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Abstract—
Commercial use of Unmanned Aerial Vehicles (UAVs), or

drones, promises to revolutionize the way in which consumers
interact with retail services. However, the further adoption of
UAVs has been significantly impeded by an overwhelming public
outcry over the privacy implications of drone technology. While
lawmakers have attempted to establish standards for drone
use (e.g., No-Fly-Zones (NFZs)), at present a general technical
mechanism for policy enforcement eludes state-of-the-art drones.

In this work, we propose that Proof-of-Alibi (PoA) protocols
should serve as the basis for enforcing drone privacy compliance.
We design and implement AliDrone, a trustworthy PoA protocol
that enables individual drones to prove their compliance with
NFZs to a third party Auditor. AliDrone leverages trusted
hardware to produce cryptographically-signed GPS readings
within a secure enclave, preventing malicious drone operators
from being able to forge geo-location information. AliDrone
features an adaptive sampling algorithm that reacts to NFZ
proximity in order to minimize the processing cost. Through
laboratory benchmarks and field studies, we demonstrate that
AliDrone provides strong assurance of geo-location while im-
posing an average of 1.5% overhead on CPU utilization and
0.3% of memory consumption. AliDrone thus enables the further
proliferation of drone technology through the introduction of a
trustworthy and accountable compliance mechanism.

Index Terms—Drone, GPS Forgery Attack, Privacy, TrustZone

I. INTRODUCTION

The Unmanned Aerial Vehicles (UAVs) technology, also

known as “drones”, enables many promising applications.

Besides military purpose, many businesses are paying more

attention on the commercial usage of drones. For example,

Amazon announced its Air Prime Delivery Service [1] in

2013, aiming to deploy small drones to deliver lightweight

packages. The expected delivery time can be as short as 30

minutes after the purchase is made, which is much faster

than the best delivery option in the current state. Additionally,

other drone applications include infrastructure construction,

precision agriculture, and photography [2]–[4].

Despite all the benefits of drones, the public has shown

great concern of privacy for the drone applications. A drone

equipped with high resolution camera can surreptitiously

surveil anyone’s backyard 400 feet high in the air. Since 2010,

the Federal Aviation Administration (FAA), has been working
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on the UAV regulations to control the risks of commercial

drone usage. The most recent rules [5] include requirements on

the pilots, the UAV specs, and the locations where drones are

allowed to fly. However, these rules mainly focus on the safety

protection but fail to defend against the privacy violation.

One promising countermeasure for mitigating drone surveil-

lance is the establishment of no-fly-zones (NFZs) over privacy-

sensitive locations. If a drone is sufficiently far away from a

sensitive area, surveillance cannot be carried out successfully.

The FAA has designated a variety of NFZs, primarily for

safety purposes, around critical infrastructures such as airports.

An established NFZ specifies that no drone is permitted to fly

within 5 miles of the protected location. To more effectively

notify drone operators of NFZs in their area, the FAA has even

published the B4UFLY mobile app [6]. Unfortunately, regu-

lation alone cannot prevent drones from flying over restricted

areas; as the drone navigates in open airspace, it is hard for an

observer on the ground to accurately determine the location of

a drone. Instead, what is needed is a reliable means of tracking

drone locations for the detection of NFZ policy violations.

In this paper, we present the design and implementation

of AliDrone, a geo-location based alibi protocol that enables

drones to generate proof-of-non-entrance to an NFZ. We

define three roles in the system: Zone Owners that own

some property, Drone Operators that operate a drone and

control its navigation through an area, and Auditors, authorized

third parties (e.g., local agents of the FAA) that attest drone

locations and detect any non-compliance on NFZ regulations.

Before flying, the Drone Operator queries the Auditor for the

location of nearby NFZs. While flying, the drone computes an

alibi, i.e., a signed GPS trace, based on its real time location.

At the end of the flight, the Drone Operator submits the drone’s

Proof-of-Alibi (PoA) to the Auditor. The Auditor then verifies

the PoA and initiates punishment on the Drone Operator if a

policy violation is detected.

We design AliDrone with consideration that a Dishonest
Drone Operator may try to navigate the drone over a restricted

area without being detected by the Auditor. Such an attacker

could attempt to forge an innocent compliant route and com-

pute its alibi based on this forged GPS trace. As a result, an

adversary may take a shortcut route or gain pictures of the

restricted area.

Defending against such adversary is challenging. As the

owner of the drone, the Dishonest Drone Operator has priv-
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ileged access to the drone software stack as well as any

exposed hardware, meaning the attacker could attempt to

extract security keys used in the alibi protocol or replace the

system components with malicious software.

Our design relies on the existing secure hardware to provide

a trusted execution environment for drones to generate their

Proofs-of-Alibi (PoA). The PoA is a keyed cryptographic hash

of the drone’s GPS trace that is signed by a security key

protected by secure hardware. Thus, the Drone Operator does

not have access to the private signing key. We require the

Drone Operator to submit the alibi (i.e., the GPS trace) along

with this proof to the Auditor. The Auditor knows each drone’s

public key and can therefore verify the signatures. In this way,

the Drone Operator is unable to tamper with the alibi submitted

to the Auditor.

We outline the paper’s main contributions below:

• We present AliDrone, a lightweight and practical alibi

system that enables drones to generate trustworthy proof

of privacy compliance.

• We introduce an adaptive sampling mechanism to minimize

the processing and energy overhead.

• We provide performance benchmarks and perform an ex-

haustive real-world evaluation of AliDrone.

The rest of this paper is organized as follows:

• Section II, describes the background of drones and secure

hardware technology;

• Sections III and IV, demonstrates the system model followed

by the design decisions;

• Section V, describes the hardware platform and implemen-

tation details;

• Section VI, presents the evaluation of AliDrone;

• Section VII, discusses limitation and extensions of

AliDrone;

• Section VIII, is dedicated to related work.

II. BACKGROUND

A. Unmanned Aerial Vehicle (UAV)

An unmanned aerial vehicle, usually referred to as a drone,

is an aircraft without a human pilot onboard. Such devices can

be controlled remotely by the operator within a distance of 200

- 3,000 meters. A typical drone costs from $200 to $1,000.

It flies at up to 40mph with a flight time of 20 - 30 minutes.

Most drones are equipped with a camera, which enables many

popular applications such as aerial photography. Recently,

some drones with programmable features are available on the

market. These drones can be programmed to perform actions

including object tracking, navigation, and surveillance [7].

B. Trusted Execution Environments

Trusted Execution Environment (TEE) is a set of secu-

rity extensions added to main processors. These processors

partition the hardware and software and run a separated

subsystem known as “secure world” in addition to the normal

operating system, a.k.a. “normal world”. The TEE technology

is programmed into the hardware to protect the memory

Fig. 1. OP-TEE Architecture. The code and data in secure world are protected
by hardware. The switching between two worlds are triggered via Secure
Monitor Call (SMC).

and peripherals. Consequently, security is enforced without

degrading the system performance. TEE can be implemented

on commercial secure hardware such as ARM TrustZone [8]

and Intel SGX [9].

After the initial effort in standardizing software development

for TrustZone, ARM partnered with GlobalPlatform to define

a new TEE API. TEE encompasses three major features:

• Safe and secure boot ensures all system software compo-

nents are in a known and trusted state before launching the

operating system.

• Isolated execution of critical applications in a virtualized

environment.

• Data protection of trusted applications in terms of integrity

and confidentiality.

In this work, we leverage the integrity feature of TEE to

authenticate the geo-location data.

C. OP-TEE

OP-TEE is an open source project for TEE in Linux using

the ARM TrustZone technology. It implements a TEE client

in the normal world and a TEE core in the secure world using

the GlobalPlatform TEE System standard. Fig. 1 shows the

architecture of OP-TEE.

OP-TEE provides a minimal secure kernel (OP-TEE core)

which can be run in parallel with a normal world OS such

as Linux. It provides drivers (OP-TEE Driver) for the nor-

mal world OS to communicate with the secure world. The

transition between the two worlds are triggered via Secure

Monitor Calls (SMC). It uses a daemon service in the normal

world, i.e., tee-supplicant, to help the Trusted OS with the

miscellaneous such as storage access.

OP-TEE allows two types of Trusted Applications (TAs)

[10]. A normal TA runs in non-privileged mode in the secure

world. When compiled, a TA is signed by a private key which

is unknown to the user in the normal world. Hence, it can

be stored in the untrusted storage. Every TA is assigned a

unique UUID. When an OP-TEE enabled application calls an

interface provided by a specific TA, it provides the associated

UUID and the interface ID. Then, the tee-supplicant will locate
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the TA by the UUID in the storage and help the OP-TEE

core to load the TA. Dynamically loading the normal TAs

can reduce the size of TEE core. However, such TAs cannot

access the devices and peripherals by their physical addresses.

The other type of TA is called Pseudo Trusted Application

(PTA). Unlike the normal TAs which are dynamically loaded

when necessary, PTA are statically built into the OP-TEE core.

PTA can access the peripherals by creating a mapping from

the physical address to the memory. In this work, our design

involves in both TA and PTA components.

III. SYSTEM MODEL

A. Physical Model

We consider a Drone Operator that instructs a drone to nav-

igate a given flight pattern. We represent the drone’s activity

as a series of samples S = (lat, lon, t), each represented as

a tuple of latitude, longitude and timestamp that are sampled

from a GPS receiver. A particular drone flight pattern F can

thus be summarized as:

F = {S0, S1, . . . , Sn}.
This work considers a situation where a drone must navigate

an area in which many NFZs are present. We assume all NFZs

to be circular, and are defined by:

z = (lat, lon, r),

where lat and lon are the latitude and longitude of the center,

and r is the radius of the circle. We refer to the entities who

own the NFZs as Zone Owners throughout the rest of this

paper. If a drone passes into an NFZ, we say that the privacy

of that Zone Owner is violated.

We assume that each drone is associated with an identifier,

similar to a vehicle license plate, which is visible by an

observer on the ground. If a Zone Owner spots a drone close to

her NFZ, she may suspect that privacy violation has occurred.

The Zone Owner will record the drone ID and report the

incident to an Auditor, which is an authorized third party,

e.g., a local Federal Aviation Administration (FAA) agent.

The Auditor uses the drone ID to recover the flight pattern

F from the Drone Operator, then determines if the privacy

violation did occur. In our model, the burden of proof rests on
the Drone Operators to prove conclusively that their drones
could not have been present in the NFZs.

If F is insufficient to produce Proof-of-Alibi, the Auditor

concludes that a privacy violation has occurred. The Auditor

will then initiate punitive measures against the Drone Operator.

The punishment for privacy violation is orthogonal to the

purpose of this work, and can be specified through policy or

legislation.

B. Threat Model

We consider the adversary as a dishonest Drone Operator

(or rogue drone) that wants to violate NFZ airspace without

being detected by the Auditor. Such an adversary may be small

business looking to reduce costs by taking a shortcut, or a

journalist or amateur operator attempting to acquire footage

from a restricted area [11]. To avoid detection, the adversary

will attempt to forge an innocuous route to present to the

Auditor in place of its actual illicit GPS trace. This feat may

be attempted through pre-computing a route that does not

intersect any NFZ, replaying a previously reported route, or

relaying a route from another drone. We use the term GPS
forgery attack to denote this attack in the rest of the paper.

We assume the presence of secure hardware within the

drone that provides a trusted execution environment (i.e.,

ARM Trustzone, Intel SGX). Furthermore, we assume that

an asymmetric sign key pair is generated within TEE by the

hardware manufacturer, and the private key is not known by

the Drone Operator. Side channel attacks on the enclaves [12]–

[14] are not considered in this work. While the attacker can

attempt to install malicious software on the drone platform,

we assume the correctness of the GPS hardware. We also do

not consider GPS spoofing attacks in which the GPS receiver

is manipulated from the ground through the broadcast of

incorrect GPS signals [15], [16]; such attacks can be mitigated

through existing defenses [17]–[20].

IV. SYSTEM DESIGN

A. Design Goals

Our system protects the privacy of Zone Owners by allowing

them to request no-fly-zones (NFZs) upon their properties. The

solution enables the drones to present trustworthy, geo-location

based proof-of-alibis (PoAs) proving that the drones do not

fly over the NFZs. The PoA will be verified by a trusted third

party, known as the Auditor. Before we describe the design

decisions in detail, we list our design goals as follows:

G1 Completeness: The PoAs generated by the drone must

prove that it does not fly over any NFZ during the entire
flight period.

G2 Low Overhead: The computation of trustworthy PoAs

should impose small processing overhead for the drones.

G3 Unforgeability: The Auditor must not accept any PoA if it

is forged by Drone Operator.

B. Protocol Overview

As described in section III, our system involves three

entities: a Drone Operator, a Zone Owner and an Auditor.

Fig. 2 demonstrates the interactions among these entities. We

describe the high level protocol in this section. A summary of

cryptographic keys and data used by the protocol is presented

in Table I.

0. Drone Registration: We require that a drone should be

registered at the Auditor before operated in the field. The

Drone Operator will generate an asymmetric keypair D =(D+,

D−) and provide the public key D+ to the Auditor. To enable

trustworthy report of geo-locations, we require that an asym-

metric keypair for the Trusted Execution Envirionment (TEE)

on the drone T = (T+, T−) is generated at manufacturing

time. The TEE sign key T− is only accessible by TEE and

the verification key T+ is known to the drone owner when the

device is merchandised. At registration, the TEE verification
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Notation Description Knowledge
iddrone Identifier of drone. It must be carried on the drone during operation. All parties
idzone Identifier of NFZ. Associated with the latitude, longitude and radius of the property. All parties

T− Private TEE sign key. Used to sign GPS data in TEE. Drone TEE

T+ Public TEE verification key. Enables verification of signed GPS data. Drone Operator/Auditor

D− Private sign key of a Drone Operator. Used to authenticate zone query messages. Associated with iddrone. Drone Operator

D+ Public verification key of a Drone Operator. Enables verification of signed zone query messages. Auditor

Table I
Notations of keys and data used by AliDrone protocol. Column Knowledge indicates the parties who have access to the information.

Fig. 2. An overview of system workflow. The process starts where the Zone
Owner submits the coordinates to the Auditor (task 1). Then, Drone Operator
submits its flight plan to the Auditor and in response receives the NFZs within
the flight zone (task 2 and 3). After the flight, Drone Operator provides the
proof-of-alibi, showing that it has not flown over the NFZs to the Auditor
(task 4).

key T+ should also be submitted to the Auditor. An identifier

iddrone will be then issued to the drone. This identifier is similar

to a vehicle license plate, which must be carried on the drone

when it operates. Therefore, an entry of registered drone can

be expressed as (iddrone, D
+, T+).

1. Zone Registration: In order to register an NFZ, a Zone

Owner submits to the Auditor the coordinates and radius of the

property, i.e., z = (lat, lon, r), as well as a proof of ownership.

Upon request approval, the Auditor will issue an identifier

idzone to the Zone Owner and add a new entry (idzone, z) to

the NFZ database.

2-3. Zone Query/Response: Before a drone starts navigation,

the Drone Operator should query the auditor for the NFZ

information. The query is comprised of the drone id, two

GPS coordinates (x1, y1) and (x2, y2), indicating a rectangular

navigation area, and a random nonce signed by the drone sign

key D−, i.e.,

(iddrone, (x1, y1), (x2, y2), nonce, Sig(nonce, D−)).

The Auditor first checks if the query is sent from a

registered drone by verifying the signature on the nonce.

Then, it pulls a list of NFZs {z1, z2, · · · , zm} within the

rectangle and responses with the coordinates and radii of the

zones. The drone can use the NFZ information to compute a

viable route to its destination.

4. Proof-of-Alibi Submission: During the flight, the drone

computes the Proof-of-Alibis (PoAs) and persists the PoAs

to storage. The purpose of the PoA is to show that the

drone does not enter any NFZ during the flight. The detailed

design of PoA is presented in section IV-C. At the end of

the flight, the Drone Operator must submit the PoAs to the

Auditor for verification. To enable real-time auditing, the drone

could alternately transmit its PoAs in real-time to the Auditor;

however, we do not pursue this solution in our work as it would

increase battery drain, violating Goal G2.

C. Trustworthy Proof-of-Alibi

In this section, we introduce the concept and design of

Proof-of-Alibi (PoA), which enables drones to generate un-

forgeable GPS traces. We first explain how the geo-location

information serves as a proof of privacy compliance (Goal G1).

Then, we demonstrate an extension in the trusted execution en-

vironment (Goal G3) and an optimization to reduce processing

overhead (Goal G2).
1) Possible Traveling Range: To prove that a drone does not

enter an NFZ, we show that it is physically impossible to travel

into the zones based on its geo-locations. The idea of this proof

is based on the fact that drones have a maximum traveling

speed vmax, which is restricted to 100 mph by the FAA

regulation [5]. This enables the computation of the possible
traveling range using two GPS coordinates.

Consider that the drone produces two GPS samples S1 =
(x1, y1, t1) and S2 = (x2, y2, t2). Denote the location of the

drone at arbitrary time t ∈ [t1, t2] as (x, y), the possible

traveling range can be described as an ellipse E with (x1, y1)
and (x2, y2) being the two focuses:

E(S1, S2) = {(x, y) | d1 + d2 ≤ vmax(t2 − t1)},
where di =

√
(x− xi)2 + (y − yi)2.

Suppose the drone operates near an NFZ z = (x0, y0, r0).
The GPS samples (S1, S2) can prove that the drone does not

enter zone z during (t1, t2) if the ellipse does not intersect with

the circle representing zone z. Otherwise, it suggests that the

drone may travel into zone z during [t1, t2].
During the flight, we require the drone to collect a set of

GPS samples and define the set of the samples as alibi:

alibi := {S0, S1, · · · , Sn}.
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Fig. 3. Possible traveling range and a single NFZ. The possible traveling
range should not intersect with the NFZ to produce sufficient alibi.

Given a set of NFZs Z = {z1, z2, · · · , zm}, we say that the

alibi is sufficient if every pair of two consecutive GPS samples

prove impossibility of traveling into all the NFZs, i.e.,

E(Si, Si+1) ∩
(⋃

z∈Z

z

)
= ∅, ∀ i < n. (1)

Otherwise, we say the alibi is insufficient. Insufficient alibi

suggests that the drone may travel into NFZs during the flight.

Hence, it does not show compliance with the no-fly rule.

Consider a simple case where only one NFZ is on the map

shown in Fig. 3. The minimum sampling rate that produces

sufficient alibi should results in an ellipse that is tangent to

the NFZ.

2) TEE Enabled GPS Sampling: To ensure that such alibi

cannot be forged by Drone Operators, our solution leverages

trusted hardware to authenticate the GPS data in a Trusted

Execution Environment (TEE). We move the sampling logic

to the secure world to guarantee that the GPS data is collected

from the GPS hardware. The GPS data is signed by the TEE

sign key T− before it leaves the secure world. We define the

Proof-of-Alibi (PoA) as a series of GPS samples along with

the TEE signatures, i.e.,

PoA := {(S0, Sig(S0, T
−)), (S1, Sig(S1, T

−)), · · · }.

The sign key T− is only available to TEE such that a

Drone Operator in the untrusted environment cannot forge the

signatures. The verification key T+ is known to the Auditor at

registration stage, and thus the Auditor is able to detect if the

GPS data is modified. Our design can be generalized to trusted

hardware platforms including Intel SGX and ARM TrustZone.

We present the an ARM TrustZone based architecture of

AliDrone in Fig. 4.

The Auditor runs an AliDrone Server. It stores the informa-

tion of registered drones and NFZs, and provides an interface

to query the NFZ information to the drone client. Upon

receiving the PoAs from drones, it verifies the sufficiency of

the PoAs (see equation (1)). After the PoA verification, the

AliDrone Server should save the PoAs for a couple of days.

This is because a Zone Owner may report a violation after-

wards and the PoAs will serve as evidence for the accusation.

The drone client consists of three components: GPS Driver,

GPS Sampler and Adapter. GPS Driver runs in the kernel space

of the secure world. It is used to access the GPS receiver and

parse the raw GPS data into coordinates and timestamps.

GPS Sampler runs in non-privileged mode in the secure

world. It exposes an interface GetGPSAuth to the Adapter

to produce an authenticated GPS sample. It reads the parsed

GPS data from the underlying GPS Driver and signs the data

with the TEE sign key T−.

The Adapter is a daemon service in the normal world. It

has access to the GPS receiver and controls the PoA sampling

rate using the adaptive sampling mechanism, which will be

introduced in section IV-C3. In addition, it is responsible for

encrypting the PoA with the public encryption key of the

AliDrone Server.

3) Adaptive Sampling: A commercial GPS receiver can

update the GPS measurements with a maximum rate of

5Hz [21]. However, performing frequent sampling in AliDrone

is expensive because signature and world-switching operations

are costly. Maintaining the maximum sampling rate has a

non-negligible amount of processing overhead on the resource

limited hardware. Therefore, an adaptive sampling mechanism

is essential to minimize the processing overhead for the drones.

As mentioned in section IV-C1, two samples (S1, S2) are

sufficient to prove alibi from zone z if the ellipse of possible

traveling range does not intersect the zone, i.e.,

E(S1, S2) ∩ z = ∅.

Given a traveling trace described by a series of samples

{S0, S1, · · · , Sn} such that ti < ti+1, we can conclude that

E(Si, Sj) ⊂ E(Si, Sk), ∀ i < j < k.

This implies that if the sample pair (Si, Sk) is sufficient, all

the intermediate samples in between are not needed in the

PoA. Denote the PoA as a set of samples selected from the

trace {Sk0
, Sk1

, · · · , Skm
} and let the first sample from PoA

be Sk0
= S0. The task of the Adapter is to find

ki+1 = argmax
j

(E(Ski
, Sj) ∩ z = ∅) , ∀ ki < j < n.

Since the Sampler only samples the current GPS information

by demand, it can be too late to recover a previous sample

when the current location already violates PoA sufficiency.

Therefore, the Adapter must take a sample when the bound-

aries of the possible traveling range and the NFZ are close.

Consider the worst case where the drone flies towards the

NFZ z = (x0, y0, r0) at maximum speed vmax. Assume that

the GPS receiver has a maximum update rate of R Hz. Let

the last sample recorded in PoA be S1 = (x1, y1, t1) and the

latest sample measured by the Adapter be S2 = (x2, y2, t2)
such that

D1 +D2 ≥ vmax(t2 − t1) (2)
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Fig. 4. AliDrone System Architecture. AliDrone enables trustworthy PoA generation on the drone by performing GPS sampling in a TEE. The GPS data is
sampled, encrypted and signed by the trusted application GPS Sampler. The Adapter runs adaptive sampling algorithm and adjusts GPS sampling rate in real
time. The Auditor runs AliDrone Server to verify the PoA uploaded by the drone.

where Di =
√

(xi − x0)2 + (yi − y0)2 − r is the distance

between the drone and the boundary of z. The next GPS update

will be made in Δt = 1
R and the difference of such distance

will be ΔD = − vmax

R .

The sample S2 should be made if the next measurement

will be insufficient, i.e.,

D1 +D2 +ΔD < vmax(t2 − t1 +Δt).

Therefore we have

D1 +D2 < vmax(t2 − t1 + 2/R) (3)

Therefore, we can conclude that a sample should be

recorded in PoA if conditions (2) and (3) are both true.

When multiple NFZs are present, we only need to prove

PoA sufficiency for the closest zone. We present the Adaptive

Sampling algorithm in Algorithm 1. In each iteration, the

Adapter first samples the GPS data in the normal world by

calling ReadGPS() with the same rate R that the GPS

receiver updates the measurements. Then, it finds the closest

zone from NFZ list. If both conditions (2) and (3) hold, it

calls GetGPSAuth(), which acquires the sample and the

signature from the GPS Sampler in the secure world.

V. HARDWARE AND IMPLEMENTATION

A. Hardware Platform

We choose ARM Trustzone [8] as our secure hardware

platform. Although Intel SGX [9] processors provide better

performance in general, they do not emulate the resource

limited computation environment of drone hardware. Similar

Algorithm 1: Adaptive Sampling Algorithm. The adap-

tation is achieved by skipping unnecessary calls of

GetGPSAuth() interface.

NextSample (R, S1, Z);
Input : R - GPS Update Rate; S1 - Last GPS Sample

in PoA; Z - NFZ list.

Output: S2 - Next GPS sample in PoA; Sig(S2, T
−) -

Signature of S2

while true do
S2 ← ReadGPS();

z ← FindNearestZone(S2, Z);

D1 ← Dist(S1, z);

D2 ← Dist(S2, z);

if
S2.t−S1.t ≤ (D1 +D2)/vmax < S2.t−S1.t+2/R
then

S2, Sig(S2) ← GetGPSAuth();

return S2, Sig(S2, T
−);

else
sleep(1/R);

end
end

to the secure enclaves in SGX, the TrustZone partitions the

software and hardware into two worlds, a normal world and

a secure world. The hardware logic ensures that the resources

in the secure world is inaccessible from the normal world.
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Fig. 5. Hardware Platform consists of a Raspberry Pi 3 Model B and Adafruit
Ultimate GPS breakout.

Specifically, we implement a proof-of-concept prototype of

AliDrone client on Raspberry Pi 3 Model B [22], which has

a 1.2GHz 64-bit quad-core ARMv8 CPU that supports ARM

TrustZone. Previous effort has shown feasibility of deploying

a practical drone controller on Raspberry Pi [23].

We connect the Raspberry Pi with an Adafruit Ultimate GPS

breakout [24] via GPIO ports as shown in Fig. 5. The sampling

rate of the GPS receiver can be configured in the range of [1

Hz, 5Hz]. It outputs the GPS messages following the NMEA

0183 standard [25].

We acknowledge that a dishonest Drone Operator may

instead connect a malicious GPS receiver or a programmable

UART device to generate GPS messages by purpose. Con-

sequence of such attack leads the Trusted Execution Environ-

ment to sign forged GPS messages and thus breaks the security

guarantee of our system. Therefore, the manufacturers should

consider an alternative hardware design by using embedded

GPS chips to prevent this attack.

B. GPS Driver & GPS Sampler

The GPS Driver is implemented in kernel space of OP-

TEE core. It maps the physical address of the GPIO RX

port to a memory buffer. In particular, we are interested in

the $GPRMC messages, which contains information includ-

ing latitude, longitude, velocity and timestamps. The latest

$GPRMC message is read from the buffer and parsed into

(latitude, longitude, timestamp) tuple using an open-sourced

library Libnmea [26]. An interface GetGPS() is exposed to

the GPS Sampler, which returns the latest GPS tuple.

The GPS Sampler is implemented as a Trusted Application

(TA) in non-privileged mode in the secure world. It uses the

private sign key to authenticate the GPS tuples.

An interface GetGPSAuth() is provided to the Adapter.

Once GetGPSAuth() is called, it reads the latest GPS

tuple from the GPS Driver and then and signs the sam-

ple with the private sign key. Our implementation uses

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1 algorithm to sign

the GPS data.

C. Adapter

The Adapter is implemented as a daemon service in the

user space of the normal world. We implement the adaptive

sampling algorithm in the Adapter and gets the authenticated

GPS tuples by calling GetGPSAuth() from the GPS Sam-

pler. We use RSAES_PKCS1_v1_5 algorithm to encrypt the

GPS data with the public key of the Auditor and persist the

ciphertext along with the signature in the local storage.

VI. EVALUATION

A. Field Studies

In this section, we evaluate the AliDrone in two cases, each

representing a specific pattern of the surrounding no-fly-zones.

1) Experimental Setup: We deploy the hardware described

in section V-A and emulate the flight pattern of a drone using a

vehicle. As the personal properties may be reserved as NFZs, it

is reasonable to assume that the airspace upon roads and public

areas like parks are available for commercial drone navigation.

We emulate the GPS sampling of drones by driving the vehicle

around a small county region. The maximum sampling rate of

the GPS sensor was set to 5 Hz and the entire GPS traces

including latitude, longitude and timestamps were recorded.

The collected GPS data was replayed to the GPS Sampler to

emulate the real-time GPS samples read from the GPS Driver

interface.

We specified two sets of no-fly-zones into the AliDrone

client. In the first case, we set a single NFZ with a large

radius. This case represents large no-fly areas in the city or

nearby critical infrastructures like airports and power plants. In

the second case, we set multiple small and dense no-fly-zones

along the route of the driving path. This case simulates the

scenario where the drone flies through a residential area and

it should not fly over any of the neighbors with no-fly-zone.

We compare the adaptive sampling with a baseline approach

which we refer as “Fix Rate Sampling”. Every time after a

GPS data is sampled, the sampling thread will sleep for a

period according to the sampling rate. Since the GPS hard-

ware has an independent rate for updating the measurements,

the sampler cannot always get the most updated GPS data

immediately after it wakes up. Therefore, we let the sampler

wait until the first measurement update for each time after

it wakes up. As a result, the actual sampling rate is as

fast as configured. For example, if the update rate of GPS

hardware is 5Hz, five samples are produced in each second at

t = 0.0, 0.2, 0.4, 0.6, and 0.8s. If the sampler runs at 3Hz, it

wakes up at t = 0.0, 0.33, and 0.67s. Then the time that three

samples are taken should be t = 0.0, 0.4, 0.8s.

2) Airport Scenario: FAA regulations forbid drone opera-

tions within 5 miles of any airport. In this scenario, we set an

NFZ centered at an airport with a radius of 5 miles. The GPS

trace starts about 30 feet outside the boundary of the NFZ.

The vehicle drives away from the NFZ for about 3 miles in

12 minutes.
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We set the sampling rate as 1Hz and keep track of the

total number of GPS samples as well as the distance to the

boundary. When the vehicle is close to the boundary, the

sampling rates of fix rate sampling and adaptive sampling

are similar. As the distance increases, the adaptive sampling

requires fewer samples for a sufficient alibi. Comparing to the

649 samples collected by 1Hz fix rate sampling, the adaptive

sampling uses only 14 GPS samples.

Fig. 6. In airport scenario, we keep track of the total number of GPS samples,
and the distance between the vehicle and the boundary of the NFZ.

3) Residential Scenario: The residential areas are com-

prised of many small but dense NFZs. In this scenario, we

drive the vehicle through a local county for about one mile.

Fig. 7 shows the satellite view of the residential area and

marks the driving route from location A to B. For purpose

of anonymity, the names and labels are removed from the

map. We use Google Maps to identify the houses along the

driving route and mark each of them as an NFZ. Every NFZ

is represented by a circle centers at a house with a radius of

20 feet. In total, 94 NFZs are identified in this area.

Fig. 7. Map and driving route of the residential area.

We are interested in three metrics in the residential scenario.

Distance to the nearest NFZ: As the vehicle moves, its

distances to the NFZs are changing. However, only the

Fig. 8. We measure three metrics in the residential scenario: (a) distance to the
nearest NFZ; (b) instantaneous sampling rate; (c) total number of insufficient
Proof-of-Alibi.

nearest NFZ affects the sampling rate because a PoA proving

alibi to the nearest NFZ is also sufficient for the other NFZs.

The distance of the vehicle to the nearest NFZ is shown

in Fig. 8-(a). Such distance indicates the density of the

neighborhood. At the beginning, the distance is primarily

within range 50 - 100 ft. When the vehicle enters a more

dense area, the distance decreases to 20 - 70 ft. At the closest

point, the vehicle is only 21 ft to the boundary of the nearest

NFZ.

Instantaneous Sampling Rate: We compare the the

instantaneous sampling rate of adaptive sampling to fix rate

sampling with 2 Hz, 3 Hz and 5 Hz in Fig. 8-(b). Note that

the sampler may wait for a small period time for the first

GPS update, the actual sampling rate in Fix Rate Sampling

can be lower than the settings. When the vehicle travels in

the less dense area, the Adaptive Sampling uses a sampling

rate lower than 2Hz. This saves the total number of GPS

samples produced in PoA. As the vehicle enters the dense

area, the adaptive algorithm pushes to higher sampling rate

to preserve the sufficiency of PoA.

Total Number of Insufficient PoA: If the time between

two continuous GPS samples is too long, the trace cannot

provide sufficient PoA. For every continuous sample pair

(xi, yi, ti) and (xi+1, yi+1, ti+1), we count the insufficient

PoAs as follows:

count +=

{
1 if minj(di,j + di+1,j) ≤ vmax(ti+1 − ti),

0 otherwise,

where di,j is the distance from the location of sample i to

NFZ j.

Fig. 8-(c) demonstrates the total number of insufficient PoAs

over time. In the first one and a half minutes, no insufficient

PoA is spotted. As the vehicle drives into the dense area, the
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fix rate sampling with 2Hz and 3Hz are unable to produce

sufficient PoA. In total, 39 and 9 insufficient PoAs are counted

in 2Hz and 3Hz Fix Rate Sampling.

Adaptive sampling achieves as few insufficient PoAs as fix

rate sampling (5Hz). However, an insufficient PoA is identified

at a time the vehicle is 25 ft to an NFZ. By further inspection

of the GPS trace, we find that the GPS hardware misses an

update when insufficient PoA takes place. This means that the

maximum sampling rate drops from 5Hz to 2.5Hz at this point.

B. Benchmarks

In this section, we present the benchmarks of AliDrone by

testing the processing and energy overhead in a controlled

laboratory environment. The experimental platform of the

benchmarks is Raspberry Pi 3 Model B, which has a 1.2 GHz

64-bit quad-core ARMv8 processor and a 1 GB LPDDR2-

900 SDRAM memory. The CPU utilization and memory

consumption of AliDrone are measured by running the GPS

Sampler on a single core under a fixed sampling rate. The

power consumption is derived from the power model presented

by Kaup et al. [27]:

PCPU(u) = 1.5778W + 0.181 · u · W (4)

where u is the average CPU utilization ranging from 0 to 1.

We first run the GPS Sampler under a fixed sampling rate of

2 Hz, 3 Hz and 5 Hz for 5 minutes. We use top command to

measure the CPU utilization and memory consumption once

per second and take the average over all the measurements.

Power consumption is computed by equation (4). Two encryp-

tion and sign key sizes (1024 and 2048 bits) are tested in the

benchmarks. Then, we replay the GPS data collected from the

two field studies and run the measurements again using the

same settings.

Table II shows the benchmarks for CPU utilization, power

consumption and memory consumption. Since the Raspberry

Pi has four cores, the range of CPU utilization measurement

is [0, 25%].

Key Size (bits) Case CPU (%) Power (W)

1024

Fixed 2 Hz 2.17 ±0.05 1.5817
Fixed 3 Hz 3.17 ±0.04 1.5835
Fixed 5 Hz 5.59 ±0.06 1.5879

Airport 0.024 ±0.160 1.5778
Residential 1.567 ±0.827 1.5806

2048

Fixed 2 Hz 10.94 ±0.09 1.5976
Fixed 3 Hz 16.81 ±0.10 1.6082
Fixed 5 Hz - -

Airport 0.122 ±0.810 1.5780
Residential - -

Memory 3.27 MB (0.3%)

Table II
CPU, Power and Memory Benchmarks

The benchmark results show that AliDrone only consumes a

small amount of memory of about 0.3%, which suggests that it

will not affect other memory intensive tasks. In terms of CPU

utilization, AliDrone can support trustworthy GPS sampling

with the maximum rate of 5 Hz using a short sign key (1024

bits). The computation overhead introduced by AliDrone is

about 5.6% on average. In the case of large TEE sign key

(2048 bits), AliDrone cannot keep up with the maximum

sampling rate. This result implies that more efficient signature

schemes are required to support higher GPS sampling rate.

The real-world benchmarks demonstrate that the adaptive

sampling mechanism can further reduce the processing over-

head. Running AliDrone in a dense residential county using

a 1024-bit sign key only costs an average of 1.5% CPU

cycles. Again the measurement under 2048-bit sign key is

not presented because of the large overhead of computing

asymmetric signatures.

VII. DISCUSSION

In this section, we discuss the limitations and future exten-

sions of AliDrone.

A. Limitations

1) Cryptographic Operations with Long Keys: As men-

tioned in section VI-B, high sampling rate is needed when

the drone is close to the no-fly-zones. However, the hardware

may be unable to keep up with the sampling rate if the keys are

long. As the asymmetric encryption and signature operations

are costly in the resource limited hardware platform, we may

consider the following options.

a) Symmetric cryptography: A drone may setup

ephemeral symmetric keys with the Auditor every time before

it starts a flight. Such keys can be used to encrypt and sign

the GPS data. However, the sign key must be inaccessible by

the Drone Operator. Thus, a key exchange protocol is needed

between the Drone TEE and the Auditor.

b) Sign all traces at once: We may consider the option

that caches the GPS samples in the secure memory and sign

the whole trace at once. This is feasible because the flight time

of drones are usually no more than 30 minutes and the size

of each GPS sample is small.

2) GPS Spoofing Attacks: Our solution does not consider

GPS spoofing attacks, in which attackers send incorrect GPS

signals to manipulate the GPS receiver. It is even more

challenging to mitigate such attacks in the context that the

attacker is the owner of the drone.

A potential solution can be developed by embedding the

GPS spoofing detector into the secure world [18]–[20]. If the

hardware is running in a suspicious environment, the GPS

Sampler can decline to provide authenticity services.

B. Future Extensions

1) 3D Physical Model: We briefly demonstrate how to

extend AliDrone to include altitude information using a 3-

dimensional physical model.

The GPS sample can be modified as a 4-tuple S =
(lat, lon, alt, t), where alt represents the altitude of the drone.

Similarly, the altitude dimension should be added to the NFZ

specification, i.e., z = (lat, lon, alt, r) can be interpreted as a

cylinder no-fly-region.
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Given two consecutive GPS samples S′
1 = (x1, y1, z1, t1)

and S′
2 = (x2, y2, z2, t2), the possible traveling range can be

described as an ellipsoid

E ′(S′
1, S

′
2) = {(x, y, z) | d1 + d2 ≤ vmax(t2 − t1)},

where di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2. Hence,

these two GPS samples can prove alibi to an NFZ z′ =
(x0, y0, z0, r0) if and only if the ellipsoid does not intersect

with the cylinder, i.e.,

E ′(S′
1, S

′
2) ∩ z′ = ∅.

2) Arbitrary No-fly Zones: The design of proof-of-alibi

assumes that all no-fly zones are circular. In real world

applications, the zone owners may want to register a no-

fly zone with a non-circular shape. We show how to extend

AliDrone to adapt with arbitrary shaped NFZs.

At the NFZ registration phase, the zone owner can describe

the NFZ by a polygon with n vertices. The auditor will first

find a smallest circle that covers all the vertices, and use

this circle to represent the NFZ. This problem is well known

as the smallest circle problem and can be solved in linear

time [28]. The computation of each NFZ only happens once

at the registration phase. Therefore, the computation cost for

the auditor can be negligible.

3) Privacy-preserving Verification: The design of AliDrone

relies on a trusted Auditor to verify the PoAs. However, a

dishonest Auditor may take advantage of AliDrone to track

drone using the geo-location information in PoAs. Such an

adversary may be an employee or insider of FAA who tends

to leak the GPS traces of commercial drones and gains profit

from this activity.

AliDrone can be extended by assuming the presence of an

honest-but-curious Auditor. The privacy-preserving extension

aims to prevent the Auditor from learning the entire GPS

trajectory from PoAs while still allows it to conclude on a

boolean value whether the drone violates NFZ compliance.

A potential solution can be developed using one-time en-

cryption scheme [29]. Drone Operators can use one-time keys

to encrypt each GPS sample Si in the PoA, and uploads the

encrypted PoA to the Auditor. When a Zone Owner spots

a drone in the NFZ, she reports the potential violation to

the Auditor by sending a message including her zone id, the

drone’s id and time of incident. By receiving the accusation,

the Drone Operator can reveal the two corresponding GPS

samples in the PoA by sending the two one-time encryption

keys. In this way, the Auditor can only learn the partial GPS

trajectory of the drone.

VIII. RELATED WORK

A. Drone Privacy

Privacy is one of the major concerns about the pervasive

deployment of UAVs. Nevertheless, among cybersecurity, pri-

vacy and public safety issues [30], the previous research on

drone privacy was limited to regulations [31]–[33]. The most

promising approach suggested by Cavoukian [34] was to apply

Privacy by Design (PbD) principle to drone technologies.

However, even though the drone system is complied with PbD,

an authorized drone operator can always attach a small camera

to the drone and covertly capture surveillance videos.

To the best of our knowledge, our work is the first technical

solution enabling drones to present proof of privacy compli-

ance.

B. Trusted Execution Environment

Trusted Execution Environment (TEE) technology has re-

ceived excessive research interest in recent years. Intel soft-

ware guard extension (SGX) [35], ARM TrustZone [8], [36]

and virtual TEE solution [37] made it possible to secure

sensitive code or data even if the system is comprised with

root access.

Utilizing TEE will allow us to build systems with stronger

security privileges [38], [39]. Specifically, Schuster et al.

[40] presented a verifiable Hadoop system which keeps code

and data secret even if the machines in a data center are

compromised. Zhang et al. [41] designed an efficient two-

factor authentication scheme on ARM TrustZone and achieved

comparable security assurance to hardware token based solu-

tion. Liu and Srivastava [42] used ARM TrustZone to protect

essential

C. Location Forgery

An abundant amount of work focused on GPS spoofing,

where the attacker sends spoof signals to confuse victim’s GPS

device [17], [43], [44]. In contrast, very few literatures were

to deal with the issue that users forge the location information

based on correct GPS readings.

Li et al. [45] presented a defense against “localtion cheat-

ing attack” by issuing location proof from the nearby WiFi

access points. Oh et al. [46] allowed nearby mobile devices

to cooperate and to unauthorize a forged location generated

by attackers. However, these approaches are not suitable for

detecting location forgery in drones. First, there is no fixed

object like WiFi access points in the air so as to help with

the location verification. Second, while commercial drones are

flying in the air, they can hardly form a short range wireless

network because high density of drones can lead to higher

probability of collision.

D. Drone Routing

Although we do not focus on the routing problem in this

paper, this class of literature is complementary to our work,

and can be used to optimize the Proof-of-Alibi. The routing

algorithms are specifically designed depending on the task that

the drone is part of [47], [48].

Our approach to generate PoA is similar to the one used in

[49], in which the network routing system can generate proof

that the route does not enter certain prohibited areas specified

by the sender of packets.
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IX. CONCLUSION

In this work, we have considered the privacy issue in

regard to drones. In specific, we solve the challenging task of

determining whether a drone has entered NFZs in small and

dense areas. We design a lightweight Proof-of-Alibi system

to enable drones to show NFZ compliance. Consequently,

our system facilitates trustworthy auditing of drone privacy

compliance.
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