
Cross-App Poisoning in Software-Defined Networking
Benjamin E. Ujcich
University of Illinois at
Urbana-Champaign

Samuel Jero
MIT Lincoln Laboratory

Anne Edmundson
Princeton University

Qi Wang
University of Illinois at
Urbana-Champaign

Richard Skowyra
MIT Lincoln Laboratory

James Landry
MIT Lincoln Laboratory

Adam Bates
University of Illinois at
Urbana-Champaign

William H. Sanders
University of Illinois at
Urbana-Champaign

Cristina Nita-Rotaru
Northeastern University

Hamed Okhravi
MIT Lincoln Laboratory

ABSTRACT

Software-defined networking (SDN) continues to grow in popu-
larity because of its programmable and extensible control plane
realized through network applications (apps). However, apps intro-
duce significant security challenges that can systemically disrupt
network operations, since apps must access or modify data in a
shared control plane state. If our understanding of how such data
propagate within the control plane is inadequate, apps can co-opt
other apps, causing them to poison the control plane’s integrity.

We present a class of SDN control plane integrity attacks that
we call cross-app poisoning (CAP), in which an unprivileged app
manipulates the shared control plane state to trick a privileged app
into taking actions on its behalf. We demonstrate how role-based
access control (RBAC) schemes are insufficient for preventing such
attacks because they neither track information flow nor enforce in-
formation flow control (IFC). We also present a defense, ProvSDN,
that uses data provenance to track information flow and serves
as an online reference monitor to prevent CAP attacks. We imple-
ment ProvSDN on the ONOS SDN controller and demonstrate that
information flow can be tracked with low-latency overheads.

CCS CONCEPTS

• Security and privacy → Access control; Information flow con-
trol; Information accountability and usage control; • Networks →
Programmable networks;

KEYWORDS

software-defined networking; data provenance; information flow
control; network operating system

∗DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the Department of Defense
under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Department of
Defense.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October 15–19, 2018,
Toronto, ON, Canada, https://doi.org/10.1145/3243734.3243759.

ACM Reference Format:

Benjamin E. Ujcich, Samuel Jero, Anne Edmundson, Qi Wang, Richard
Skowyra, James Landry, Adam Bates, William H. Sanders, Cristina Nita-
Rotaru, andHamedOkhravi. 2018. Cross-App Poisoning in Software-Defined
Networking. In 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3243734.3243759

1 INTRODUCTION

Software-defined networking (SDN) has emerged as a flexible archi-
tecture for programmable networks, with deployments spanning
from enterprise data centers to cloud computing and virtualized
environments, among others [33]. The rapid growth and potential
value1 of SDN stems from the need in industry and the research
community for dynamic, agile, and programmable networks. Driv-
ing the popularity of SDN is the use of modular and composable
network applications (or apps) that extend the capabilities of the
logically centralized control plane. Networks that would formerly
have required monolithic and proprietary software or complex
middlebox deployment can now be addressed by the larger devel-
oper community through the use of application program interfaces
(APIs) and even third-party app stores for practitioners [31].

While apps add value in ways that would have been difficult or
impractical before, the burgeoning SDN app ecosystem introduces
significant control plane security challenges. The SDN architecture
arguably involves a larger attack surface than traditional networks,
becausemalicious apps can disrupt network operations systemically
and significantly [14, 37, 42, 73]. A recent article notes that “attacks
against SDN controllers and the introduction of malicious controller
apps are probably the most severe threats to SDN,” and that the
situation is further complicated by dynamic configurations that
make it impossible for “defenders to tell whether the current or
past configuration is intended or correct” [14].

To date, defenses that limit the SDN attack surface have in-
cluded app sandboxing [75], TLS-enabled APIs [61, 64, 68], API
abuse prevention [65, 78], and role-based access control (RBAC)
for apps [68, 89], among others. Although these mechanisms im-
prove control plane security, we posit that they are not sufficient
for mitigating information flow attacks within the control plane.

1A 2016 forecast by the International Data Corporation predicts that the SDN market
will be valued up to 12.5 billion USD by 2020, with network applications accounting
for 3.5 billion USD of that market [33].

1

https://doi.org/10.1145/3243734.3243759
https://doi.org/10.1145/3243734.3243759

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

In order to function properly, apps necessarily require access to
and/or modification of the SDN control plane state, which includes
data stores and control plane messages. This “shared” state design
among apps creates new attack vectors for integrity attacks. For
instance, trusted or system-critical apps may unintentionally use
data generated by untrusted or malicious apps [42], leading to a
“confused deputy” problem [30]. To date, the SDN security literature
has not systematically considered the class of integrity attacks that
leverage information flow within the control plane, leaving SDN
controllers that implement this shared state design vulnerable.

While RBAC-based systems can limit the attack surface by pre-
venting access to shared data structures based on assignment of
permissions to roles and subjects, RBAC alone is not sufficient for
preventing attacks against the integrity of the shared SDN con-
trol plane state, because RBAC does not track how data are used
after authorization [72]. Consider the scenario in which an SDN
controller provides host and flow rule services among its core func-
tionalities. Suppose an adversary has compromised a host-tracking
app that, as part of the app’s normal functionality, has permission
to write to the host data store, but does not have permission to
write flow rules. A second app performing routing has permission
to read the host store and also to read and write flow rules. As part
of its functionality, the routing app ensures that all hosts can be
routed correctly, and it modifies flow rules as needed. Now suppose
that the adversary modifies a host location in the host data store
to point to a host that it has compromised. The routing app de-
tects this change and rewrites flow rules to reflect the new location.
Without being granted permission, the host-tracking app in this
example has succeeded in effectively bypassing the RBAC-based
system by having the routing app modify the network’s flow rules
on the host-tracking app’s behalf.

In this paper, we analyze information flow within SDN control
planes in order to consider the vulnerabilities inherent in the SDN
architecture’s design, the attack surface that the design introduces,
and possible mitigation strategies based on information flow control
(IFC) to ensure the control plane’s integrity. We introduce and
formalize a class of information flow attacks in the SDN control
plane that we call cross-app poisoning (CAP), in which a lesser-
privileged app can co-opt another app so that the compromised app
takes privileged actions on behalf of the attacking app. We have
modeled the attack surface with a cross-app information flow graph
that maps relations among apps through the shared control plane
state and granted permissions.

Using the 64 apps included with the popular ONOS SDN con-
troller [61] as a representative case study, we generated a least-
privilege reference security policy using API-level permissions
from the RBAC-based Security-Mode ONOS variant [89]. With our
API-level RBAC policy, we generated and analyzed a cross-app infor-
mation flow graph to identify opportunities for CAP attacks based
on the overlapping permissions granted to shared data objects. To
validate our results, we generated data flow graphs of ONOS apps
to identify a set of CAP gadgets that can be used to instigate CAP
attacks, and, through a proof-of-concept attack, we demonstrated
the existence of this vulnerability even among a curated set of apps.

To detect and prevent such attacks in real-time according to a
desired IFC policy, we introduce our defense, ProvSDN: an on-
line reference monitor for the SDN control plane that leverages a

data provenance approach to track and record information flow
in the control plane across app requests. ProvSDN intercepts API
requests, tracks how the control plane state is subsequently used,
and stores such metadata in a provenance graph that efficiently
queries past history while also recording the control plane’s history.
For our implementation, we instrumented ONOS with ProvSDN
and found that ProvSDN can, on average, enforce IFC by imposing
an additional 17.9 ms on a new flow rule instantiation, suggesting
that ProvSDN can be practical in security-conscious settings.

In summary, our main contributions are:
(1) The identification of the IFC integrity problem in SDN,

i.e., cross-app poisoning (CAP). We demonstrate that ma-
licious apps can utilize a lack of information flow protections
to poison the control plane’s state and escalate privilege.

(2) A systematic approach to identification of CAP attack vul-

nerabilities, given a specified RBAC policy, by modeling
the SDN control plane’s allowed information flows.

(3) A defense against CAP attacks, ProvSDN, that uses data
provenance for detection and prevention of CAP attacks by
enforcing IFC policies online in real-time.

(4) An implementation and evaluation of CAP attacks and
ProvSDN with the ONOS controller.

This paper is organized as follows. In Section 2, we outline the
threat model depicting our attacker’s capabilities and goals. In
Section 3, we provide background and an overview of SDN, how
apps use the SDN control plane, and information flow challenges in
the SDN control plane. In Section 4, we present our methodology for
detecting CAP attacks. In Section 5, we showCAP attacks’ existence
using Security-Mode ONOS as a case study. In Section 6, we outline
IFC policies to counteract CAP attacks. In Section 7, we present the
design, implementation, and evaluation of our defense, ProvSDN.
In Section 8, we discuss challenges and design trade-offs, and in
Section 9, we discuss related work. We conclude in Section 10.

2 THREAT MODEL

We assume that the SDN controller is trusted and adequately se-
cured but that it may provide services to, and be co-opted by, ma-
licious SDN apps. We assume that apps may originate from third
parties2, such as app stores3, and are thus untrusted and poten-
tially malicious. Although network and security practitioners will
use best practices and due diligence in vetting apps before deploy-
ment (e.g., verifying that an app has been signed by a trusted devel-
oper), compiled appswithout available source code are “black boxes”
whose behavior the practitioners may not entirely understand and
whose code may be vulnerable to compromise in unexpected ways.

We assume that an attacker controls a malicious app that has
least-privileged RBAC permissions. The attacker’s goal is to cause
arbitrary flow rules to be installed so as to affect data plane opera-
tions, despite not having the permission to do so. SDN controllers

2For instance, ONOS allows third-party app developers to submit apps to be included
in the controller’s repository. ONOS and its apps are currently used by transport
network providers and have been incorporated into commercial products developed
by Huawei and Samsung, among others [62]. As of August 2018, ONOS has also been
issued 12 CVE entries, including arbitrary apps being loaded into the controller [63].
3Aruba Networks, a subsidiary of Hewlett-Packard Enterprise, maintains an “SDN app
store” for the HP SDN controller [31]. As of August 2018, the app store contained 12
apps from third-party developers and 13 apps from “Aruba Technology partners.”

2

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

that do not implement RBAC make it trivially easy for apps to mod-
ify and poison data that other apps use. Lee et al. [41] cite the lack
of access control in SDN controllers as the cause of several types of
inter-app attacks, such as internal storage misuse, application evic-
tion, and event listener unsubscription. Our goal is to understand
these kinds of attacks even after RBAC has been applied, particularly
under a conservative least-privileges model whose privileges are
minimally necessary for app functionality.

Not all cross-app information exchanges are malicious in intent,
and some may be desirable based on a given situation. However,
current SDN controllers do not allow for the ability to distinguish
between benign and malicious cross-app information exchanges be-
cause they do not track control plane information flow. A successful
defender must be able to make this distinction.

We further assume that apps have principal identities and that
the controller ensures that one app cannot forge actions such that
they appear to have been taken by another app. That policy can
be enforced using a public key infrastructure (PKI) for authentica-
tion [37], and several controllers (e.g., [68]) already do so.

3 BACKGROUND AND OVERVIEW

We provide a brief overview of the SDN architecture’s important
components, how apps interact with the SDN control plane, the
control plane’s information flow challenges, and our main contri-
butions in solving such challenges.

3.1 SDN Architecture

SDN decouples decisions on how traffic ought to be forwarded
(i.e., the control plane) from the forwarding itself (i.e., the data
plane). SDN centralizes this control in a logically centralized con-
troller, exposes APIs to apps, and abstracts the lower-level details of
network forwarding devices (e.g., switches) [38]. Figure 1a shows
a representative SDN architecture with the controller, apps, for-
warding devices, and end hosts. Next, we highlight some relevant
background on the controller and control plane APIs.

Controller. The controller acts as a “network operating system”
to coordinate concurrent applications, to provision resources, and
to implement security or network policies [38]. Several controller
frameworks exist, such as Floodlight [20], Ryu [71], Open Net-
work Operating System (ONOS) [61], and OpenDaylight (ODL) [64].
Special-purpose controllers for secure environments include SE-
Floodlight [68], Rosemary [75], and Security-Mode ONOS [89]. The
controller maintains data stores that collectively serve as a “network
information base” for abstractions of the network’s topology, flow
entries, and end hosts, among others. The core methods provide
services that add, modify, or remove data from data stores.

Northbound API. There is no standard controller-to-application
interface or northbound API (NB API) among all controller frame-
works, and each framework may establish different boundaries
between the core functionalities and extensible apps. Apps can be
implemented in two ways: as “internal” modules within the con-
troller (represented by the dashed box in Figure 1a) or as separate
“external” processes decoupled from the controller. For example,
ONOS uses the OSGi framework in Java to manage internal app

modules and states. ONOS, ODL, and Floodlight, among others,
include a RESTful API for external apps.

Southbound API. SDN controllers also interact with network
forwarding devices to disseminate rules and to collect data plane
statistics. One popular standard protocol between controllers and
switches (i.e., the southbound API) is OpenFlow [46]. OpenFlow con-
figures switches’ forwarding behavior through flow tables, where
each flow table consists of flow entries that match attributes of
incoming data plane packets and assigns data plane forwarding
actions. The protocol includes messages to send data plane packets
to and from the controller (i.e., PacketIn, PacketOut), to modify
forwarding behavior (i.e., FlowMod), and to request and receive flow
entry statistics (i.e., StatsRequest, StatsReply), among others.

SDNControl Plane App Interactions. Apps interact with the shared
SDN control plane state via service API calls and event callbacks.
These mechanisms are independent of whether apps are internal or
external to the controller. With service API calls, an app can read
from or write to one of the controller’s data stores via a correspond-
ing service and the service’s methods. As shown in Figure 1b, apps
use the host service’s read() andwrite()methods to interact with the
underlying host data store. With event callbacks, an app registers
itself with the controller to receive events of interest as they occur.
As shown in Figure 1c, all apps have registered to receive data plane
events from a data plane event listener. Subsequent events may be
generated as a result of the first event.

3.2 Information Flow Models for Integrity

Information flow concerns the extent to which data propagate
throughout a system (i.e., the SDN control plane) and influence
other data. Information flow control (IFC) determines the ability of
data to flow based on policy so as to enforce an “end-to-end” secure
design by tracking propagation [72]. Pasquier et al. [66] provide
an overview of classical information flow models. Among them
is one proposed by Biba [10], who proposed a “no read down, no
write up” integrity policy. In that model, subjects are assigned to
one of several hierarchical integrity classes. Information can flow
from a sender subject to a receiver subject if the sender’s integrity
class is at least as high as that of the sender, which implies that low-
integrity information cannot reach high-integrity subjects. Myers
and Liskov [53] relax the hierarchical assumptions by proposing a
system of integrity tags and labels assigned to subjects.

3.3 SDN Control Plane Information Flow

Challenges

Given that apps can interact with each other through the shared
SDN control plane state, an ideal SDN controller must be able to
capture the resulting information flow and enforce access control
policies based on it. In considering the “network operating system”
concept for SDN, we next highlight how current state-of-the-art
SDN controller designs fall short with respect to information flow
and IFC, and how we approach such challenges.

3.3.1 Lack of well-defined application isolation and enforcement
as applied to shared control plane state. Some controllers, such as
Rosemary [75], sandbox each app’s resources (e.g., memory and
CPU usage) and use RBAC to allow apps or prevent them from

3

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

Switch Switch

External
Apps

SDN
Controller

Core
Internal app

modules
Internal app

Internal app

…

External
app

External
app

NB API
Core methods

SwitchCONTROL PLANE

…

SB API
Data stores

Forwarding Devices

Northbound API

DATA PLANE …

End
host End

host

End
host…

APPLICATION PLANE

Southbound API

APPLICATION PLANE

End Hosts

(a) Architecture. SDN separates the data

and control planes to logically centralize net-

work control. The application plane modu-

larly extends the control plane functionality.

Apps can reside either as modules within the

controller or as external processes.

Switch

CONTROL
PLANE

DATA PLANE

Switch Switch
…

Host
store

APPLICATION PLANE App 1 App 2

Shared data
structure n

Host
service

API for shared
data structure n

SDN Apps

SDN
Controller

Forwarding Devices

1

2

4

3

…

…

Flow rule
service

Flow rule
store

… App x

(b) Service API interactions. 1: App 1 calls

one of the host service’s write() methods to

insert a new host. 2: The host service adds

the object to its own data store. 3: App 2 calls

one of the host service’s read() methods (not

shown), and the service queries the store. 4:

The host service returns the object to app 2.

Switch Switch Switch
…

App 1 App 2 App 3

Event
listener

1

2

3 4
5

6

CONTROL
PLANE

DATA PLANE

APPLICATION PLANE

Shared data
structure n

API for shared
data structure n

…

…

SDN Apps

Forwarding Devices

SDN
Controller

(c) Event callback interactions. 1: A

switch notifies the controller about an event.

2: The event listener sends the event to the

first registered app. 3 and 4: Additional regis-

tered apps receive the event. 5: The last app

optionally returns an event. 6: The event is

actuated (e.g., in the data plane).

Figure 1: SDN architecture overview and app interactions via service APIs and event callbacks.

accessing parts of the SDN control plane state, in a manner analo-
gous to resource sharing and file permissions in operating systems,
respectively. However, RBAC is limiting in practice because it does
not enforce certain usage of data after authorization [72]. Apps can
bypass RBAC policies if they cleverly influence other apps to take
actions on their behalf as “confused deputies.”

Our contributions. We formalize this IFC integrity problem, under
the name cross-app poisoning (CAP), in Section 4, and demonstrate
its consequences through an attack evaluation in Section 5.

3.3.2 Lack of insight into information flow within the control
plane. A security practitioner might want to understand the con-
trol plane’s information flow to evaluate the extent to which apps’
information sharing should or should not be allowed. However, to
date, there are no SDN controller logging mechanisms that explic-
itly and easily capture the relationships among the various ways
data have been used or generated. Practitioners must manually
reconstruct and infer possible scenarios by inspecting log files of
varying verbosity. That makes it difficult or impossible to reason
about prior network state [14, 37] or to quickly narrow down and
attribute blame to specific apps when something goes wrong [48].
This lack of insight could mislead practitioners into incorrect con-
clusions when they investigate their systems.

Our contributions. In Section 4, we describe how to use a cross-
app information flow graph to better understand the attack surface.
In Section 7, we show how data provenance can provide insight
into enforcement and recording of control plane activities.

4 CROSS-APP POISONING

We now introduce cross-app poisoning (CAP) as the IFC integrity
problem for SDN. Informally, a CAP attack is any attack in which
an app that does not have permission to take some action co-opts
apps that do have such permissions by poisoning the other apps’

view of data in the shared control plane state so that they take
unintended or malicious actions on the first app’s behalf.

To systematically identify CAP attacks, we model how apps are
allowed to use and generate data based on how permissions are
granted (Sections 4.1–4.3), and we overlay this model with apps’
actual data flows (Section 4.4). While individual examples of CAP at-
tacks have been considered in the SDN security literature (e.g., [42]),
we are (to the best of our knowledge) the first to systematically
study this class of attacks, which cannot be prevented by the exist-
ing defenses in SDN, such as RBAC or app sandboxing.

4.1 RBAC Policy Model

We start with the current state-of-the-art in SDN secure controller
design by considering an RBAC model as a basis for formalizing
CAP attacks. Our model for specifying RBAC policies is denoted
by R = (A,R,O, PR , PW , P ,mAR ,mRP ,mPO) and consists of:

• A set of apps, denoted byA = {a1,a2, . . . ,ax }, that comprise
the apps in the SDN application plane.
• A set of roles, denoted by R = {r1, r2, . . . , ry }.
• A set of objects, denoted by O = {o1,o2, . . . ,oz }, that com-
prise the data in the shared SDN control plane state.
• A set of read permissions, denoted by PR , that make it possi-
ble to access or read from objects.
• A set of write permissions, denoted by PW , that make it
possible to write, modify, or delete objects.
• A union of all permissions, denoted by P = PR ∪ PW .
• A mapping of apps to roles, denoted bymAR ⊆ A × R.
• A mapping of roles to permissions, denoted bymRP ⊆ R ×P .
• A mapping of permissions to objects in the shared SDN
control plane state, denoted bymPO ⊆ P ×O .

Our RBAC model is flexible enough to be applied to several existing
controllers. For instance, Security-Mode ONOS specifies objects and
permissions at the API granularity (e.g., read flow tables), whereas

4

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Algorithm 1 Cross-App Information Flow Graph Generation
Input: RBAC policy R
Output: cross-app information flow graph G
Initialize:

(A, R, O, PR, PW , P,mAR,mRP ,mPO) ← R
V ← A ∪O
E ← {}

1: for each (ai , ri) ∈ mAR do

2: for each

(
r j , pj

)
∈ mRP such that r j = ri do

3: for each (pk , ok) ∈ mPO such that pk = pj do
4: if pk ∈ PR then

5: E ← E ∪ {(ok , ai) }
6: if pk ∈ PW then

7: E ← E ∪ {(ai , ok) }
8: G ← (V, E)

SDNShield [85] specifies objects at the sub-API granularity (e.g.,
read flow tables with a specific IP prefix).

4.2 Cross-App Information Flow Graph

Given a model and policies encapsulated in R, we can convert
R into a representation by which we can reason about potential
data or information flow across the shared SDN control plane state.
A cross-app information flow graph, denoted by G = (V, E), is a
directed graph that encapsulates the relations among apps, objects
in the shared SDN control plane state, and the permissions granted
to apps to read and write objects. Our design is influenced by the
“take–grant” protection model proposed by Lipton and Snyder [43].

Algorithm 1 shows the generation process, which uses a system
modeled with an RBAC policy as input and a cross-app information
flow graph as output. The algorithm initializes the components
from R as well as the graph’s nodes V as the union of apps A
and objects O . Lines 1–3 iterate through RBAC maps so as to map
each app–object pair. Each app–object pair may have zero or more
permissions associated with it. For a read permission (lines 4–5),
an edge is added to E from the object ok to the app ai . For a write
permission (lines 6–7), an edge is added to E from the app ai to the
object ok . Thus, the directions of the cross-app information flow
graph’s edges have semantic meaning based on reads and writes.

4.3 Cross-App Attack Vectors

Given a cross-app information flow graph G, we can formally and
precisely define CAP attacks in terms of paths in G. We represent
a cross-app attack vector, denoted by Cv , as a path in G such that
the path’s starting node is an app, the path’s ending node is an
object, the path length is greater than or equal to 3, and the path
length is odd. (A path length of 1 represents what an app already
has permission to do.) Based on the structure of G produced from
Algorithm 1, the path nodes alternate between apps and objects.
We define Cv (G) = ⟨a0,o1,a2 . . . ,an−1,on⟩ | n ≥ 3;n is odd.

Intuitively, we can see that a path between an app and an object
in G marks the existence of a potential attack vector. Any interme-
diate apps in a given Cv path are the apps that app a0 can co-opt
using permissions that a0 itself does not possess. Similarly, any in-
termediate objects in a given Cv path are the objects in the shared
SDN control plane state used to carry out the attack. For the trivial

a1

o1

a2

o2

a3

o3

p1
p2

p3
p4

p5

p6

p7

Figure 2: Example of a cross-app information flow graph G

with a cross-app attack vector C1 = ⟨a1,o1,a2,o2⟩. App a1 may

be able to poison object o2 even though it does not possess

permission p4 to do so; instead, it would use object o1, app a2,
and app a2’s permission p4. App a1 cannot poison object o3,
since no path exists between them.

case in which systems do not implement any access control, G can
be represented as a complete directed graph in which all apps can
read from or write to all objects.

Consider the example cross-app information flow graph in Fig-
ure 2. Continuing the example from Section 1, suppose that app a1
is a host-tracking app that has been compromised by an adversary;
o1 is the host store; a2 is a routing app that has not been compro-
mised; and o2 is the flow entry store. The adversary does not have
the ability to directly modify object o2, because the app does not
have permission to do so; if it did, an edge would exist from a1 to
o2. However, the adversary can poison object o1, since it is allowed
to do so (i.e., by permission p1). Later, the routing app a2, which
has permissions that the adversary seeks (i.e., any edge into o2),
reads from o1 and uses information from o1 to write to o2.

4.4 Cross-App Poisoning Gadgets

Our methodology in Sections 4.1–4.3 conservatively captures how
apps could influence data flowing through the shared control plane
state, subject to a specified RBAC policy. Put simply, what are the
apps allowed to influence if they can read and write to such shared
state? However, such influences, represented as cross-app attack
vectors, may not always exist in practice, since an app’s source of
data from the shared control plane state may not always causally
influence what the app later writes to the control plane.

To account for that, we use static analysis techniques to identify
relevant data flows present in apps that read from a permissioned
data source and write to a permissioned data sink. We call such
data flows cross-app poisoning gadgets, as one or more gadgets can
be used to build sophisticated CAP attacks. CAP gadgets require
a triggering app to start the chain reaction. We explain our spe-
cific methodology and implement proof-of-concept attacks for the
Security-Mode ONOS SDN controller in Section 5.

5 CROSS-APP POISONING CASE STUDY:

SECURITY-MODE ONOS

To show how prevalent CAP attacks are in practice, we study the
Security-Mode ONOS SDN controller [61, 89]. We chose the ONOS
framework because it is a representative example of a popular,
production-quality controller used in industry by telecommunica-
tion service providers [62], among others. The ONOS framework
is Java-based with publicly available source code4 bundled with

4Throughout the paper, we use the ONOS v1.10.0 source code available at [60].

5

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

open-sourced apps. Security-Mode ONOS is a variant of the ONOS
SDN controller with additional support for RBAC.

5.1 CAP Model for Security-Mode ONOS

5.1.1 Apps. The v1.10.0 release includes 64 bundled reference
apps [59] as part of the ONOS codebase. Each app is an OSGi bundle
that can be loaded into or removed from the controller at runtime
as an internal app. Example apps include a reactive forwarding app
(fwd), a routing app (routing), and a DHCP server (dhcp).

5.1.2 Permissions. By default, ONOS runs without any RBAC
policies or enforcement; this makes execution of CAP attacks trivial,
because nothing prevents an app from influencing any object in
the shared control plane state. Instead, for the remainder of this
paper, we evaluate Security-Mode ONOS, because it allows app
developers to specify which permissions their apps need, and se-
curity practitioners can write RBAC policies that specify which
roles apps have and what permissions each role has. Security-Mode
ONOS includes 56 permissions named with *_READ, *_WRITE, and
*_EVENT suffixes. We incorporate *_READ permissions into PR and
*_WRITE permissions into PW . *_EVENT permissions register and
de-register apps from event handlers, so we treat these permissions
as equivalent to both read and write permissions.

5.1.3 Objects. ONOS follows the pattern of providing a “service
class” (e.g., FlowRuleService) that serves as an API for apps. Each
service class has a respective “manager class” (e.g., FlowRuleMan-
ager) that implements the service class. When the manager class is
instantiated, it instantiates a respective “store class” (e.g., FlowRule-
Store) that stores the actual shared control plane state. That state is
composed of “data class” instantiations (e.g., objects of the classes
FlowRule and FlowEntry). Each store is protected by limiting access
via the manager class’s methods (e.g., getFlowEntries()), and, when
apps call such methods, Security-Mode ONOS performs permission
checks (e.g., “Does the app have the FLOWRULE_READ permission
according to the RBAC policy?”). ONOS also includes manager
classes for the southbound API (e.g., OpenFlowPacketContext).

We let each manager class represent an object in our model,
given that a manager class encapsulates the methods and stores
that represent access to and storage of the shared control plane
state, respectively. As Security-Mode ONOS specifies permissions
at the method level of granularity rather than at the “data class”
level of granularity, we map these methods back to the manager
classes when building the RBAC policy in the next section. For
instance, an app that calls the getFlowEntries() method would need
the FLOWRULE_READ permission, so our model would show an edge
labeled with that permission from the FlowRuleManager object to
the app in the cross-app information flow graph.

5.1.4 RBAC Policy. We assume that a practitioner sets up an
RBAC policy of least privilege such that each app has the minimum
set of permissions needed in order to carry out its functionality cor-
rectly. The 64 apps included with ONOS do not list the permissions
that they would need if they were run with Security-Mode ONOS.
We wrote a script that statically analyzed the ONOS codebase to
find in which methods Security-Mode ONOS checked permissions.
From there, we analyzed which apps used those methods in order
to map the permissions that each app would need.

Figure 3: Cross-App Information Flow Graph GONOS using

the 64 apps included with ONOS. Large points represent

apps; small points represent objects in the shared SDN con-

trol plane state; and arrows represent permissions for apps

to read from or write to objects.

flowanalyzerpim

cord-su
pport
mobility

faultm
anagement

intentsy
nc
sdnip

segmentrouting

reactiv
e-routing

optica
l-m

odel
yms

casto
r

roadm

kafka
-integration vtn cip

dhcprelay
dhcp

proxyarp

bmv2-demo
events

routing

bgprouter

virtu
albng

tetopology

network-t
roubleshoot

tetunnel
ofagent

influxdbmetric
s

routing-api

opensta
ckn

etworkin
g

metric
s

cpman
optica

l

yang-gui

learning-sw
itch

opensta
ckn

ode

sca
lablegateway

mfwd

drivermatrixmlb

mappingmanagementfwd
config

graphitemetric
s

rabbitm
q acl

l3vpn

newoptica
l
yang
vrouter

pathpainter
vpls

gangliametric
spce

App a

0

5

10

15

20

ob
je

ct
s a

cc
es

sib
le

 b
y

a

Directly
Via 1 app
Via 2 apps

Figure 4: App to object accessibility (via shortest paths) in

GONOS with 63 apps. Paths begin at a given app a.

Our result is a security reference policy for ONOS apps that
enforces least privilege using RBAC and is called RONOS . We
found that Security-Mode ONOS permissions were enforced on
212 methods protected across 39 manager classes through the use
of 38 of the available 56 permissions. Each manager class may
implement more than one service class, so we included 67 service
classes. (See Table 3 in Appendix A.2 for additional details.)

5.1.5 Cross-App Information Flow Graph. Using the security
reference policy, we applied Algorithm 1 to generate the cross-app
information flow graph GONOS for ONOS with all apps included.5
Figure 3 shows the complete GONOS with 88 nodes6 and 564 edges.
To understand the connectivity of GONOS , we looked at how many
objects each app could directly and indirectly access (Figure 4) and
how many apps each object could be accessed by, either directly
or indirectly (Figure 5).7 For both analyses, we removed an app
named test from consideration, since it is used for testing ONOS
functionality.

5We imagine that a practitioner would only load some subset of apps into the controller,
so apps that have not been loaded should be removed from GONOS for analysis.
6Manager classes whose methods were not called by any app were not included in the
cross-app information flow graph; thus, |A | + |O | , 88.
7A shortest path in G of length 3, for instance, corresponds to indirect accessibility
via 1 app in Figure 4 or 1 object in Figure 5.

6

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Applica
tionManager

StorageManager

DefaultPacke
tContext

HostM
anager

ComponentConfigManager

EdgeManager

NetworkC
onfigManager

DriverManager

IntentManager

SimpleCluste
rStore

DefaultOpenFlowPacke
tContext

UiExtensionManager

TopologyManager

CodecManager

Maste
rsh

ipManager

Packe
tManager

FlowObjectiv
eCompositio

nManager

ProxyArpManager

FlowRuleManager

CoreManager

Cluste
rManager

Cluste
rCommunicationManager

DeviceManager

Resource
Manager

PathManager

DriverRegistr
yManager

FlowObjectiv
eManager

Cluste
rMetadataManager

LinkManager

LogicalClockM
anager

NettyMessa
gingManager

GroupManager

Object o

0

10

20

30

40

ap

ps
 a

cc
es

sib
le

 b
y

o

Directly
Via 1 object
Via 2 objects

Figure 5: Object to app accessibility (via shortest paths) in

GONOS with 63 apps. Paths begin at a given object o.

5.2 CAP Gadgets in Security-Mode ONOS

We further refine the results from Figures 4 and 5 by identifying a set
of CAP gadgets in ONOS apps. Fortunately, all of the apps bundled
with the ONOS codebase have publicly available source code that
can be analyzed; while this is not strictly required to identify CAP
gadgets, it simplifies the process. We used static analysis techniques
to identify data flows that can be used to build CAP gadgets to
instigate CAP attacks.

5.2.1 Methodology. We used JavaParser [82] to build an abstract
syntax tree (AST) representation of each of the 63 ONOS apps,
excluding the test app. Using the ASTs as inputs, we wrote a script
to determine data flows within apps’ methods from “sources” to
“sinks” of interest through field-sensitive interprocedural data flow
analysis. Such data flows represent an app’s use of one control plane
object to generate another control plane object. We defined sources
as API read calls to permission-protected methods (i.e., requiring
a permission in PR), and sinks as API write calls to permission-
protected methods (i.e., requiring a permission in PW). We used
PR , PW , and the list of 212 permission-protected methods found
from our earlier analysis. We mapped the permission-protected
methods to their respective permissions so that each source or sink
is represented by a permission.

Although we used Java-specific tools to generate ASTs for ONOS
apps, other tools such as CAST [76] for C/C++ or ast [25] for Python
exist for controllers and apps in other languages.

5.2.2 Results. Table 1 shows the resulting cross-app poisoning
gadgets, represented as (source,app, sink) tuples. One can chain
gadgets together to form complex cross-app information flows. At
a minimum, only one gadget is needed; any app that can write to a
single gadget’s source can launch a CAP attack. We summarize the
behavioral takeaways and their consequences below:

(1) Five gadgets use the APP_READ source permission. In in-
specting the apps’ code, we found that the apps use the
CoreService’s methods to look up the mapping between the
app’s name (e.g., org.onosproject.fwd) and a unique app
ID (e.g., id=70), and that the apps then subsequently use this
app ID to take other control plane actions (e.g., deleting all
flow rules with the app ID id=70). If such assumptions about
the trustworthiness of the app name and ID mapping are

broken, faulty or malicious apps can cause systemic damage
through CAP attacks even if they have no permission to take
such actions themselves.

(2) Five gadgets use the FLOWRULE_WRITE sink permission. This
would be expected, since most flow rule operations in ONOS
are event-driven based on actions in the NB and SB APIs.

(3) Some objects are not affected by CAP attacks. We expect
objects that are not related to maintaining network state
(e.g., objects for gathering statistics) to be unaffected.

5.3 Example Attack: Packet Modification and

Flow Rule Insertion for Data Plane DoS

We now consider a proof-of-concept CAP attack that leverages the
reactive forwarding app fwd to insert corrupted flow rules. We
performed the attack using Security-Mode ONOS enabled with
ONOS v1.10.0. (See Appendix A.1 for configuration details.)

5.3.1 Approach. We wrote a triggering app (trigger) to poison
the view of the reactive forwarding app (fwd) so as to cause data
plane denial-of-serivce (DoS). Our approach is similar to the attacks
proposed by Dhawan et al. [15] and Lee et al. [39] to poison the view
of the network, though we assume that malicious apps, rather than
malicious switches or end hosts, cause the poisoning. Our triggering
app minimally requires PACKET_* permissions and does not require
FLOWRULE_* permissions. (See Appendix B for additional details.)
The attack works as follows:

(1) The triggering app, to register itself with ONOS to receive
incoming packets, uses its PACKET_EVENT permission. Upon
receiving particular ARP requests, the app changes the ARP
and Ethernet source addresses to an attacker’s address.

(2) The forwarding app also registers for incoming packets. The
forwarding app reads the packet by using the PACKET_READ
permission to decide whether to generate flow rules.

(3) The forwarding app inserts the flow rule into the control
plane using its FLOWRULE_WRITE permission. As a result, the
flow rule becomes associated with the forwarding app be-
cause of fwd’s appId.

5.3.2 Results. The flow rule based on corrupted information
causes a data plane DoS attack from the victim’s perspective. Be-
cause the forwarding app inserted the flow rule, ONOS identifies
fwd as being responsible for the corresponding flow rule in its flow
rule database. Thus, a practitioner investigating the DoS outage
may incorrectly assign full blame to fwd, particularly since trigger
is not assumed to have the ability to insert flow rules.

5.4 Remarks

We were able to systematically detect CAP gadgets (as described in
Section 5.2) because the apps’ source code was available, but this
detection may not be an option with closed-source “black box” apps.
Thus, practitioners need further insight into how apps behave in
practice once they are activated within the SDN controller.

It is much easier to bypass RBAC permissions when apps are
reading from or writing to many of the same shared SDN control
plane state’s objects. What is needed is a way to track information
flow to capture how data are used after RBAC authorization is
granted. By making access control decisions based not only on

7

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

Table 1: Static Analysis Results of CAP Gadgets for Security-Mode ONOS Apps.

Source (p ∈ PR) App (a ∈ A) Sink (p ∈ PW) Attacker’s capabilities if source data have been compromised by attacker

APP_READ openstacknetworking FLOWRULE_WRITE Attacker modifies the app ID to remove all flows with a given app ID
APP_READ openstacknode CLUSTER_WRITE Attacker modifies the app ID to make an app run for leader election in a different

ONOS topic (i.e., an app using ONOS’s distributed primitives)
APP_READ openstacknode GROUP_WRITE Attacker modifies the app ID to associate an app with a particular group handler
APP_READ routing CONFIG_WRITE Attacker modifies the app ID to misapply a BGP configuration
APP_READ sdnip CONFIG_WRITE Attacker modifies the app ID to misapply an SDN-IP encapsulation configuration
DEVICE_READ newoptical RESOURCE_WRITE Attacker misallocates bandwidth resources based on a connectivity ID
DEVICE_READ vtn DRIVER_WRITE Attacker misconfigures driver setup for a device (i.e., switch)
DEVICE_READ vtn FLOWRULE_WRITE Attacker misconfigures flow rules based on a device ID
HOST_READ vtn FLOWRULE_WRITE Attacker misconfigures flow rules based on a host with a particular MAC address
PACKET_READ fwd FLOWRULE_WRITE Attacker injects or modifies an incoming packet to poison a flow rule
PACKET_READ learning-switch FLOWRULE_WRITE Attacker injects or modifies an incoming packet to poison a flow rule

the accessing app’s role but also on the history of how data were
generated, a practitioner can limit the extent to which apps are
able to influence other apps while still maintaining the flexibility
afforded by a shared state design.

6 INFORMATION FLOW CONTROL POLICIES

We consider information flow control (IFC) policies as they relate
to detecting and preventing CAP attacks. We use a “floating label”
approach based onMyers and Liskov’s decentralized IFCmodel [53]
and on previous IFC policies that use data provenance [66, 77]. In
our policy model, a practitioner labels apps with integrity tags,
resulting in each app’s having its own integrity label composed of
a subset of integrity tags. We assume that apps’ label assignments
cannot be modified by any actions that the apps take themselves,
but that they can be changed out-of-band by practitioners as needed.
Our IFC policy model for shared SDN control plane state integrity,
denoted by I = (A,T ,L,Ch,Re), consists of:
• A set of apps8, denoted by A = {a1,a2, . . . ,ax }.
• A set of integrity tags, denoted by T = {τ1,τ2, . . . ,τt }.
• Integrity labels that map apps to a subset of integrity tags,
denoted by L : A→ P(T), where P(T) is the power set of T .
• An enforcement check policy on when to check for viola-
tions, denoted by Ch ∈ {READS, WRITES}.
• A response to perform when information flow is violated,
denoted by Re ∈ {BLOCK, WARN, NONE}.

An app’s integrity label that is a superset relative to another
app’s integrity label has higher integrity; that is, if L(ai) ⊇ L(aj),
then ai has integrity at least as high as that of aj for ai ,aj ∈ A and
L(ai),L(aj) ∈ P(T). We define an object’s integrity level, denoted
by I (o) for o ∈ O , as the intersection of all integrity labels of apps

that have helped generate that object. Formally, I (o) =
n⋂
i
L(ai)

for some set of apps AN = {a1,a2, . . . ,an } used in producing o.
This means that the object’s integrity level is as high as that of the
lowest-integrity app that helped generate it.

7 ProvSDN

We now present our defense, ProvSDN. ProvSDN hooks all of the
controller’s API interfaces to collect provenance from apps, builds

8For reasons explained in Section 7.1, we count switches as “apps.”

a provenance graph, and serves as an online reference monitor by
checking API requests against the IFC policy I. This allows us to
prevent both known and unknown CAP attacks based on policy.

7.1 Data Provenance Model

Data provenance refers to the process of tracing and recording the
origins of data and their movement. Provenance has been used to
understand the flow of data in databases [2, 13, 22, 28, 86], operating
systems [8, 45, 52, 67], mobile phones [3, 16], and browsers [40, 44].
Provenance can be used not just for IFC but also for information
tracing, accountability, transparency, and compliance [51, 79].

We use the W3C PROV data model [47, 51], which defines prove-
nance as a directed acyclic graph (DAG) that encodes the relation-
ships between three elements (i.e., vertices): entities are data objects
processed by a system, activities are dynamic actions in the system,
and agents are the principals that control system actions. Relations
(i.e., edges) describe the interactions between system elements. En-
titities are used or generated by activities; activities are associated
with agents; and activities may be informed by other activities. An
advantage of storing provenance graphically is that it allows for
efficient relational querying [7, 8, 27]. (See Table 4 in Appendix C
for a visual representation of provenance objects and relations.)

7.1.1 Entities. We define entities as the objects from Section 6,
which include the control plane’s shared data structures that are
being processed or generated by the SDN apps and controller. For
ONOS, we define entities at the “data class” granularity as described
in Section 5, since that definition captures fine-grained information
about switches, hosts, and the network topology as well as flow
rules, packets being processed, and OpenFlow messages sent or
received. ProvSDN can also flexibly specify additional metadata to
collect (e.g., traffic match fields for a flow entry), as needed.

7.1.2 Activities. We define activities as the API calls and call-
backs between SDN apps and the controller. For instance, these
calls enable apps to process flow rules and OpenFlow messages.

7.1.3 Agents. We define agents as the principal identities of the
apps, the switches, and the controller9. We treat switches as princi-
pal identities because, like apps that interact with the controller via
9Internal controller services can interact with the shared SDN control plane state
through event updates. We represent each internal controller service with its own
agent; each of those agents performs operations on behalf of the controller agent.

8

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

Switch Switch

External
Apps

SDN Controller

Core
Internal app

modules
Internal app

Internal app

…

External
app

External
app

NB API

Core methods

SwitchCONTROL PLANE

…

SB API
Data stores

Forwarding Devices

Northbound API

DATA PLANE …

End
host End

host

End
host…

APPLICATION PLANE

Southbound API

APPLICATION PLANE

End Hosts

PROVSDN
Collector

Online
reference
monitorIFC policy

Provenance
graph Protected access

1
3

4

5
6

2

7

Figure 6: ProvSDN architecture showing an app calling the

NB API. 1: An app makes a NB API request. 2: The NB API

tentatively retrieves or inserts data related to the request.

3: The collector processes the call information. 4: The col-

lector writes the provenance data to the provenance graph.

5: The online reference monitor checks the provenance

graph for violations according to the IFC policy. 6: The IFC

policy’s response is returned to the NBAPI. 7: Depending on

the response, the data may be returned to the app or may be

written to the shared SDN control plane state .

the NB API, switches interact with the controller via the SB API.
We attribute all activities (i.e.,API calls) to the agents that requested
them, effectively identifying all activities of apps and switches that
interact with the shared SDN control plane state.

7.2 System Components

Figure 6 shows the ProvSDN architecture. We assume that the
provenance components are trusted and adequately secured.

7.2.1 Provenance collector. The provenance collector captures
the API call information, such as which method was called, who
called it, what data were used, and what data were subsequently
generated. The collector also identifies relations and the agents,
activities, and entities involved. From there, the collector converts
the data into a W3C PROV-compliant graph. ProvSDN also collects
information from SB API calls, given that some NB API calls cause
packets in the data plane to be sent to the controller. ProvSDN
hooks the SB API functions responsible for sending flow rules
and processing incoming packets. That allows for association of
incoming OpenFlow packets with the flow rules that caused them
to be sent to the controller and ensures that the provenance graph
correctly represents that association.

7.2.2 Online reference monitor. The online reference monitor
checks the current provenance graph in real time against the IFC
policy I. For instance, suppose that the enforcement check policy
Ch is READS. First, when data cross the API boundary for read
requests, we consider that to be the equivalent to an attempt by
a requesting app ar to read object o. Next, we determine AN by
checking for the existence of paths from o to ∀a ∈ A. We check

the policy I against 1) the label of the requesting app L(ar) and
2) the labels of the apps that the object previously encountered, or
n⋂
i
L(ai). Finally, we apply the response Re , which can block the

read request, warn the practitioner that the read request occurred,
or do nothing. If a policy is violated and the response Re in the
policy I is BLOCK, the relationship is removed10 and the action is
disallowed. Otherwise, the relationship is permanently added to
the provenance graph.

7.2.3 Provenance graph. ProvSDN’s provenance graph database
enables online policy checking via the reference monitor, as well
as offline investigation of previous events for network forensics.

7.3 Implementation

We implemented ProvSDN with ONOS v1.10.0. We describe our
implementation details below.

7.3.1 NB API. We found that the ONOS NB API was not well-
defined and thus was subject to questions about whether apps could
bypass provenance collection. To fix that, we used Doxygen [83]
to identify all publicly accessible classes in ONOS by counting the
number of references in the codebase to each of these classes; any
class referenced by more than three other classes was deemed to be
part of the NB API and properly exposed to SDN apps. Our static
analysis identified 63 classes with 721 methods that we used as
ONOS’s NB API (e.g., switch, host, link, and flow rule management).
It also identified 194 classes with 1,405 methods that are internal
to ONOS and should not be part of the NB API (e.g., distributed
storage primitives, and raw OpenFlow message handlers).

To prevent apps from bypassing provenance collection, we en-
force internal method checking (step 2 of Figure 6). If an internal
method call originates in another internal method, it is allowed; if
it originates in an app, it is blocked. This forces apps to use the NB
API through methods that capture provenance.

7.3.2 Provenance capture. The choice of programming language
is important to ensure that access to controller internals is possible
only through instrumented API calls. (See Appendix D for the
challenges of implementing provenance on other controllers.) We
found Java to work well in this regard by enforcing private or
public access modifiers. By default, Java’s controls are insufficient,
because it is possible to override the declared access modifiers by
using the Reflection API. Fortunately, static analysis can detect
reflection use if apps are checked prior to being loaded.

7.3.3 Processing and storage. We implemented the ProvSDN
provenance collector and online referencemonitor in approximately
1,350 lines of Java code. We embedded approximately 420 prove-
nance hooks throughout the ONOS codebase to call ProvSDN’s
provenance collector. Upon initialization, the collector imports the
IFC policyI that the online reference monitor references when new
provenance relations have been added. We stored provenance data
in an internal JGraphT [56] graph structure for optimized graph
search (i.e., path existence) performance.

10To maintain an audit record, the relationship can remain in the provenance graph
but be marked as not existing for the purpose of online graph queries.

9

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

fwd

trigger PacketContext
type = PacketIn

PacketContext
type = PacketIn

trigger:attack

wasGeneratedBy

ForwardingObjective

fwd:installRule

wasGeneratedBy

was
Associated

With
used

fwd:callback

was
Associated

With
used

was
Associated

With

wasInformedBy

(a) IFC enforced on writes.

fwd

trigger PacketContext
type = PacketIn

PacketContext
type = PacketIn

trigger:attack

wasGeneratedBy

was
Associated

With
used

fwd:callback

was
Associated

With
used

(b) IFC enforced on reads.

Figure 7: Provenance graphs generated from example CAP

attack described in Section 5. Dashed nodes and edges repre-

sent attempted actions blocked (but recorded) by ProvSDN.

7.4 Attack Evaluation

We evaluated ProvSDN’s IFC capabilities using the attack described
in Section 5.3. We prevent information flow from the triggering
app (trigger) to the reactive forwarding app (fwd) by assigning
different integrity tags to the apps. We set our IFC policy I as T =
{τ1,τ2}, L(trigger) = {τ1}, L(fwd) = {τ1,τ2}, and Re = BLOCK. Since
L(fwd) ⊃ L(trigger), fwd has higher integrity than trigger and is
prevented from reading data generated by trigger. Packets sent from
trigger and read by fwd, represented as PacketContext entities, have
integrity levels I (packet) = {τ1}; ProvSDN computes I (packet) by
checking path connectivity between entities and agents.

Figure 7 shows parts of the provenance graphs generated from
the information flow attempts. If Ch = WRITES, IFC is enforced
during write attempts, resulting in the process shown in Figure 7a.
Similarly, if Ch = READS, IFC is enforced during read attempts,
resulting in the process shown in Figure 7b. In both scenarios,
the desired goal of the attacker (i.e., to insert a corrupted flow
rule) is blocked, albeit at different stages of the processing pipeline
(depending on practitioner preference).

Suppose that the attack described in Section 5.3 had not been
blocked and was allowed to occur. If the log files were verbose
enough, a practitioner analyzing them might eventually be able to
reconstruct the events that occurred. However, ProvSDN’s prove-
nance collection would make the investigation simpler even if IFC
policies were not initially enforced. The practitioner issues a query
to ProvSDN requesting information about the ForwardingObjec-
tive flow rule entity and receives the relevant ancestry (shown in
Figure 7a). The graphical representation lets the practitioner start
at the ForwardingObjective entity and trace back what data were
used in generating the flow rule to see that trigger modified the
original PacketContext entity. To prevent future occurrences, the
practitioner installs the IFC policy described earlier.

7.5 Performance Evaluation

We evaluated ProvSDN’s performance in an emulated environment
running Open vSwitch 2.7.0 [24] software switches, which are

Table 2: ProvSDN Micro-Benchmark Latencies.

Operation Average time

per operation

Number of

operations

Percent of

total time

Collect 155.66 µs 23 067 1.38%
Write 11.15 µs 57 948 0.25%
IFC check 98.50 µs 544 0.02%
Internal check 44.67 µs 5 692 315 98.34%

10 20 30 40 50 60
Flow start latency [ms]

0.00

0.25

0.50

0.75

1.00

CD
F

Baseline
ProvSDN (no IFC)
ProvSDN (with IFC)

Figure 8: Flow start latency macrobenchmarks.

commonly found in virtualized environments. We generated data
plane packets so that they would be handled by the controller;
this made ProvSDN collect, record, and query provenance. All
experiments were performed on a four-core Intel Xeon E7-4850
2.0 GHz CPU with 16 GB of RAM running Ubuntu 16.04.2 LTS.

7.5.1 Macro-benchmarking. Our SDN macro performance met-
ric of interest is flow start latency, which measures the time neces-
sary for a data plane packet that does not match existing flow rules
to be handled by the controller and apps. It represents the delays
experienced from the end host perspective in reactive-based SDN
configurations. The controller’s packet handling will trigger sev-
eral provenance events and checks (e.g., new host event, topology
change event, or flow insertion event).

Figure 8 shows the resulting latencies for a baseline without
ProvSDN, for ProvSDNwhen IFC is not enforced, and for ProvSDN
with IFC enforced. 30 trials were run for each of the three scenarios.
The average latencies were 11.66ms, 28.51ms, and 29.53ms, respec-
tively. Although ProvSDN increases the baseline latency for packet
handling, as more apps and internal controller services register
to receive events, we note that the higher first-packet latency is
amortized over longer flows, because subsequent packets matched
to flow rules in switches do not need to go to the controller or to
apps (or, by extension, to ProvSDN) for processing. Thus, ProvSDN
needs to operate only on the relatively infrequent control plane
state changes rather than on each individual packet of a flow.

7.5.2 Micro-benchmarking. We measured the additional latency
overheads imposed by 1) collection of provenance, 2) writing of
provenance to the provenance graph, and 3) performance of IFC
checks by querying of the provenance graph. In addition, we mea-
sured 4) the latency imposed by enforcing the rule that apps cannot
call internal controller methods (i.e., the latency imposed by check-
ing protected access as shown in step 2 of Figure 6). From Table 2,
we see that internal method-checking operations impose most of

10

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

the additional latency (about 98% of total operations), even though
they impose only a small additional latency per operation (44.67
µs on average). IFC checking is slower but infrequent, because the
queries, in effect, test path connectivity between a source node
(i.e., an entity) and destination nodes (i.e., the system’s agents) in
the provenance graph.

8 DISCUSSION

Extent to Which Controllers Are Affected by CAP. OpenDaylight
[64] provides RBAC services based on the Apache Shiro Java Secu-
rity Framework’s permissions system, though RBAC services are
not enabled by default. The current authorization scheme can be
configured only after the controller starts and is “aimed towards
supporting coarse-grained security policies” [70].

Floodlight [20] does not support RBAC and would thus be sus-
ceptible to CAP attacks. Floodlight provides core controller services
similar to those of ONOS, such as LinkDiscoveryManager, Topolo-
gyService, and MemoryStorageSource. The MemoryStorageSource
data store documentation notes that “all data is shared and there
is no enforcement,” [21] which would make CAP attacks trivial.
SE-Floodlight [68] enforces RBAC but only on permissions for low-
level switch operations rather than for app interactions such as
those with which Security-Mode ONOS provides for ONOS.

Ryu [71], written in Python, does not support RBAC and would
thus be trivially susceptible to CAP attacks. Python does not enforce
public and private access protections.

Finer-Grained RBAC as CAP Mitigation. One way to reduce the
control plane’s attack surface is by implementing finer-grained
RBAC. SDNShield [85], for instance, includes sub-method permis-
sions such as allowing or denying flow entries based on IP source
and destination prefixes. (See Appendix A for further details on how
Security-Mode ONOS implements fine-grained permissions.) We
can represent the finer-grained partitioning of permissions by con-
sidering finer-grained objects o in our cross-app information flow
graph G and finer-grained permissions P in our RBAC model R.
Since the source code for SDNShield was not publicly available, we
were not able to evaluate the extent to which finer-grained RBAC
could help mitigate CAP attacks by using SDNShield. However, we
surmise that finer-grained RBAC will still not solve problems such
as reliance of system-wide apps (e.g., a firewall app that protects an
entire network) on trustworthy information about many objects.

Android. We compare the SDN network OS architecture with
the Android mobile OS architecture, as both architectures include
extensible third-party app ecosystems. While Android apps are
sandboxed and communicate with each other through inter-process
communication (IPC), SDN apps read from and write to a common
shared control plane state overwhich access control (in practice) has
been coarsely defined. The situation for SDN is more challenging
than that of Android because Android apps can operate relatively
independently of each other, but SDN architectures require greater
coordination among SDN apps to ultimately maintain one main
shared resource (i.e., the data plane) through a limited number of
data structures. This required coordination limits the effectiveness
and practicality of sandboxing and IPC for SDN. As a result of
the SDN shared-state design, maliciously generated data from one

SDN app have significant repercussions for any other app that
subsequently uses the data, or for the data plane.

Other IFC Mechanisms. Stack-based access control (SBAC) [5]
and history-based access control (HBAC) [4] propose IFC for Java-
based systems. Jif [54] is a Java extension for enforcing language-
level IFC policies, but it has certain drawbacks. It would require
retrofitting of all apps with IFC policy intents, would require app
developers to know how to program IFC policies, and would not
provide a record of information flow for later analysis. Dynamic
taint analysis tracks information from “sources” entering the system
to “sinks” leaving the system, but dynamic taint analysis is not
as conducive to IFC because there may be a delay between the
occurrence and the detection of an IFC violation [66]. We opted
for data provenance techniques because provenance provides a
historical record of information flow, its collection can be checked in
real time, and its collection is agnostic to the controller’s language.

For Android, TaintDroid [18] labels data from privacy-sensitive
sources (e.g., GPS, camera, or microphone) and applies labels as
sensitive data propagate through program variables, files, and inter-
process messages. However, TaintDroid does not capture the prove-
nance of such interactions, and that limits further analysis. IPC
Inspection [19], like ProvSDN, uses a low-watermark floating la-
bel policy [10] for Android to prevent permission re-delegation.
Quire [16] tracks Android’s IPC calls by annotating each call with
apps that have processed the call. Quire is like ProvSDN in that one
of its goals is to prevent confused deputy attacks, but since SDN
architectures do not use IPC to exchange information, ProvSDN
requires tracking and enforcement at the NB and SB API boundaries
instead. Weir [55] enforces decentralized IFC for Android through
polyinstantiation of applications and their components to reconcile
different security contexts and to avoid label explosion. However, it
is not clear whether such an approach would work with the limited
data structures of the SDN shared state design.

For Web browsers, Bauer et al. [9] implemented and formally ver-
ified an IFC extension to the ChromiumWeb browser that uses light-
weight taint tracking to track coarse-grained confidentiality and in-
tegrity labels across DOM elements and browser events. ProvSDN
focuses on integrity-based attacks and collects full provenance
metadata to reconstruct previous control plane states.

Limitations. ProvSDN’s floating-label-based IFC design cannot
prevent availability-based attacks in which low-integrity apps at-
tempt to write to many objects to poison them so they cannot
be read by high-integrity apps. The “self-revocation problem” in
low-watermark systems [19, 26] demotes an agent’s integrity level
if the agent observes low-integrity data and then cannot modify
data that it originally generated. The problem is partially mitigated
in ProvSDN through fixed integrity labels for agents (i.e., apps)
and through implicit label propagation (i.e., floating labels) for data
objects. If availability-based attacks are of interest, ProvSDN can
still be useful in identifying such behavior even without initially
enforcing IFC, since ProvSDN will record such object poisoning.
The provenance graph can be used to better inform practitioners
in making decisions on whether such apps’ behaviors are desirable
and whether low-integrity apps should be removed.

ProvSDN with Security-Mode ONOS does not enforce separa-
tion of memory space since ONOS’s OSGi-based container approach

11

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

does not enforce this separation. We rely upon Java’s access modi-
fiers to prevent apps from accessing private data structures. One
alternative design approachwould be to transparently separate each
app into its own process and bridge API calls to the controller to
enforce isolation by means of the underlying operating system, but
this would require a significant redesign of the ONOS architecture.
For language-based limitations, see Appendix D.

9 RELATEDWORK

SDN Controller Security. Wen et al. [85] note four classes of SDN
controller attacks: data plane intrusions, information leakage, rule
manipulation, and apps’ attacking of other apps. The authors pro-
pose SDNShield for fine-grained RBAC and app isolation policies
to prevent inter-app attacks, but as shown in the cross-app infor-
mation flow graph for Security-Mode ONOS in Figure 3, an app
sandboxing policy is too restrictive in practice, because apps nec-
essarily rely on information generated by other apps in order to
function correctly. The authors claim that the logs from SDNShield
can be used for offline forensic analysis, but it is unclear whether
such logs explicitly show information flow and, if so, how they
do. With ProvSDN, we allow practitioners to flexibly specify their
intents about each app’s integrity assumptions to enforce a de-
sired IFC policy in real time, and our provenance-based approach
captures a history of information flow by design.

Security-Mode ONOS [89] extends the ONOS controller to in-
clude API method-level RBAC enforcement. Rosemary [75] isolates
applications by running each application as an individual process.
SE-Floodlight [68] hardens the control plane by enforcing hier-
archical RBAC policies and logging events through an auditing
subsystem. These systems neither explicitly the track information
flow necessary for detecting CAP attacks nor enforce IFC policies
in real time as can be done with ProvSDN. FRESCO [74] allows
for enforcement of hierarchical flow-rule deconfliction to ensure
that non-security applications cannot undo actions taken by secu-
rity applications; however, this is limited to the controller–switch
interface and provides no protection from CAP attacks.

An orthogonal approach would be to use secure-by-construction
controllers that utilize languages whose type systems guarantee
properties such as app composability [1, 23, 49, 50, 84]. In such
systems, the controller acts more as a language runtime than as an
operating system, and applications are written in a formal language
and composed using logical operators. We consider such controllers
to be sufficiently different from operating-system-like controllers
that they are out of the scope of this paper.

SDN App Security. Malicious apps are arguably one of the most
severe threats to SDN security, as the dynamic configurations avail-
able in SDN architectures can make it challenging to determine
whether the network’s state is (or was) correct according to pol-
icy [14]. Several efforts [39, 42] have outlined attacks similar to CAP
attacks that affect Floodlight, ONOS, and OpenDaylight, though
they did not consider the case in which apps that do not have per-
mission to take actions co-opt other apps that do have such permis-
sions. The authors of [39, 42] propose to use permission checking,
static analysis, and dynamic analysis as defenses; ProvSDN goes
beyond that approach by enforcing IFC policies. Other SDN attacks,
particularly those that rely upon data plane information to make

control plane decisions, exist in the literature and are too numerous
to list here; we refer the reader to Lee et al. [41].

Network Verification and Testing. An approach complementary to
that of ProvSDN would be to test whether, and/or formally verify
that, controller or application behavior falls within a set of invari-
ants. VeriFlow [36] and NetPlumber [35], like ProvSDN, perform
real-time invariant checks, but they implicitly assume a monolithic
controller and do not capture the history of information flow that
ProvSDN does. NICE [11] verifies that an application cannot install
flow rules that violate a set of constraints, but does not consider
controller–application interactions. DELTA [41], ATTAIN [81], and
BEADS [34] provide SDN testing frameworks but are necessarily
incomplete because of their reliance on fuzzing.

Provenance in SDN. Provenance-based approaches are just be-
ginning to emerge in the SDN context. GitFlow [17] tracks network
state by committing state changes with a version control system,
but it requires extensive retrofitting of all apps and data plane el-
ements, does not operate in real time, and does not account for
malicious apps. Ujcich et al. [80] consider how provenance can be
used to detect faults from benign application interactions in an
offline manner, but do not consider malicious applications or online
attack detection. Wu et al. [87] leverage meta-provenance to facili-
tate automated repair of a network. Bates et al. [6] demonstrate a
way to improve a previous approach [90] by using SDN to enforce
the monitoring of host-to-host communication. However, those
three efforts considered communications only in the data plane
rather than the control plane.

Provenance tracing is of demonstrated value to network foren-
sic efforts. Zhou et al. [90] consider the task of identifying ma-
licious nodes in a distributed system. Chen et al. [12] diagnose
network problems by reasoning about the differences between two
provenance graphs, while in other work the absence of provenance
relationships has been used to explain network behaviors [88].

10 CONCLUSION

We have demonstrated CAP attacks that allow SDN apps to poi-
son the integrity of the network view seen by the SDN controller
and other SDN apps. CAP attacks take advantage of the lack of
IFC protections within SDN controllers. We show how RBAC so-
lutions to date are inadequate for solving this problem. Using the
Security-Mode ONOS controller as a case study, we also demon-
strate ProvSDN, a provenance-based defense that captures control
plane information flow and enforces online IFC policies for SDN
apps that access or modify the SDN control plane.

ACKNOWLEDGMENTS

The authors thank our shepherd Adwait Nadkarni and the anony-
mous reviewers for their helpful comments, which improved this
paper; Ahmed Fawaz, the PERFORM research group, and the STS
research group at the University of Illinois for their advice and
feedback; and Jenny Applequist for her editorial assistance.

This material is based upon work supported by the Maryland
Procurement Office under Contract No. H98230-18-D-0007 and by
the National Science Foundation under Grant Nos. CNS-1657534
and CNS-1750024.

12

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

REFERENCES

[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In ACM SIGPLAN Notices, Vol. 49. ACM, 113–126. https://doi.org/
10.1145/2578855.2535862

[2] B Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao Guo, and Boris Glavic.
2014. A Generic Provenance Middleware for Database Queries, Updates, and
Transactions. In Proceedings of the Theory and Practice of Provenance (TaPP ’14).

[3] Michael Backes, Sven Bugiel, and Sebastian Gerling. 2014. Scippa: System-centric
IPC Provenance on Android. In Proceedings of ACSAC ’14. ACM, 36–45. https:
//doi.org/10.1145/2664243.2664264

[4] Anindya Banerjee and David A. Naumann. 2005. History-based Access Control
and Secure Information Flow. In Proceedings of CASSIS ’04. Springer-Verlag, Berlin,
Heidelberg, 27–48. https://doi.org/10.1007/978-3-540-30569-9_2

[5] Anindya Banerjee and David A. Naumann. 2005. Stack-based Access Control
and Secure Information Flow. Journal of Functional Programming 15, 2 (March
2005), 131–177. https://doi.org/10.1017/S0956796804005453

[6] Adam Bates, Kevin Butler, Andreas Haeberlen, Micah Sherr, and Wenchao Zhou.
2014. Let SDN Be Your Eyes: Secure Forensics in Data Center Networks. In
Proceedings of USENIX SENT ’14. USENIX Association.

[7] Adam Bates, Devin J. Pohly, and Kevin R. B. Butler. 2016. Secure and Trustworthy
Provenance Collection for Digital Forensics. In Digital Fingerprinting, Cliff Wang,
Ryan M. Gerdes, Yong Guan, and Sneha Kumar Kasera (Eds.). Springer New York,
141–176. https://doi.org/10.1007/978-1-4939-6601-1_8

[8] Adam Bates, Dave Tian, Kevin R. B. Butler, and ThomasMoyer. 2015. Trustworthy
Whole-system Provenance for the Linux Kernel. In Proceedings of USENIX Security
Symposium ’15. USENIX Association, 319–334.

[9] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows
in Chromium. In Proceedings of NDSS ’15. Internet Society. https://doi.org/10.
14722/ndss.2015.23295

[10] K. J. Biba. 1975. Integrity Considerations for Secure Computer Systems. Technical
Report MTR-3153. MITRE Corporation. www.dtic.mil/dtic/tr/fulltext/u2/a039324.
pdf

[11] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rexford.
2012. A NICE Way to Test OpenFlow Applications. In Proceedings of NSDI ’12,
Vol. 12. 127–140. http://dl.acm.org/citation.cfm?id=2228298.2228312

[12] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2016. The Good, the Bad, and the Differences: Better Network Diagnostics with
Differential Provenance. In Proceedings of ACM SIGCOMM ’16. ACM, 115–128.
https://doi.org/10.1145/2934872.2934910

[13] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. 2005. DBNotes: A
Post-it System for Relational Databases Based on Provenance. In Proceedings of the
2005 ACM Special Interest Group on Management of Data Conference (SIGMOD’05).

[14] M. C. Dacier, H. König, R. Cwalinski, F. Kargl, and S. Dietrich. 2017. Security
Challenges and Opportunities of Software-Defined Networking. IEEE Security &
Privacy 15, 2 (March 2017), 96–100. https://doi.org/10.1109/MSP.2017.46

[15] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015.
SPHINX: Detecting Security Attacks in Software-Defined Networks. In Proceed-
ings of NDSS ’15. Internet Society. https://doi.org/10.14722/ndss.2015.23064

[16] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach.
2011. Quire: Lightweight Provenance for Smart Phone Operating Systems. In
Proceedings of USENIX Security ’11. USENIX Association, 23–23.

[17] Abhishek Dwaraki, Srini Seetharaman, Sriram Natarajan, and Tilman Wolf. 2015.
GitFlow: Flow Revision Management for Software-defined Networks. In Proceed-
ings of ACM SOSR ’15. ACM, Article 6, 6 pages. https://doi.org/10.1145/2774993.
2775064

[18] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-flow
Tracking System for Realtime PrivacyMonitoring on Smartphones. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA, 393–407. http://dl.acm.org/
citation.cfm?id=1924943.1924971

[19] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and
Erika Chin. 2011. Permission Re-delegation: Attacks and Defenses. In Proceedings
of the 20th USENIX Conference on Security Symposium (SEC ’11). USENIX Asso-
ciation, Berkeley, CA, USA, 22–22. http://dl.acm.org/citation.cfm?id=2028067.
2028089

[20] Floodlight. 2018. (2018). http://www.projectfloodlight.org/
[21] Project Floodlight. 2018. Floodlight Controller: MemoryStorageSource (Dev).

(2018). https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/
1343633/MemoryStorageSource+Dev

[22] Ian T. Foster, Jens-S. Vöckler, Michael Wilde, and Yong Zhao. 2002. Chimera: A
Virtual Data System for Representing, Querying, andAutomatingDataDerivation.
In Proceedings of SSDBM ’02. https://doi.org/10.1109/SSDM.2002.1029704

[23] Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer Rexford, Matthew L.
Meola, and David Walker. 2010. Frenetic: A High-level Language for OpenFlow

Networks. In Proceedings of the Workshop on Programmable Routers for Extensible
Services of Tomorrow (PRESTO ’10). ACM, New York, NY, USA, Article 6, 6 pages.
https://doi.org/10.1145/1921151.1921160

[24] Linux Foundation. 2018. Open vSwitch. (2018). https://www.openvswitch.org/
[25] Python Software Foundation. 2018. ast—Abstract Syntax Trees. (2018). https:

//docs.python.org/3/library/ast.html
[26] Timothy Fraser. 2000. LOMAC: Low Water-Mark integrity protection for COTS

environments. In Proceeding of the 2000 IEEE Symposium on Security and Privacy
(S&P ’00). 230–245. https://doi.org/10.1109/SECPRI.2000.848460

[27] Ashish Gehani andDawood Tariq. 2012. SPADE: Support for Provenance Auditing
in Distributed Environments. In Proceedings of Middleware ’12. Springer–Verlag
New York, 101–120. https://doi.org/10.1007/978-3-642-35170-9_6

[28] Boris Glavic and Gustavo Alonso. 2009. Perm: Processing Provenance and Data
on the Same Data Model Through Query Rewriting. In Proceedings of the 25th
IEEE International Conference on Data Engineering (ICDE ’09). https://doi.org/10.
1109/ICDE.2009.15

[29] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick
McKeown, and Scott Shenker. 2008. NOX: towards an operating system for
networks. ACM SIGCOMM Computer Communication Review 38, 3 (2008), 105–
110. https://doi.org/10.1145/1384609.1384625

[30] Norm Hardy. 1988. The Confused Deputy: (or Why Capabilities Might Have
Been Invented). ACM SIGOPS Operating Systems Review 22, 4 (Oct. 1988), 36–38.
http://dl.acm.org/citation.cfm?id=54289.871709

[31] Hewlett-Packard Enterprise. 2018. HPE SDN app store. https://community.
arubanetworks.com/t5/SDN-Apps/ct-p/SDN-Apps. (Aug. 2018).

[32] Hewlett-Packard Enterprise. 2018. Software Defined Networking. (Aug. 2018).
https://www.hpe.com/us/en/networking/sdn.html

[33] International Data Corporation. 2016. SDN Market to Experience Strong Growth
Over Next Several Years, According to IDC. https://www.idc.com/getdoc.jsp?
containerId=prUS41005016. (3 Feb. 2016).

[34] Samuel Jero, Xiangyu Bu, Cristina Nita-Rotaru, HamedOkhravi, Richard Skowyra,
and Sonia Fahmy. 2017. BEADS: Automated Attack Discovery in OpenFlow-
based SDN Systems. In Proceedings of RAID ’17. https://doi.org/10.1007/
978-3-319-66332-6_14

[35] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Proceedings of NSDI ’13. 99–111. http://dl.acm.org/citation.
cfm?id=2482626.2482638

[36] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. ACM SIGCOMM
Computer Communication Review 42, 4 (Sept. 2012), 467–472. https://doi.org/10.
1145/2377677.2377766

[37] Diego Kreutz, Fernando M.V. Ramos, and Paulo Veríssimo. 2013. Towards Secure
and Dependable Software-defined Networks. In Proceedings of ACM HotSDN ’13.
55–60. https://doi.org/10.1145/2491185.2491199

[38] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. 2015. Software-Defined Networking: A Comprehensive Survey. Proc.
IEEE 103, 1 (Jan 2015), 14–76. https://doi.org/10.1109/JPROC.2014.2371999

[39] Chanhee Lee and Seungwon Shin. 2016. SHIELD: An Automated Framework for
Static Analysis of SDN Applications. In Proceedings of ACM SDN-NFV Security
’16. ACM, 29–34. https://doi.org/10.1145/2876019.2876026

[40] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Proceedings of NDSS ’13.
Internet Society.

[41] Seungsoo Lee, Changhoon Yoon, Chanhee Lee, Seungwon Shin, Vinod Yeg-
neswaran, and Phillip Porras. 2017. DELTA: A Security Assessment Framework
for Software-Defined Networks. In Proceedings of NDSS ’17. Internet Society.
https://doi.org/10.14722/ndss.2017.23457

[42] Seungsoo Lee, Changhoon Yoon, and Seungwon Shin. 2016. The Smaller, the
Shrewder: A Simple Malicious Application Can Kill an Entire SDN Environment.
In Proceedings of ACM SDN-NFV Security ’16. ACM, 23–28. https://doi.org/10.
1145/2876019.2876024

[43] R. J. Lipton and L. Snyder. 1977. A Linear Time Algorithm for Deciding Subject
Security. J. ACM 24, 3 (July 1977), 455–464. https://doi.org/10.1145/322017.322025

[44] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In 26th USENIX Security Symposium.

[45] ShiqingMa, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical
Provenance Tracing by Alternating Between Logging and Tainting. In Proceedings
of NDSS ’16.

[46] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (March 2008), 69–74. https://doi.org/10.1145/1355734.1355746

[47] Paolo Missier, Khalid Belhajjame, and James Cheney. 2013. The W3C PROV
Family of Specifications for Modelling Provenance Metadata. In Proceedings of
ACM EDBT ’13. 773–776. https://doi.org/10.1145/2452376.2452478

13

https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1145/2664243.2664264
https://doi.org/10.1145/2664243.2664264
https://doi.org/10.1007/978-3-540-30569-9_2
https://doi.org/10.1017/S0956796804005453
https://doi.org/10.1007/978-1-4939-6601-1_8
https://doi.org/10.14722/ndss.2015.23295
https://doi.org/10.14722/ndss.2015.23295
www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
http://dl.acm.org/citation.cfm?id=2228298.2228312
https://doi.org/10.1145/2934872.2934910
https://doi.org/10.1109/MSP.2017.46
https://doi.org/10.14722/ndss.2015.23064
https://doi.org/10.1145/2774993.2775064
https://doi.org/10.1145/2774993.2775064
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=2028067.2028089
http://dl.acm.org/citation.cfm?id=2028067.2028089
http://www.projectfloodlight.org/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343633/MemoryStorageSource+Dev
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343633/MemoryStorageSource+Dev
https://doi.org/10.1109/SSDM.2002.1029704
https://doi.org/10.1145/1921151.1921160
https://www.openvswitch.org/
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://doi.org/10.1109/SECPRI.2000.848460
https://doi.org/10.1007/978-3-642-35170-9_6
https://doi.org/10.1109/ICDE.2009.15
https://doi.org/10.1109/ICDE.2009.15
https://doi.org/10.1145/1384609.1384625
http://dl.acm.org/citation.cfm?id=54289.871709
https://community.arubanetworks.com/t5/SDN-Apps/ct-p/SDN-Apps
https://community.arubanetworks.com/t5/SDN-Apps/ct-p/SDN-Apps
https://www.hpe.com/us/en/networking/sdn.html
https://www.idc.com/getdoc.jsp?containerId=prUS41005016
https://www.idc.com/getdoc.jsp?containerId=prUS41005016
https://doi.org/10.1007/978-3-319-66332-6_14
https://doi.org/10.1007/978-3-319-66332-6_14
http://dl.acm.org/citation.cfm?id=2482626.2482638
http://dl.acm.org/citation.cfm?id=2482626.2482638
https://doi.org/10.1145/2377677.2377766
https://doi.org/10.1145/2377677.2377766
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/2876019.2876026
https://doi.org/10.14722/ndss.2017.23457
https://doi.org/10.1145/2876019.2876024
https://doi.org/10.1145/2876019.2876024
https://doi.org/10.1145/322017.322025
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2452376.2452478

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

[48] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa, Jeongkeun Lee,
Jayaram Mudigonda, Puneet Sharma, and Yoshio Turner. 2013. Corybantic:
Towards the Modular Composition of SDN Control Programs. In Proceedings
of ACM HotNets ’13. ACM, Article 1, 7 pages. https://doi.org/10.1145/2535771.
2535795

[49] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. 2012. A
compiler and run-time system for network programming languages. In ACM SIG-
PLAN Notices, Vol. 47. ACM, 217–230. https://doi.org/10.1145/2103621.2103685

[50] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, DavidWalker,
et al. 2013. Composing Software Defined Networks. In Proceedings of NSDI ’13,
Vol. 13. 1–13. http://dl.acm.org/citation.cfm?id=2482626.2482629

[51] Luc Moreau and Paul Groth. 2013. Provenance: an introduction to PROV.
Synthesis Lectures on the Semantic Web: Theory and Technology, Vol. 3.
Morgan & Claypool Publishers. 1–129 pages. https://doi.org/10.2200/
S00528ED1V01Y201308WBE007

[52] Kiran-KumarMuniswamy-Reddy, David A. Holland, Uri Braun, andMargo Seltzer.
2006. Provenance-aware Storage Systems. In Proceedings of USENIX ATC ’06.
USENIX Association, 1.

[53] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for Infor-
mation Flow Control. In Proceedings of ACM SOSP ’97. ACM, 129–142. https:
//doi.org/10.1145/268998.266669

[54] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. 2018. Jif: Java + Information Flow. (2018). http://www.cs.
cornell.edu/jif/

[55] Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Practi-
cal DIFC Enforcement on Android. In Proceedings of the 25th USENIX Conference
on Security Symposium (SEC ’16). USENIX Association, Berkeley, CA, USA, 1119–
1136. http://dl.acm.org/citation.cfm?id=3241094.3241181

[56] Barak Naveh. 2018. JGraphT. (2018). https://jgrapht.org/
[57] Open Networking Foundation. 2018. Creating Security-Mode Compatible ONOS

Applications. (2018). https://wiki.onosproject.org/display/ONOS/Creating+
Security-Mode+compatible+ONOS+applications

[58] Open Networking Foundation. 2018. Enabling Security-Mode ONOS. (2018).
https://wiki.onosproject.org/display/ONOS/Enabling+Security-Mode+ONOS

[59] Open Networking Foundation. 2018. GitHub – onos/apps at 1.10.0. (2018).
https://github.com/opennetworkinglab/onos/tree/1.10.0/apps

[60] Open Networking Foundation. 2018. GitHub – opennetworkinglab/onos at 1.10.0.
(2018). https://github.com/opennetworkinglab/onos/tree/1.10.0

[61] Open Networking Foundation. 2018. ONOS - A new carrier-grade SDN network
operating system designed for high availability, performance, scale-out. (Aug.
2018). https://onosproject.org/

[62] Open Networking Foundation. 2018. ONOS In Action. (2018). https://onosproject.
org/in-action/

[63] Open Networking Foundation. 2018. Security Advisories: ONOS. (2018). https:
//wiki.onosproject.org/display/ONOS/Security+advisories

[64] OpenDaylight. 2018. Home - OpenDaylight. (Aug. 2018). https://www.
opendaylight.org/

[65] Hitesh Padekar, Younghee Park, Hongxin Hu, and Sang-Yoon Chang. 2016. En-
abling Dynamic Access Control for Controller Applications in Software-Defined
Networks. In Proceedings of SACMAT ’16. ACM, 51–61. https://doi.org/10.1145/
2914642.2914647

[66] T. Pasquier, J. Singh, D. Eyers, and J. Bacon. 2017. CamFlow: Managed Data-
sharing for Cloud Services. IEEE Transactions on Cloud Computing PP, 99 (2017),
1–1. https://doi.org/10.1109/TCC.2015.2489211

[67] Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: Collecting High-fidelity Whole-system Provenance. In Proceedings of ACM
ACSAC ’12. ACM, 259–268. https://doi.org/10.1145/2420950.2420989

[68] Phillip Porras, Steven Cheung, Martin Fong, Keith Skinner, and Vinod Yeg-
neswaran. 2015. Securing the Software-Defined Network Control Layer. In Pro-
ceedings of NDSS ’15. Internet Society. https://doi.org/10.14722/ndss.2015.23222

[69] POX. 2018. POX. (Aug. 2018). https://github.com/noxrepo/pox
[70] OpenDaylight Project. 2018. OpenDaylight Documentation: Authentication,

Authorization and Accounting (AAA) Services. (2018). https://docs.opendaylight.
org/en/stable-boron/user-guide/authentication-and-authorization-services.
html

[71] Ryu SDN Framework Community. 2018. Ryu SDN Framework. (Aug. 2018).
http://osrg.github.io/ryu/

[72] A. Sabelfeld and A. C. Myers. 2003. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications 21, 1 (Jan 2003), 5–19. https:
//doi.org/10.1109/JSAC.2002.806121

[73] S. Scott-Hayward, S. Natarajan, and S. Sezer. 2016. A Survey of Security in
Software Defined Networks. IEEE Communications Surveys Tutorials 18, 1 (2016),
623–654. https://doi.org/10.1109/COMST.2015.2453114

[74] SW Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and Mabry
Tyson. 2013. FRESCO:Modular composable security services for software-defined
networks. In Proceedings of NDSS ’13. Internet Society.

[75] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung,
Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.

2014. Rosemary: A Robust, Secure, and High-performance Network Operating
System. In Proceedings of ACM CCS ’14. ACM, 78–89. https://doi.org/10.1145/
2660267.2660353

[76] The Flick Team. 2018. C Abstract Syntax Tree (CAST) Representation. (2018).
http://www.cs.utah.edu/flux/flick/current/doc/guts/gutsch6.html

[77] Dave (Jing) Tian, Adam Bates, Kevin R.B. Butler, and Raju Rangaswami. 2016.
ProvUSB: Block-level Provenance-Based Data Protection for USB Storage Devices.
In Proceedings of ACM CCS ’16. ACM, 242–253. https://doi.org/10.1145/2976749.
2978398

[78] Y. Tseng, M. Pattaranantakul, R. He, Z. Zhang, and F. NaÃŕt-Abdesselam. 2017.
Controller DAC: Securing SDN controller with dynamic access control. In Pro-
ceedings of IEEE ICC ’17. 1–6. https://doi.org/10.1109/ICC.2017.7997249

[79] Benjamin E. Ujcich, Adam Bates, and William H. Sanders. 2018. A Provenance
Model for the European Union General Data Protection Regulation. In Provenance
and Annotation of Data and Processes, Khalid Belhajjame, Ashish Gehani, and
Pinar Alper (Eds.). Springer International Publishing. https://doi.org/10.1007/
978-3-319-98379-0

[80] Benjamin E. Ujcich, Andrew Miller, Adam Bates, and William H. Sanders. 2017.
Towards an accountable software-defined networking architecture. In Proceedings
of IEEE NetSoft ’17. IEEE. https://doi.org/10.1109/NETSOFT.2017.8004206

[81] Benjamin E. Ujcich, Uttam Thakore, and William H. Sanders. 2017. ATTAIN: An
Attack Injection Framework for Software-Defined Networking. In Proceedings of
IEEE/IFIP DSN ’17. IEEE. https://doi.org/10.1109/DSN.2017.59

[82] Danny van Bruggen. 2018. JavaParser: For Parsing Java Code. (2018). http:
//javaparser.org/

[83] Dimitri van Heesch. 2018. Doxygen: Generate documentation from source code.
(2018). http://www.stack.nl/~dimitri/doxygen/

[84] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. 2012. Procera: a language
for high-level reactive network control. In Proceedings of ACM HotSDN ’12. ACM,
43–48. https://doi.org/10.1145/2342441.2342451

[85] Xitao Wen, Bo Yang, Yan Chen, Chengchen Hu, Yi Wang, Bin Liu, and Xiaolin
Chen. 2016. SDNShield: Reconciliating Configurable Application Permissions
for SDN App Markets. In Proceedings of IEEE/IFIP DSN ’16. IEEE, 121–132. https:
//doi.org/10.1109/DSN.2016.20

[86] JenniferWidom. 2004. Trio: A System for IntegratedManagement of Data, Accuracy,
and Lineage. Technical Report 2004-40. Stanford InfoLab. http://ilpubs.stanford.
edu:8090/658/

[87] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2015. Automated Network Repair with Meta Provenance. In Proceedings of ACM
HotNets ’15. ACM, Article 26, 7 pages. https://doi.org/10.1145/2834050.2834112

[88] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. 2014. Diagnosing Missing Events in Distributed Systems with Negative
Provenance. In Proceedings of ACM SIGCOMM ’14. ACM, 383–394. https://doi.
org/10.1145/2619239.2626335

[89] Changhoon Yoon, Seungwon Shin, Phillip Porras, Vinod Yegneswaran, Heedo
Kang, Martin Fong, Brian O’Connor, and Thomas Vachuska. 2017. A Security-
Mode for Carrier-Grade SDN Controllers. In Proceedings of ACM ACSAC ’17.
ACM, 461–473. https://doi.org/10.1145/3134600.3134603

[90] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,
and Micah Sherr. 2011. Secure Network Provenance. In Proceedings of ACM SOSP
’11. ACM, 295–310. https://doi.org/10.1145/2043556.2043584

A SECURITY-MODE ONOS DETAILS

Security-Mode ONOS specifies permissions at the 1) bundle, 2) ap-
plication, 3) API, and 4) network (i.e., header space) levels [89].
We considered the API level permissions in our RBAC analysis in
Section 5.1, since it was an appropriate level of granularity for dis-
cussing the shared SDN control plane data structures’ permissions.
Although the Security-Mode ONOS paper describes network-level
permissions that would allow for finer granularities beyond API
level permissions (e.g., FLOWRULE_READ with packets matching an
IP source address within 10.0.0.0/24), we were not able to find
the relevant code in the ONOS repository [60] that implemented
such permissions at the time of writing.

A.1 Configuration

Security-Mode ONOS requires the installation of the Apache Felix
Framework security extensions and a reconfiguration of Apache
Karaf prior to running the controller [58]. It is expected that app
developers must create a manifest of necessary permissions for an

14

https://doi.org/10.1145/2535771.2535795
https://doi.org/10.1145/2535771.2535795
https://doi.org/10.1145/2103621.2103685
http://dl.acm.org/citation.cfm?id=2482626.2482629
https://doi.org/10.2200/S00528ED1V01Y201308WBE007
https://doi.org/10.2200/S00528ED1V01Y201308WBE007
https://doi.org/10.1145/268998.266669
https://doi.org/10.1145/268998.266669
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/
http://dl.acm.org/citation.cfm?id=3241094.3241181
https://jgrapht.org/
https://wiki.onosproject.org/display/ONOS/Creating+Security-Mode+compatible+ONOS+applications
https://wiki.onosproject.org/display/ONOS/Creating+Security-Mode+compatible+ONOS+applications
https://wiki.onosproject.org/display/ONOS/Enabling+Security-Mode+ONOS
https://github.com/opennetworkinglab/onos/tree/1.10.0/apps
https://github.com/opennetworkinglab/onos/tree/1.10.0
https://onosproject.org/
https://onosproject.org/in-action/
https://onosproject.org/in-action/
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://www.opendaylight.org/
https://www.opendaylight.org/
https://doi.org/10.1145/2914642.2914647
https://doi.org/10.1145/2914642.2914647
https://doi.org/10.1109/TCC.2015.2489211
https://doi.org/10.1145/2420950.2420989
https://doi.org/10.14722/ndss.2015.23222
https://github.com/noxrepo/pox
https://docs.opendaylight.org/en/stable-boron/user-guide/authentication-and-authorization-services.html
https://docs.opendaylight.org/en/stable-boron/user-guide/authentication-and-authorization-services.html
https://docs.opendaylight.org/en/stable-boron/user-guide/authentication-and-authorization-services.html
http://osrg.github.io/ryu/
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1145/2660267.2660353
https://doi.org/10.1145/2660267.2660353
http://www.cs.utah.edu/flux/flick/current/doc/guts/gutsch6.html
https://doi.org/10.1145/2976749.2978398
https://doi.org/10.1145/2976749.2978398
https://doi.org/10.1109/ICC.2017.7997249
https://doi.org/10.1007/978-3-319-98379-0
https://doi.org/10.1007/978-3-319-98379-0
https://doi.org/10.1109/NETSOFT.2017.8004206
https://doi.org/10.1109/DSN.2017.59
http://javaparser.org/
http://javaparser.org/
http://www.stack.nl/~dimitri/doxygen/
https://doi.org/10.1145/2342441.2342451
https://doi.org/10.1109/DSN.2016.20
https://doi.org/10.1109/DSN.2016.20
http://ilpubs.stanford.edu:8090/658/
http://ilpubs.stanford.edu:8090/658/
https://doi.org/10.1145/2834050.2834112
https://doi.org/10.1145/2619239.2626335
https://doi.org/10.1145/2619239.2626335
https://doi.org/10.1145/3134600.3134603
https://doi.org/10.1145/2043556.2043584

Cross-App Poisoning in Software-Defined Networking CCS ’18, October 15–19, 2018, Toronto, ON, Canada

app in order for it to be allowed to be used when running Security-
Mode ONOS [89]. Such a manifest subsequently is included with
the app and is verified when the app is installed [57].

In addition to our static analysis script (see Section 5.1.4) that
we used to determine which permissions apps would need to run
with Security-Mode ONOS, we encountered other permissions
that needed to be set at the bundle and application levels. In par-
ticular, the interactions with the OSGi framework required that
we allow the org.osgi.framework.ServicePermission and the
org.osgi.framework.AdminPermission permissions for all OSGi
bundles so that the apps could interact with the core ONOS services;
not doing so produced silent failures.

A.2 App, Permission, and Object Details

Table 3 enumerates the specific apps, read permissions, write per-
missions, and objects that we used in our CAP model for Security-
Mode ONOS.

B SELECTED CODE FOR REACTIVE

FORWARDING APP

Figure 9 shows the relevant Java code portions for the reactive for-
warding app fwd. The reactive forwarding app requires PACKET_*
permissions to set up a packet processor (Line 5, Figure 9) and to
process such packets (Line 9, Figure 9), in addition to the FLOWRULE_
WRITE permission to emit flow rules into the data plane (Line 17,
Figure 9). We also permitted fwd to have the APP_* (Line 4, Fig-
ure 9), CONFIG_*, DEVICE_READ, TOPOLOGY_READ, INTENT_*, and
HOST_READ permissions to ensure fwd’s proper operation.

Note that any flows generated from fwd are attributed to fwd
through the fromApp(appId) method (Line 16, Figure 9), in spite
of the fact that fwd’s decisions may be based on data generated
by other apps. In the case of the attack from Section 5.3, trigger
poisons such data before they arrive to fwd (Line 9, Figure 9).

C W3C PROV-DM REPRESENTATIONS

Table 4 summarizes the visual representations of the W3C PROV
data model’s provenance objects and relations [51]. The basic PROV
object classes are Agent, Activity, and Entity. The basic PROV
relation classes that we use for ProvSDN are wasGeneratedBy,
wasAttributedTo, used, wasInformedBy, wasAssociatedWith,
and actedOnBehalfOf.

D IMPLEMENTING ProvSDN ON OTHER

CONTROLLERS

Provenance is effective only if an adversary cannot bypass the
collection system. We note that the feasibility of satisfying this
requirement depends significantly on the language used to imple-
ment the SDN controller. Certain language features may aid (e.g.,
private/public declarators) or hinder (e.g., lack of memory safety)
the ability to instrument all communication paths between apps and
the controller. Here, we discuss what challenges exist if ProvSDN
were to be implemented on other SDN controllers.

1 public class ReactiveForwarding {
2 public void activate(...) {
3 ...
4 appId = coreService.registerApplication("org.onosproject.

↪→ fwd");
5 packetService.addProcessor(processor, PacketProcessor.

↪→ director(2));
6 ...
7 }
8 private class ReactivePacketProcessor implements

↪→ PacketProcessor {
9 public void process(PacketContext context) {
10 ...
11 installRule(context,...);
12 }
13 }
14 private void installRule(PacketContext context,...) {
15 ...
16 ForwardingObjective forwardingObjective =

↪→ DefaultForwardingObjective.builder().withSelector(
↪→ selectorBuilder.build()).withTreatment(treatment).
↪→ withPriority(flowPriority).withFlag(
↪→ ForwardingObjective.Flag.VERSATILE).fromApp(appId).
↪→ makeTemporary(flowTimeout).add();

17 flowObjectiveService.forward(context.inPacket().
↪→ receivedFrom().deviceId(), forwardingObjective)

18 }
19 }

Figure 9: Selected reactive forwarding app code during app

activation and during packet processing for inserting flow

rules. Lines with permissioned calls are highlighted in gray.

D.1 Java-Based Open-Source Controllers

In addition to ONOS, Floodlight [20], SE-Floodlight [68], and Open-
Daylight [64] are all implemented in Java. Classes in Java can have
member variables be declared as private or protected, which
prevents other, potentially malicious classes from directly manip-
ulating such variables. All interactions must be through public
method invocations that can be instrumented to collect provenance
data. In addition, Java is memory-safe, barring the exploitation of
vulnerabilities against the JVM itself. This ensures that an attacker
cannot, for instance, corrupt a reference to point to a sensitive
object’s private or protected member variables.

As noted earlier, Java’s Reflection API should be disabled to
prevent overriding the declared access modifiers. Furthermore, the
bytecode of compiled Java classes can be modified at class-load
time, and several libraries are available to facilitate this process.
This may allow an attacker to remove provenance collection code,
or induce other unwanted behaviors into other classes. In order to
collect complete provenance information, both reflection and byte
code rewriting should be disabled. For example, static analysis can
detect use of such methods and refuse to load classes which exploit
these features.

D.2 Python-Based Open-Source Controllers

Several SDN controllers, including Ryu [71] and POX [69], are
written in Python. Python does not enforce private data structures
that are only accessible to their containing class. All objects can
directly manipulate the attributes of all other objects and do not
need to go through getter and setter calls that could otherwise
enforce instrumentation. As such, it difficult to support internal

15

CCS ’18, October 15–19, 2018, Toronto, ON, Canada B. Ujcich et al.

Table 3: Partial RBAC Model for Security-Mode ONOS and Included ONOS Apps.

Apps: A = {acl, actn-mdsc, bgprouter, bmv2-demo, castor, cip, config, cord-support, cpman, dhcp, dhcprelay, drivermatrix, events, faultmanagement,
flowanalyzer, flowspec-api, fwd, gangliametrics, graphitemetrics, influxdbmetrics, intentsync, iptopology-api, kafka-integration, l3vpn, learning-switch,
mappingmanagement, metrics, mfwd, mlb, mobility, netconf, network-troubleshoot, newoptical, ofagent, openroadm, openstacknetworking,
openstacknode, optical, optical-model, pathpainter, pce, pcep-api, pim, proxyarp, rabbitmq, reactive-routing, restconf, roadm, routing, routing-api,
scalablegateway, sdnip, segmentrouting, tenbi, test, tetopology, tetunnel, virtualbng, vpls, vrouter, vtn, yang, yang-gui, yms}

Read permissions: PR = {APP_READ, APP_EVENT, CONFIG_READ, CONFIG_EVENT, CLUSTER_READ, CLUSTER_EVENT, CODEC_READ, DEVICE_KEY_EVENT,
DEVICE_KEY_READ,DEVICE_READ, DEVICE_EVENT, DRIVER_READ, EVENT_READ, FLOWRULE_READ, FLOWRULE_EVENT, GROUP_READ, GROUP_EVENT, HOST_READ,
HOST_EVENT, INTENT_READ, INTENT_EVENT, LINK_READ, LINK_EVENT, PACKET_READ, PACKET_EVENT, PARTITION_READ, PARTITION_EVENT,
RESOURCE_READ, RESOURCE_EVENT, REGION_READ, STATISTIC_READ, TOPOLOGY_READ, TOPOLOGY_EVENT, TUNNEL_READ, TUNNEL_EVENT, UI_READ}
Write permissions: PW = {APP_EVENT, APP_WRITE, CONFIG_WRITE, CONFIG_EVENT, CLUSTER_WRITE, CLUSTER_EVENT, CODEC_WRITE, CLOCK_WRITE,
DEVICE_KEY_EVENT, DEVICE_KEY_WRITE, DEVICE_EVENT, DRIVER_WRITE, EVENT_WRITE, FLOWRULE_WRITE, FLOWRULE_EVENT, GROUP_WRITE,
GROUP_EVENT, HOST_WRITE, HOST_EVENT, INTENT_WRITE, INTENT_EVENT, LINK_WRITE, LINK_EVENT, MUTEX_WRITE, PACKET_WRITE, PACKET_EVENT,
PERSISTENCE_WRITE, PARTITION_EVENT, RESOURCE_WRITE, RESOURCE_EVENT, STORAGE_WRITE, TOPOLOGY_EVENT, TUNNEL_WRITE, TUNNEL_EVENT,
UI_WRITE}

Objects: O = {ApplicationManager, ClusterCommunicationManager, ClusterManager, ClusterMetadataManager, CodecManager,
ComponentConfigManager, CoreEventDispatcher, CoreManager, DefaultOpenFlowPacketContext, DefaultPacketContext, DeviceKeyManager,
DeviceManager, DriverManager, DriverRegistryManager, EdgeManager, FlowObjectiveCompositionManager, FlowObjectiveManager, FlowRuleManager,
FlowStatisticManager, GroupManager, HostManager, IntentManager, LinkManager, LogicalClockManager, MastershipManager,
NettyMessagingManager, NetworkConfigManager, PacketManager, PartitionManager, PathManager, PersistenceManager, ProxyArpManager,
RegionManager, ResourceManager, SimpleClusterStore, StatisticManager, StorageManager, TopologyManager, UiExtensionManager}

Table 4: SDN Shared Control Plane State Semantics Using

W3C PROV-DM.

Object or Event W3C PROV-DM Representation

Control plane object
with attributes

Entity
Key1 = Value1

Key n = Value n

App method or
function call

Activity
(class:method)

App, controller, or
switch identity Agent

(app)

App reading object
from the shared
control plane

Activity
(class:method)

wasAssociated
With used Entity

Key1 = Value1
Key n = Value n

Agent
(app)

App writing object to
the shared control
plane

Entity
Key1 = Value1

Key n = Value n

wasGenerated
By

wasAssociated
WithActivity

(class:method)
Agent

(app)

Intra-app method or
callback method

Activity 2
(class:method)

Activity 1
(class:method)

Agent
(app)

wasAssociatedWith

wasAsso
ciated

With

wasInformed
By

Internal service on be-
half of controller Agent Agent

Controller

actedOnBehalfOf

apps while maintaining guarantees about complete provenance
collection, outside of instrumenting the Python interpreter itself.
One option is to move controller apps to discrete processes that
communicate only over inter-process communication primitives.
This would allow provenance collection at the cost of higher latency.

D.3 C/C++-Based Open-Source Controllers

Controllers written in C or C++, such as Rosemary [75] and NOX
[29], support private data structures and allow provenance to be

collected by instrumenting getters and setters. Unfortunately, nei-
ther language is memory-safe. This is a particularly severe problem
for handling malicious apps. Not only could controller code contain
exploitable bugs, but malicious apps themselves may deliberately
include vulnerabilities that they exploit locally in order to gain
arbitrary read/write access to memory. This clearly bypasses prove-
nance collection and may even have more severe repercussions if
the malicious app can, for example, make system calls.

D.4 Closed-Source Controllers

Collecting provenance data as discussed here implicitly requires the
ability to instrument code, which is not possible for closed source
controllers such as HP’s VAN [32]. However, possible future work
could leverage verbose log files to gain insight into interactions
between the controller and apps.

16

	Abstract
	1 Introduction
	2 Threat Model
	3 Background and Overview
	3.1 SDN Architecture
	3.2 Information Flow Models for Integrity
	3.3 SDN Control Plane Information Flow Challenges

	4 Cross-App Poisoning
	4.1 RBAC Policy Model
	4.2 Cross-App Information Flow Graph
	4.3 Cross-App Attack Vectors
	4.4 Cross-App Poisoning Gadgets

	5 Cross-App Poisoning Case Study: Security-Mode ONOS
	5.1 CAP Model for Security-Mode ONOS
	5.2 CAP Gadgets in Security-Mode ONOS
	5.3 Example Attack: Packet Modification and Flow Rule Insertion for Data Plane DoS
	5.4 Remarks

	6 Information Flow Control Policies
	7 ProvSDN
	7.1 Data Provenance Model
	7.2 System Components
	7.3 Implementation
	7.4 Attack Evaluation
	7.5 Performance Evaluation

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Security-Mode ONOS Details
	A.1 Configuration
	A.2 App, Permission, and Object Details

	B Selected Code for Reactive Forwarding App
	C W3C PROV-DM Representations
	D Implementing ProvSDN on Other Controllers
	D.1 Java-Based Open-Source Controllers
	D.2 Python-Based Open-Source Controllers
	D.3 C/C++-Based Open-Source Controllers
	D.4 Closed-Source Controllers

