe the convergence rate we took all sample
images from the 3D CN dataset. We ran the algorithm for 60
iterations to obtain the I.,,q as our final converged image
for each sample (). After saving the converged image we
set the tolerance level to 1072 and ran the algorithm again.
At each iteration we computed the Lo-norm of difference
between the I.,,, and the image generated at that iteration
and normalize it by Lo-norm to obtain the NRMSE. We
average the Lo norm-based difference for each sample and
plot the values to show the convergence in Fig. 14a. For 35
iterations, our algorithm took an average time of 15.4 seconds
per sample on a computer running Windows 7 with a 32 GB

gerr -
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Input
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Without
Enhancement

With
CAEFI

With
PNL
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BM3D

10

Fig. 13. Top row shows input images and the second row shows segmented cracks obtained by the CrackIT algorithm [43] without using any enhancement.
The green arrows in the third row show milder cracks being detected by CAEFI. The yellow arrows show extra pixels belonging to the cracks (see first row)

being detected by the CrackIT algorithm after using CAEFL

of RAM and an i7 Intel processor; the average size of the
sample images was 205 x 215. However, we observed the
background of images obtained after 60 iterations was scaled
by an arbitrary constant value. This problem occurs because
our optimization framework involves the LO-norm that does
not distinguish between values very close to zero and values
far from zero. Also, the gradients are insensitive towards a
constant value being added to all pixel values. We did not
notice a significant loss in neuron structure in images after
60 iterations or by decreasing the tolerance level.

Foreground and Background

Convergence Plot Error Trends

Error Values

Iteration Number Lambda Values

(a) (b)

Fig. 14. The plot in 14a shows the average rate of convergence of the CAEFI
framework for the NRMSE and SSIM values w.r.t converged image. The
plot in 14b shows the sensitivity of the parameter A towards foreground and
background errors for the CN dataset.

V. CONCLUSION

We introduced a novel image enhancement method that
exploits the gradient sparsity and the structure priors for
enhancing images containing filamentous structures. These
two important priors are combined into one cost function and
solved using a variable splitting method. The method was

shown to preserve object structure and its intensity by apply-
ing it on images from neuron confocal microscopy, calcium
imaging, and road pavement surface imaging. The background
of enhanced confocal microscopy images had significantly less
clutter, and the foreground intensities of enhanced images were
highly correlated with the foreground intensities of the input
images. The number of neurons detected in calcium imaging
data increased, and additional cracks were detected in road
pavement images after using the CAEFI enhancement.
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