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Abstract—Software-defined networking (SDN) overcomes
many limitations of traditional networking architectures because
of its programmable and flexible nature. Security applications,
for instance, can dynamically reprogram a network to respond
to ongoing threats in real time. However, the same flexibility also
creates risk, since it can be used against the network. Current
SDN architectures potentially allow adversaries to disrupt one or
more SDN system components and to hide their actions in doing
so. That makes assurance and reasoning about past network
events more difficult, if not impossible. In this paper, we argue
that an SDN architecture must incorporate various notions of
accountability for achieving systemwide cyber resiliency goals.
We analyze accountability based on a conceptual framework, and
we identify how that analysis fits in with the SDN architecture’s
entities and processes. We further consider a case study in which
accountability is necessary for SDN network applications, and we
discuss the limits of current approaches.

I. INTRODUCTION

Software-defined networking (SDN) has emerged as a new
networking architecture that attempts to overcome some of the
limitations of traditional networking. SDN is distinguished by
a logically centralized but physically distributed programmable
control plane in which decisions about forwarding are de-
coupled from the traffic being forwarded [1]. This flexibility
has encouraged SDN adoption in enterprise, campus, cloud,
mobile, and telecommunication networks, among others [1].

At first glance, SDN enhances the ability of security ser-
vices to protect the network’s end hosts from threats. The
architecture’s global perspective [2] allows the control plane
to monitor traffic flows and abstract such information for
network security applications’ use. Further, the architecture’s
programmable nature allows administrators or security ap-
plications to rapidly reconfigure the network’s forwarding
behavior to adjust to threats in real time.

However, such insight and flexibility are not without costs,
as the increased attack surface and centralized programmatic
control could be used against operators and administrators. If
we assume that an attacker has already compromised an SDN
system’s components to control network behavior and that the
attacker lies, equivocates, and hides or destroys evidence of
such actions [3], how can we be assured of past event integrity?
Furthermore, how can we trust the provenance of such events,
attribute them to the responsible entities, and take actions

against them to hold them responsible and meet systemwide
cyber resiliency goals?

In this paper, we argue that accountability by design [4],
[5] is necessary for SDN. As SDN architectures become in-
creasingly complex distributed network operating systems [6],
we see a need for ensuring accountable practices at multiple
levels among various entities and stakeholders. Achieving
accountability is not strictly a technical problem—legal, reg-
ulatory, and policy frameworks all help guide accountable
systems design—but accountability requires data assurances to
correctly identify responsible entities when taking responsive
actions to support resiliency goals.

Our paper’s contributions include application of a concep-
tual framework of accountability [7] to SDN to identify the
agents, system entities, processes, and standards involved in
network accountability assurance. We find that while previous
work has considered some of these aspects, no complete
design solution exists today that systematically incorporates
all of them. We illustrate the need for accountability through
a practical case study scenario of SDN network applications.

II. SDN BACKGROUND

SDN separates a network into a data plane where traffic
among end hosts is forwarded through switches, a control
plane where forwarding decisions are made by a set of con-
trollers, and an application plane where network applications
can query or set high-level intents about network state.

Controllers communicate via application program interfaces
(APIs). The northbound API allows network applications to
query controllers for network state abstractions or set intents
about network policy. The southbound API allows controllers
to set low-level forwarding rules in switches and to query
about network state. The eastbound/westbound API allows
controllers to communicate among themselves or with other
SDN systems to exchange distributed state.

SDN architectures introduce new and augmented security
and dependability vulnerabilities, since controllers logically
centralize control, and network applications programmatically
set policies [8]. Kreutz et al. [8] cite the need for a reliable
SDN forensics system to diagnose faults (attacks). Scott-
Hayward et al. [9] consider accountability as a system-level
SDN security challenge within the authentication, authoriza-
tion, and accounting (AAA) framework.978-1-5090-6008-5/17/$31.00 c© 2017 IEEE



TABLE I
SUMMARY OF DESIGN CONSIDERATIONS AND PROPERTIES FOR SOFTWARE-DEFINED NETWORKING ACCOUNTABILITY

Who is accountable to whom What one is accountable for Assurance mechanisms Standards Effects of breach

• Software process level
– Switch–switch
– Controller–switch
– Controller–application
– Controller–controller

• User level
– Network administrators
– Security administrators
– End users

• Organizational level
– Clients–providers
– Peers

• Forwarding / topology
• Intent / policy

– Network resources
– Constraints
– Criteria
– Instructions

• Configuration
• Authorization / access

– Permissions and roles
– Authentication and access

• Data provenance
• Authenticated logging

– Tamper-proof
– Non-repudiable

• Fault tolerance
– Byzantine fault tolerance
– Graphical modeling
– Blockchains

• Roots of trust

• Legal
• Regulatory
• Policy
• Contractual

• Deterrence
– Loss of money
– Loss of reputation

• Resiliency
– Response
– Recovery

III. DESIGNING AN ACCOUNTABLE SDN ARCHITECTURE

Accountability is the “security goal that generates the re-
quirement for actions of an entity to be traced uniquely to
that entity” and which supports “nonrepudiation, deterrence,
fault isolation, intrusion detection and prevention, and after-
action recovery and legal action” [10]. We borrow concepts
from the public policy domain, in particular the accountability
framework for designing accountable systems proposed by
Mashaw [7], to analyze accountability as it applies to SDN
architectures and entities. Table I summarizes the design con-
siderations and desirable properties for SDN accountability.

A. Who is accountable to whom?

We follow Mashaw in describing accountability as relation-
ships between entities. To say “A is accountable to B” means
that A behaves according to processes guided by standards by
which B can correctly attribute A’s actions and take responses
against A if A deviates from such processes and standards.
(The meanings of processes and standards are explained in
detail throughout the remainder of Section III.)

We organize those relationships at three levels: software
process, user, and organizational accountability.

1) Software process level: SDN software components
should keep each other accountable for low-level network
state changes so as to attribute actions to particular software
instances for troubleshooting (e.g., fault isolation) or for foren-
sics. We identify the following accountability-critical classes
of inter-process relationships:

a) Switch–switch: Switches should keep each other ac-
countable for their data plane forwarding actions. In particular,
they should ensure that packets traverse the correct switches
to enforce isolation guarantees and forwarding accountabil-
ity [11].

b) Controller–switch: Controllers should keep switches
accountable for their actions to ensure that network intents are
followed. For instance, switches should attest to their current
forwarding behavior state and report it to controllers.

c) Controller–application: Controllers should keep net-
work applications accountable to ensure that conflicting poli-
cies are mitigated according to a permissions model [12]. To
ensure trustworthy network applications [8], it is necessary to

hold network applications accountable for actions they take
that affect the network state [12]. Application developers and
publishers should be held accountable, too.

d) Controller–controller: In contrast to a single central-
ized controller, distributed controllers should provide high
availability, scalability, and fault tolerance properties [6].
Distributed controller instances share copies of the network
state and may act as clients in reading from a distributed
data store [13], [14]. Given that the network’s intelligence is
logically centralized in the controllers, they should keep each
other accountable for network state changes.

2) User level: Network and security administrators should
keep each other accountable for decisions that affect network
state, particularly if the administrators have the potential to
collude or are assumed to be individually untrusted [15]. Ad-
ministrators should keep the network’s end users accountable
for their actions on the network, such as equitably sharing
network resources based on policy.

3) Organizational level: Organizations should keep other
organizations accountable for network resources when consid-
ering client–provider or peer models. In cloud computing, for
instance, a provider should use a telemetry service to account
for network resources used by clients, and clients should be
able to audit providers to ensure that the services requested
are being provided in practice [16]. For an autonomous system
(AS), each AS should make other ASes accountable for their
Border Gateway Protocol (BGP) advertisements or for the
inter-AS network resources (e.g., bandwidth) they use related
to peering agreements.

B. What is one accountable for?

An accountable architecture accounts for the system’s
“state” and state changes via events or actions taken by system
entities. Here, we identify several notions of state.

1) Forwarding behavior and topology: From the data plane
perspective, the network’s state consists of the forwarding
behavior (e.g., flow table entries) and the topology (e.g.,
ports, links, switches, hosts). In OpenFlow-based SDNs, the
forwarding behavior is defined by flow tables that consist of
flow entries with matching attributes and a set of actions to
take for matching packets [17]. The topological information



is based on switch configuration [17] and also from auxiliary
protocols such as the Link Layer Discovery Protocol (LLDP)
and the Address Resolution Protocol (ARP) [18].

2) Intent and policy: From the application plane perspec-
tive, the network’s state consists of the policies implemented
by intents. ONOS [6], for instance, defines intents by network
resources (e.g., ports, links), constraints (e.g., bandwidth),
criteria (e.g., matching headers), and instructions (e.g., header
modifications, output). Intents contrast with specific protocols
like OpenFlow [17] by abstracting the implementation details.

3) Configuration: From a system administrator’s perspec-
tive, each network component requires configuration. OF-
Config [19] configures switches, changes port states, and
changes security certificates, among other functions.

4) Authorization and access: From a security administra-
tor’s perspective, the network requires a system for authorizing
users’ actions based on roles and permissions. Such a system
needs to record state modification, permissions, and authenti-
cation and access events, among other records [12].

C. What process assures accountability mechanisms?

We now consider four necessary classes of assurance mech-
anisms, including their uses to date in SDN and other fields.

1) Data provenance: Arguably, the most important prop-
erty of data assurances for accountability is their ability to an-
swer questions about where data came from and why the data
came to be [20]. Data provenance answers these questions by
attributing data to their sources in order to support audit trail
generation [21]. Data provenance has been used in database
systems [20] and in distributed systems for identifying which
system components took specific actions [22]. Dwaraki et
al. [23] model SDN forwarding state changes through a dis-
tributed version control system to answer provenance queries
about network state, though the architecture does not assume
an adversarial setting.

2) Authenticated logging: While data provenance explains
data origins, an adversarial setting requires assurance that
the stored data cannot be tampered with. Authenticated data
structures (e.g., Merkle trees) provide a way of implementing
tamper-proof logs [24]. Each log entry is associated with a
cryptographic hash, and tampering with previous log entries
makes tampering evident. Among different entities, each entity
can digitally sign entries it makes to the log and thus cannot
repudiate previous entries it has signed. Porras et al. [12]
extend the Floodlight SDN controller to include an application
audit module for associating logged events with their sources.

3) Fault tolerance: Accountability does not begin only
after the system as a whole has already failed. Many systems
are designed to tolerate (or mask) failed components. When
some component fails, the failed component should be held
accountable for its actions and for events attributed to it.

Byzantine fault tolerant (BFT) protocols are a practical way
to make many systems more robust, and the security they offer
is evaluated by the strength of their guarantees (i.e., the weak-
ness of their assumptions). PBFT [25], for instance, guarantees
that a network of N = 3f + 1 replicas can tolerate up to

f corrupted instances that behave arbitrarily or maliciously.
Furthermore, most BFT protocols guarantee liveness and high
availability under very weak assumptions about the ability of
the uncorrupted nodes to communicate; they also guarantee
consistency even in a completely asynchronous network.

While the system as a whole should exhibit some degree
of fault tolerance (as previously explored in the SDN context
in [13], [14]), the subsytems used to ensure accountability
should be especially fault-tolerant. BFT protocols must typ-
ically rely on at least a majority of the nodes to ensure
safety and liveness, though secure network provenance (SNP)
can rely on an even weaker assumption [26]. SNP uses a
provenance graph to capture events in a distributed system, and
minimally requires only one correct node to have witnessed an
event in order to attribute it. Cryptocurrencies have recently
popularized the use of widely distributed BFT protocols to
provide a transparent and publicly verifiable transaction log
known as a “blockchain.” Blockchain updates are relatively
expensive and slow, but this trade-off may be appropriate for
accountability-critical information.

4) Roots of trust: By adopting accountability as an explicit
design goal, we strive to reduce the amount of trust in the
system. However, no design is perfect, and we believe practical
architectures will still require some “roots of trust” upon which
the system’s security relies. Explicit descriptions of these roots
of trust will be essential to evaluating accountability designs.
To validate a design, we must identify the trusted entities and
justify their trustworthiness. In the SDN context, for instance,
Jacquin et al. [27] propose a trusted SDN architecture by
placing trust in trusted platform modules (TPMs).

D. By what standards should accountability be judged?

Given that the network infrastructure is a central compo-
nent of many institutions, and that it can “see” everything
(including sensitive data) [2], an accountable SDN may be
necessary in practice for meeting or aiding legal, regulatory,
policy, or contractual requirements. In this context, standards
set the accountability requirements that must be met.

Accountability standards are derived through laws, regu-
lations, and policies. In the U.S., for instance, federal laws
and regulations set domain-specific accountability standards
as they apply to health records (e.g, HIPAA), educational
records (e.g., FERPA), and financial records (e.g., Gramm–
Leach–Bliley Act), among other domains.

We can also apply accountability in the context of other
policies, such as network neutrality. The Council of the
European Union recently passed network neutrality regulations
for European Union member states, noting that “a signifi-
cant number of end-users are affected by traffic management
practices which block or slow down specific applications
or services” [28]. Here, accountability includes customers
and regulators who keep network providers accountable for
their network management practices, as the regulation states
that “reasonable traffic management measures. . . should be
transparent, non-discriminatory and proportionate, and should
not be based on commercial considerations” [28]. Accountable



designs can help ensure compliance with these regulations and
can support their enforcement.

Outside of established legal regulations, any two parties can
decide to enter into contractual service level agreements (SLA)
regarding network resources, and the agreement’s terms can set
the standards that determine which entities and processes as-
sure accountability and the effects of breaching the standards.

E. What are the effects of breaching standards?

Accountability can provide a natural deterrent against some
classes of attacks, and can therefore have a passive effect of
helping parties conform to agreed-upon standards. However,
accountability can also play a more active role in system
resiliency by supporting responses that restore the system to
correct function after a failure.

1) Deterrence: An accountable SDN architecture may pro-
vide a disincentive to attack the network or deviate from
agreed-upon rules, as such an attack or deviation could be
attributed to the responsible entity [29]. As a result, the
responsible entity has something to lose if it had previously
pledged something of value in order to participate [30]. The
loss may be monetary, as detailed by an agreed-upon SLA or
smart contract [34]. Alternatively, the loss may be implicit and
reputational, such that other entities choose not to participate
with the responsible entity after discovery [30].

2) Resiliency: Such deterrence alone may not provide
enough disincentive to stop an attacker from attacking a net-
work, and in such cases, intrusion tolerance designed to meet
system resiliency goals is necessary. The resiliency process is
often defined as comprising detection, response, and recovery
phases. Accountability clearly plays a role in detection, but it
also provides essential information for effective responses.

Each entity may audit other entities to identify misbehavior
and attribute it to the responsible entity. Upon detection, an
entity may report to other entities to indicate that they should
take some response action. For instance, a misbehaving entity
might be isolated by peer entities so as to allow for human
intervention (e.g., forensic analysis by a security administrator)
while still meeting system service goals. Finally, for recovery,
two existing mechanisms for SDN include partial configuration
rollback [31] and elastic controller provisioning [32].

IV. CASE STUDY: ACCOUNTABLE SDN APPLICATIONS

We now consider a case study of applying the accountability
process to SDN network applications.

A. Scenario

As controller software has become increasingly complex,
there has been a proliferation of available network applications
(apps) that network and security administrators can deploy.
HP Enterprise, for instance, offers an SDN App Store [33]
where users can download monitoring, security, optimization,
orchestration, and visualization tools that coordinate with the
HP VAN SDN controller. At the time of this writing, 35 of
the 39 apps are provided for free, and 29 of the 39 apps were
developed by third parties outside of HP Enterprise [33].

A natural security question arises: how can we trust network
applications? Furthermore, how can we attribute actions that
they take? Consider a simple example of three systemwide
network applications used by a cloud provider: 1) an intrusion
detection system (IDS) app monitoring all external-bound data
plane traffic for intrusions, 2) a quality of service (QoS) app
supporting network SLAs between the cloud provider and its
clients, and 3) a firewall app protecting the data plane from
external threats and isolating inter-client traffic.

Suppose the IDS app discovers a potential intrusion with
systemic consequences in one of the client’s resources, and the
“discovery” is later determined to be a false positive. While the
potential intrusion is still considered a real threat, the firewall
receives the IDS alert and reactively reconfigures the network
to block traffic that affects other clients’ network resources.
The QoS app determines it cannot provide any routing paths
that support other clients’ SLAs now that particular routes
have been blocked, and the agreed terms from the SLAs are
thus breached as a result of a nonexistent threat.

Each app, viewed independently, provided its respective
services correctly, yet the actions taken on behalf of one client
negatively affected other clients. Which entities should be
held accountable for breaching the SLAs—the client whose
resources caused the alert to be generated, the cloud provider
whose security policies required IDS monitoring, the apps’
developers whose software generated alerts and actuated the
responses that breached the SLAs, or a combination thereof?

Porras et al. [12] consider the application coexistence
problem as one in which multiple applications compete to
make decisions that affect network behavior. They propose a
mediation policy that includes minimal permissions levels, and
they suggest implementing application accountability through
a security audit service module. While their auditing solution
attributes events to the applications that generated them, we
posit that this is only one component in the accountability
process. How the data can be used afterward to provide
attribution, how the collected data relate to each other, and
how the data can be used to enforce automatic penalties for
the accountable entities must also be considered.

B. Analysis

Our framework, described previously in Section III, moves
accountability from the view of what data are collected to a
complete end-to-end view of how those data can be used to
assign attribution and drive responsive decisions automatically.
We highlight parts of the three-application scenario in which
the conceptual framework of accountability can help in the
SDN architecture design process.

1) Provider and clients: The cloud provider is accountable
to its clients for providing acceptable levels of network service
(e.g., bandwidth, latency, denial of service protections) as
agreed upon contractually in an SLA. Its clients should be able
to audit the provider to ensure that the service is provided in
practice [16]. The provider and clients can agree on culpability
when service levels are breached, and they can codify this
logic with smart contracts that include monetary stakes. If a



client determines that service is not being provided, the client
can receive monetary compensation [34].

2) Controllers and apps: The three apps are accountable to
the SDN controllers for the high-level intents that they ask the
controllers to implement. The SDN controllers are accountable
to the apps for the low-level actions they take in response, as
apps may require assurance that certain actions were taken or
to provide evidence if disputes arise later. For instance, if the
QoS app cannot change the network’s routing to meet the SLA
because of an action that the firewall app requested, the QoS
app can use evidence of the firewall app’s actions to declare its
innocence as the root cause of the SLA failure. (The firewall
app may do the same to declare its innocence as the root cause
of failure vis-à-vis the IDS app.)

C. Remarks

Based on our accountability framework’s considerations,
SDN has made some progress in provenance [23], secure
auditing [12], fault tolerance [13], [14], roots of trust [27],
and resiliency [31], [32]. However, no one design captures all
of the elements required for an accountable architecture. As
illustrated in our case study, no solution to date has considered
accountability as an end-to-end process, starting from assured
data guarantees, continuing with auditing and detection of
breaches, and ending with automated actions for deterrence
and response that support resiliency goals.

V. CONCLUSION

SDN continues to be applied in a multitude of enterprises
and domains [1], and its global perspective [2] can aid in
providing detection and response mechanisms for systemwide
cyber resiliency. In this paper, we argued that the security prop-
erty of accountability must be considered in the architecture
design so as to support detection assurances that ultimately in-
form responses. We provided a conceptual framework analysis
of accountability as applied to SDN entities and processes, and
we applied several notions of accountability in our network
application case study. We hope that this paper spurs further
interest in incorporating accountable networking by design.
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