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Abstract

[oT (Internet of Things) based smart devices such as sensors have been ac-
tively used in edge clouds i.e., ‘fogs’ along with public clouds. They provide
critical data during scenarios ranging from e.g., disaster response to in-home
healthcare. However, for these devices to work effectively, end-to-end se-
curity schemes for the device communication protocols have to be flexible
and should depend upon the application requirements as well as the resource
constraints at the network-edge. In this paper, we present the design and
implementation of a flexible 10T security middleware for end-to-end cloud-fog
communications involving smart devices and cloud-hosted applications. The
novel features of our middleware are in its ability to cope with intermittent
network connectivity as well as device constraints in terms of computational
power, memory, energy, and network bandwidth. To provide security during
intermittent network conditions, we use a ‘Session Resumption’ algorithm in
order for our middleware to reuse encrypted sessions from the recent past,
if a recently disconnected device wants to resume a prior connection that
was interrupted. In addition, we describe an ‘Optimal Scheme Decider’ al-
gorithm that enables our middleware to select the best possible end-to-end
security scheme option that matches with a given set of device constraints.
Experiment results show how our middleware implementation also provides
fast and resource-aware security by leveraging static properties i.e., static
pre-shared keys (PSKs) for a variety of loT-based application requirements
that have trade-offs in higher security or faster data transfer rates.

Keywords: 10T Security Middleware, Mobile Edge Cloud, Cloud-Fog
Communication, Secure IoT Applications
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1. Introduction

Internet of Things (IoT) systems typically comprise of a network of con-
nected devices or “things”. The term “thing” here can constitute any smart
device ranging from sensor devices in automobiles, bio-chemical sensing de-
vices in homeland security, to heart monitoring devices inside of a human
body. In fact, any object that has the ability to collect and transfer data
across the network to an edge or core cloud computing platform can be a
part of an IoT system. As mentioned in [1], emerging IoT system trends are
set to completely change the way businesses, governments, and consumers
interact with each other, and transact in a data-driven economy.

As a specific example, an IoT system of Geo Sensors could involve col-
lection of various kinds of geographical information related to soil, forest
terrains, and weather. The collected data is continually sent to nearby edge
clouds or ‘fog computing platforms’ for aggregation and drill-down analy-
sis/visualization. Similarly, smart devices in IoT systems can also provide
critical data during e.g., disaster response scenarios or in-home healthcare.
An exemplar application of an IoT system used for disaster response is
Panacea’s Cloud [2, 3, 4]. Such systems aid in providing medical triaging
and quick response during emergency disaster situations. The Panacea’s
Cloud system involves many distributed IoT devices transmitting data from
various locations in a disaster region to a responding personnel’s handheld
device, which in turn utilizes a mobile cloud-fog setup that provides intelli-
gent dashboard visualizations. Considering the in-home healthcare applica-
tion scenario, IoT systems such as [5, 6] are aimed at providing emergency
services to the elderly, if the need arises. These involve smart sensors and
cameras using cloud-fog storage for keeping track of movements made by the
elderly. The IoT system here could use cloud-fog computation for algorithms
that help notify primary care contacts if an elder’s gait signature appears to
contain certain types of anomaly events that suggest high fall risk.

We can see that the above loT-based applications can have broad use
cases involving diverse infrastructure configurations and data/resource se-
curity requirements. Consequently, ad-hoc communication protocol imple-
mentations with undesirable security overheads are not suitable. Consider
the aforementioned case of disaster response systems [3]; the edge network
here comprises of IoT devices that typically operate in resource-constrained
(compute, memory, storage, network, energy) environments. Such systems
could become highly unstable and unreliable due to physical infrastructure
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damage or lossy edge links when there are extreme events such as hurricanes,
tornadoes or earthquakes. The IoT system security in this case needs to be
configured such that the security overhead of the communication protocols
does not impede the already slow data transfer speeds due to constrained
edge resources and infrastructure.

Alternately, the above IoT systems for providing in-home healthcare, as
in [5, 6] may have access to fully functional edge infrastructure including
Gigabit fiber connections (e.g., Google Fiber) to user sites and a set of fog
resources at a nearby hospital data center. In such cases, the available re-
sources can be readily used to handle the big data generated from patient
homes (typically up to 23GB/Person/Week). The [oT system security for
this application case involving elderly patient data needs to be configured for
maximum data confidentiality and integrity, even if data transfer speeds are
affected due to security overhead of the communication protocols.

In this paper, we address the wide-ranging IoT-based application secu-
rity needs and diverse network-edge resource constraints by proposing a novel
design of a flexible IoT security middleware for end-to-end cloud-fog commu-
nication. Our goal is to primarily secure the network located at the user
fogs, i.e., where the IoT devices are located. However, we also seek to main-
tain security compatibility with an existing core cloud network using System
Level or Application Level deployment considerations of our middleware.

The salient features of our IoT security middleware, which form the main
paper contributions of our work are in its ability to provide: (i) ‘Intermittent
Security’, and (ii) ‘Resource-aware Security’ for smart devices and cloud-
hosted applications. Pertaining to Intermittent Security, our middleware uses
a Session Resumption algorithm in order to reuse encrypted sessions from
recent past, if a recently disconnected device wants to resume a prior con-
nection that was interrupted due to an unreliable network connection. With
regards to Flexible Security, our middleware uses a novel Optimal Scheme
Decider algorithm that allows users to configure the best possible end-to-
end security scheme option that matches with a given set of device resource
constraints. Through application resource-awareness obtained via supervised
machine learning (versus blindly following a rigid/adhoc security configura-
tion), our middleware enables users to configure either higher security or
prioritize faster data transfer rates, via RESTful APIs for data collection at
a cloud or a fog site.

We validate our middleware implementation’s ability to provide robust,
fast and resource-aware security through experiment results in an actual
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cloud-fog testbed, as well as through simulation results. Results also show
that our work lays a foundation for promoting increased adoption of static
properties such as Static PSKs that can handle the trade-offs in high security
or faster data transfer rate requirements within IoT-based applications.
The remainder of this paper is organized as follows: In Section 2, we dis-
cuss related work. In Section 3, we provide an overview of our middleware
and provide a detailed description of our approach with a corresponding refer-
ence architecture. Section 4 elaborates on our Intermittent Security solution
and details our Session Resumption algorithm. Next, Section 5 discusses
our Resource-aware Security solution and details our Optimal Scheme De-
cider algorithm. Section 6 evaluates the effectiveness of our middleware and
compares the performance of an IoT-based application with-and-without our
middleware. Section 7 concludes this paper and suggests future work.

2. Related Work

The core concepts of [oT related sensing and communication have been
outlined in prior works such as [7] and [8]. Authors in [7] identify that IoT
systems need to implement a shared understanding of the situation of users
and their devices with context-awareness. Thus, a requirement for IoT-based
sensing systems design including security needs to address adaptation re-
quirements to cope with dynamic contexts and varied application platforms.
Similarly, authors in [8] identify the high-level abstractions and interoperabil-
ity needs to ensure proper security in the form of confidentiality, integrity
and availability, as well as to bridge the gap between IoT (i.e., constrained
edge) and enterprise (i.e., unconstrained core cloud) communications.

From the perspective of frameworks that address IoT related sensing and
communication issues, prior work such as [9] and [10] have focused on smart
city applications. In [9], data service models to deal with real-time data
analysis are presented along with a tiered security service to handle data
transmissions. The proposed framework supposes that communication be-
tween IoT sensors and the application back-end (i.e., in an agricultural data
analysis use case) needs to be ad-hoc and fast, while security design needs
to be flexible to handle time-sensitivity or content-sensitivity. In contrast,
a case for scalability and plug-in components in IoT-based applications is
presented in [10], and a flexible framework design similar to our security
middleware is presented. The authors list challenges in handling differences
in communication protocols between the IoT devices and the edge gateway.
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[oT-based application deployment is a relatively new trend, however meth-
ods to secure networked IoT devices have been explored in the past. Work
in [11] discusses security procedures for constrained IoT devices. An archi-
tecture to offload computation intensive tasks to the gateway is proposed,
which helps in reducing the cost of security encryptions at the IoT node side.
However, offloading at a large scale is a tedious task as mentioned in [12].
In [13] and [14], the authors propose lightweight authentication schemes that
can be used in the context of IoT systems and constrained wireless sensor
networks. In comparison, our work investigates a security middleware which
makes use of static Pre-Shared Keys (PSKs) that is different from the multi-
phase encryption and decryption used in earlier works. We phase down to
just one iteration for lightweight authentication. Consequently, our approach
reduces security overhead in the cloud-fog communication protocols and is
less time consuming in an IoT-based application deployment.

Work in [15] addresses issues in session key management for IoT-based ap-
plications, particularly concerning health-care sensors. The authors devised a
secure end-to-end protocol for resource-constrained devices by adapting secu-
rity functionality used in unconstrained devices, but without computationally
intensive operations. They offloaded heavy computation at constrained de-
vices to neighboring trusted nodes/devices. Their session key creation, how-
ever, was ephemeral. Similarly, authors in [16] provide methods to offload
security computation from devices to the edge cloud. Our work builds on
top of these works, and uses an easier, yet effective key management scheme.
Specifically, we create static keys which are not short-lived, reducing the key
exchange cost and time significantly.

Our work is closely related to prior work in [17, 18], where the same
authors developed security schemes for mobility-enabled healthcare IoT sys-
tems. They outline architectures that are based on certificate-based DTLS
handshake. In addition, their scheme utilizes the session resumption concept
for communication, and proposes system mobility through interconnected
smart gateways. Our work extends this highly relevant work to incorpo-
rate flexibility and resource-awareness in the security scheme configuration
for IoT-based applications that function in both austere and smart network
environments.

A comprehensive session resumption mechanism is discussed in [19]. The
work uses HIP DEX i.e., Host Identity Protocol Diet EXchange which pro-
vides secured end-to-end connections in IoT systems. Perfect forward se-
crecy and non-repudiation properties of HIP result in significantly decreased
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protocol handshake overhead and reduced handshake run-time. Storage of
session state after session tear-down enables efficient re-authentication and
re-establishment of a secure payload channel in an abbreviated session re-
sumption handshake. Our work utilizes the concept of session resumption
but makes a few changes for broader compatibility. Instead of HIP, we utilize
Device ID, which can additionally act as a static unique device property.

We encountered use of different encryption techniques in earlier works. As
an exemplar, work in [20] makes use of Physical Unclonable Functions (PUF)
over public key cryptography, which takes advantage of existing physical
properties of a device. They utilize Physical Key Generation (PKG) that
use physical properties of the communication channel, and is lighter than
common public-key cryptography. Along the same lines, work in [21] aims for
lightweight user authentication and key agreement protocol implementation,
but relies heavily on use of smart cards. Our work extends upon such works
to use physical properties of the devices, and is able to forgo re-authentication
by using session resumption.

Authors in [22] give a standard security compliant framework to secure
the IEEE 802.15.4 networks in low power lossy network (LLNs). The frame-
work supports five different levels of security with their proposed security
configurations (i.e., Fully Secured, Unsecured, Partial Secured, Hybrid Se-
cured and Flexible Secured). Flexible secured configuration has the potential
to change the level of security based on requirements when needed, and shifts
from full secured state to hybrid secured state. However, the approach is not
quite scalable since re-entry of device request is not supported. This is a gap
that can be filled by the presence of a flexible, dynamic security middleware
to act as an interface for fast or secure encrypted communication. Hence, our
work takes the security framework, specifically the concept of Resource-aware
Security, a step further towards practical use within IoT-based applications.

3. IoT Security Middleware Overview

In this section, we first describe our vision of the physical infrastructure
necessary to deploy our middleware that builds upon our previous work [23].
Following this, we list the various modules in our middleware and explain
the interactions of our middleware with a cloud gateway and a smart device.
Lastly, we discuss practical deployment considerations for the deployment of
our middleware in an IoT system.
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Figure 1: IoT system architecture - Core Cloud along with the Gateway forms an un-
constrained network, whereas Gateway along with the IoT devices forms a constrained
network segment [23]

3.1. Physical Infrastructure

Figure 1 illustrates a physical infrastructure view to integrate our mid-
dleware in an [oT system that involves cloud-fog communication. The in-
frastructure primarily consists of a core cloud infrastructure, a gateway, and
several edge IoT devices. The core cloud has a communication channel with
gateways at the network-edge. The edge gateways form an interface to the
network for the IoT devices. Parts of the primary middleware need to be
installed on both the gateway and the fog IoT devices. The fog network
can constitute any number or type of IoT devices, such as heart monitor,
beacon, geo sensor, etc. The primary middleware allows secure and fast data
transfer between the sensor devices and the gateway by using the “Intermit-
tent Security” feature to ensure robustness against frequent disconnections,
and by using security schemes chosen through our “Resource-aware Security”
module. To realize these benefits, our middleware stores and tracks sessions,
certificates, or keys, between both the fog and the gateway. Once data has
been securely transferred to the gateway, it handles the translation of pro-
tocols to allow compatibility between the core cloud protocols and the IoT
device protocols.

Optionally, secondary middleware can be integrated between the gateway
and the core cloud to provide additional flexibility and robustness, if needed.
There is a key benefit of having this integration setup. The presence of inter-
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mediate gateways allows for decoupling of services and protocols between the
cloud-gateway and gateway-iot subnets, essentially paving way for end-to-end
security via our intermediate middleware. Our ideal integration consists of
a middleware piece in the core cloud network side, and another middleware
piece at the fog network side. Each middleware piece consists of a server-
client pair interacting with just each other. At the gateway, the client of the
cloud interacts with the server of edge, allowing end-to-end secured communi-
cation. Our middleware additionally supports device resource-aware security
by accommodating different protocols for individual nodes in the fog net-
work, in addition to being accessible to use static PSKs for quick encryption
setup, and support for intermittent security through session resumption.
We suppose in Figure 1 that smart applications that are based on IoT
data from e.g., sensors collect contextual data at large scales from several
geographically distributed fog/edge locations. Our middleware helps in se-
cure integration and analysis of such data using cloud platforms and wireless
communication networks for actionable insights. Our middleware can be
useful in cases where custom application dashboards in e.g., public safety,
transportation or rural healthcare require secure data import and export
in a cloud and fog communications infrastructure to deal with IoT devices
with varying trust, resource constraints and wireless network reliability. The
middleware can be customized in rural areas or in the middle of areas with
sparse/intermittent wireless connectivity, where strict security requirements
might lead to channel bandwidth consumption overheads or fast drainage of
constrained device resources. This in turn might block data access from IoT
devices, or cause data integrity issues that lead to discarding of important
data in some cases. Thus, our middleware addresses the lack of flexible trust
management in today’s smart applications in a manner that can enable data
collection with minimal viable security. Consequently, it helps with real-time
[oT device data ingest into a cloud from both trusted and un/low-trusted
devices to facilitate follow-up actions by decision makers at the fog sites.

3.2. Logical Modules

A modular diagram of our proposed middleware is shown in Figure 2.
The involved devices keep track of (D)TLS sessions, PSKs, and the Device
IDs. The security association occurs first by letting the Intermittent Se-
curity module (see Section 4 for details on the background, algorithm and
implementation) try and resume a past connection, by first verifying ses-
sion existence and validity. If the resumption fails, Resource-aware Security

8
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module (see Section 5 for details on the background, algorithm and imple-
mentation) acts as an interface to allow configuration of required security
schemes. These two modules in conjunction form the middleware.

Our middleware allows flexibility of security through various available
protocols. The reasoning behind providing flexibility is because all applica-
tions and devices are not built with same level of security in mind. There is a
trade-off between security and speed when it comes to a preset of a security
protocol. High level of security is usually desired, but not always needed.
Based on the application, it might be detrimental to have full-fledged secu-
rity. For instance, if an edge beacon (based on e.g., iBeacon technology) is
transmitting confidential medical information, the data security is a major
priority. However, if the same beacon is to be reused for emergency medical
triage, the priority for speed and low power consumption goes up, at the
expense of high security.
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3.3. Deployment

In practical [oT system deployments, the middleware can be installed at
both the System Level and Application Level. A System Level installation
could involve integrating the features of the middleware into the Operating
System services of the device, ideally by the device manufacturer or software
developer. This approach allows an application developer to incorporate the
features of the middleware for customization by users. On the other hand,
Application Level installation can allow an application developer to directly
integrate the middleware features into the application logic. This approach
could be useful if full device control is not available at the Application Level.

4. Intermittent Security

4.1. Solution Approach

Intermittent security utilizes session resumption to quickly bring a discon-
nected device back in the network when needed again. This concept closely
follows the ideas proposed in [19], and but we consider a few modified fac-
tors. Our middleware implements intermittent security using a “Device ID”,
instead of using the Host Identity Protocol (HIP). This allows compatibility
with a broader range of device types. The device IDs of the edge nodes are
managed by the nearest hop gateway. (D)TLS sessions are stored by the
devices on disconnection for future use. If such a recently disconnected edge
node attempts to make a connection with the gateway, the gateway uses
the client Device IDs to determine the session to resume for that requesting
node. This module allows fewer security handshake steps that result in time
savings, and the data to be transmitted can still successfully be transferred
without compromising security.

A possible major concern in a session resumption implementation is the
possibility of Replay Attacks [24]. Given that the serialized sessions are tied
to the property of the device, i.e., the Device ID, replaying using the same
session is made extremely difficult by any malicious device, almost certainly
having a different Device ID. To prevent an active session from being replayed
by a spoofing device, a simple flag is sufficient to block such replay requests.

Data Encryption is commonly done using keys established through Public
Key Cryptography (PKC). Instead of using PKC, our middleware chooses to
leverage static elements such as Static Pre-shared Key (PSK) or Certificates.
This is because PKC can be quite slow, in addition to being intensive in
terms of time, computation, bandwidth, and memory resources, [20]. Despite

10
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Figure 3: Illustration of Intermittent Security handling with Session Resumption [23]

lacking in nonce and entropy compared to ephemeral schemes, static PSKs
still are capable of providing a reasonable level of encryption using the user’s
choice of cipher, such as block or stream ciphers. Hence, it is a preferable
scheme for most use cases, allowing a tradeoff balance between speed and
security requirements of an loT-based application [25].

4.2. Logic Implementation

Figure 3 shows a flowchart illustration of how our middleware leverages
intermittent security with session resumption for quick data transmission.
A contingent flexible security scheme is used to quickly establish lost con-
nections with the fastest possible way, based on the security needs of an
IoT-based application. Algorithm 1 shows our pseudocode for providing in-
termittent security. The main() function gets executed first, to check whether
the connection between the associated devices is being made for the very first
time. Or, if there already is a valid session corresponding to these devices.
If so, we can simply fetch the stored session from device storage and at-
tempt to resume it, allowing quick reconnection between them. If not, a new
connection has to be established with device resource-awareness i.e., based
on chosen protocol, authentication scheme, encryption scheme, and message
authentication code algorithm, a new session would be initiated.

11
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Once a session has been found (either new or resumed), two operations
occur in parallel: First, serializeSession() ensures that the current session
state is serialized to the device storage every few seconds, as represented
by variable z. Based on the need, the value of z can be made higher or
lower. Higher value of z would result in more frequent writes to the storage,
providing more reliability for future session resumptions at the expense of
using higher computation and storage. Conversely, less frequent writes would
be less reliable, but faster and resource conservative. Second, transmit()
keeps data flow active between the connected devices.

12
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Algorithm 1: Intermittent Security Handler

Data:
Data:
Data:
Data:
Data:
Data:

Device ID dID. Protocol p, either DTLS or TLS

Authentication Scheme auth, Encryption Scheme en

Message Authentication Code mac

session variable holds encrypted session info

stored_session holds deserialized session fetched from device storage
first_connect is true if this is the first time connecting

Result: The latest session is stored on the respective devices to be quickly

resumable

function initSession ()

end

end

end

"

end

/* Creates a new session from specified configuration */
session + flex_security_vector(dID, {p, auth, en, mac})

function resume ()
/* Pulls the stored session and uses it as new session */
session < stored_session

function serializeSession (x)
/* Store the session in storage of member devices */
while true do

sleep (x)
stored_session < session

end

unction main ()
/* Decide and create or resume a session */
if firstConnect or stored_session.isNull then

initSession()

else

resume()

end
serializeSession()
transmit()

13
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5. Resource-aware Security

The first step for security association and communication initiation is
selection of the security protocols to be used. Our middleware supports dif-
ferent kinds of protocols and allows switching between them. The possible
choices all select one of the options in each category. The categories include:
(i) Protocol, (ii) Authentication Scheme, (iii) Bulk Encryption Scheme, and
(iv) Message Authentication Code (MAC) algorithm as shown in Figure 4.

Protocol Selection: The Protocol selection allows a choice between {TLS,
DTLS}. TLS (Transport Layer Security) and DTLS (Datagram Transport
Layer Security) are both extremely secure protocols enforcing network en-
cryption between participants. Both of these protocols ensure confidentiality
and integrity of data. DTLS is a better choice for stream-based applica-
tions, and can work over UDP (User Datagram Protocol). For use with TCP
based applications, TLS is the preferred choice. The difference in perfor-
mance and bandwidth requirements of TLS and DTLS can get noticeably
high when adding the impact of the ideal authentication, encryption, and
MAC schemes.

14
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Authentication Scheme Selection: Authentication Scheme can be either {PSK,
Certificate}. Furthermore, each of these entities can be either {Ephemeral,
Static}. Ephemeral PSKs or Certificates require full security handshake
and key exchange before use. On the other hand, Static authentication
elements do not require repeated key exchange, and hence can save a sig-
nificant amount of time and bandwidth. In our middleware, if PSK is found
to be an ideal candidate, the default setup goes for Static PSK. In fact,
Static PSK can exist as a device property on the IoT devices, allowing many
benefits such as: quick connection, resumption, low memory footprint, low
bandwidth consumption, and low CPU usage. If the requirement is for even
higher security, ephemeral PSK or Certificate can be generated using Key
Exchange algorithms, such as RSA, or DH (Diffie-Hellman).

Bulk Encryption Scheme Selection: Once authentication is chosen, the Bulk
Encryption scheme is the next option. Encryption can be done using ei-
ther Block Ciphers, or Stream Ciphers. Block Ciphers are useful for sending
large chunk of data, and can consume a significant amount of bandwidth and
memory if the payload is small. This is due to the padding added to each
block of data being sent. For example, AES uses 128-bit (16-byte) padding
by default. If the data being transmitted is 1024-bit in length, then the total
packets sent would be [1024/128] = 8. But, if the data size is 130-bit, the
number of packets sent would be [130/128] = 2. The second packet would
have 126 empty reserved bits. Hence, for small payload applications (such
as video streams) it is better to opt for Stream Cipher, which encrypts small
chunks of data before sending. The most common Stream Cipher is RC4,
but ChaCha20 is starting to take over as the next generation of much faster
and more secure stream ciphers. All ciphers can be configured to various key
sizes (if applicable), including 128-bit, 224-bit, 256-bit, and so on.

Message Authentication Code Selection: Lastly, the chosen Message Authen-
tication Code algorithm is used to generate a checksum, to ensure integrity
of data being sent. The available options are MD5, SHA {1/2/3}, and a
few lesser-used options. SHA2 or SHA3 should be used whenever possible,
since MD5 and SHA1 have been found to be vulnerable to various checksum
attacks [26, 27] and collision attacks [28]. Through permutation and combi-
nation, the possible choices for the security scheme can be a large collection.
Tables 1 shows a subset of candidate security schemes, and Table 2 provides
a brief description for each of these schemes.
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Table 1: A subset of candidate security schemes for resource-aware security

Security Scheme Protocol|Authentication| Encryption MAC
DTLS_PSK_WITH_.CHACHA20_SHA256 DTLS Static PSK ChaCha20 |SHA2(256)
DTLS_DHE_WITH NULL_SHA384 DTLS Certificate - SHA2(384)

DTLS_DHE_PSK_WITH_3DES_EDE_SHA DTLS PSK 3DES (EDE) SHA1

TLS_PSK_WITH_AES_128 CBC_SHA TLS Static PSK  |AES128(CBC)| SHA1
TLS_PSK_-WITH_.CHACHA20_-POLY1305 TLS Static PSK ChaCha20 |POLY1305
TLS_ECDHE WITH_AES 256 GCM_SHA384| TLS Certificate  |AES256(GCM)|SHA2(384)

Table 2: Key use-cases and description of schemes in Table 1 for resource-aware security

Security Scheme Description
DTLS_PSK_WITH_.CHACHA20_SHA256 Very fast, secure. Excellent for secure video streaming
DTLS_DHE_WITH_NULL_SHA384 Fast scheme, high security
DTLS_DHE PSK_WITH_3DES_EDE_SHA Fast, but risk of integrity loss due to SHA1
TLS_PSK_WITH_AES_128_ CBC_SHA Fast, highly secure, suitable for moderately heavy data
TLS_-PSK_-WITH_.CHACHA20_POLY1305 Fast, highly secure, suitable for quick bulk data transfer
TLS_.ECDHE_WITH_AES_256_GCM_SHA384|Very high security, suitable for confidential data on a reliable network

5.1. Solution Approach

As discussed in the previous subsection, our middleware allows picking
and choosing of security protocol components (e.g., bulk encryption, message
authentication) as per the user’s requirements. However, when it comes to
actually choosing the best scheme option for an application context, the deci-
sion process is quite difficult. It can be even more onerous given the fact that
not every user might be well versed with the various security components, or
have a strong understanding of the differences between the various schemes,
their advantages or disadvantages. Consequently, users need to be presented
with relevant information of suitable options to choose the best scheme op-
tion. To assist in this difficult decision process, the Optimal Scheme Decider
solution of our middleware becomes relevant. We found ~200 possible secu-
rity scheme choices (that result from combinations of various protocol com-
ponents) that the Optimal Scheme Decider needs to be analyze to find the
optimal choice of security scheme for a given IoT-based application context.
As part of the solution approach, we use supervised machine learning that is
done in two phases: (i) Offline Phase, and (ii) Online Phase.
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5.1.1. Offline Phase

The Offline Phase is a step used to narrow down the searchable space
of security schemes by filtering our ~200 scheme set database. Although
the schemes can be quite varied, there exist many schemes that have close
similarities in practical aspects. Moreover, it is possible to find alternative
schemes to any chosen scheme when the requirements and priorities are ad-
justed according to the needs of the application. Hence, it turns out, every
permutation or combination of protocol components is not a necessary option
for ToT-based application developers. In fact, as shown in Figure 5, we are
able to group security schemes based on their protocol choices.

Application
Requirements

TLS DTLS

| ]

No Session . . No Session
Session Resumption

Resumption Resumption

Group-A Group-B Group-C

Figure 5: Scheme Groups formed based on various protocol component configurations; the
groups can be used to categorize future clusters of security schemes to choose the optimal
scheme

As a proof-of-concept, we implemented three groups { Group-A, Group-B,
Group-C} that are significant. Group-A represents all configurations utilizing
TLS as the base protocol, and using no session resumption. Group-B repre-
sents all configurations under TLS, but with support for session resumption.
Group-C comprises of all DTLS schemes with no session resumption. Session
Resumption can be an optional configuration because there are trade-offs in
having this feature. The resumption feature itself requires some periodic disk
I/O to serialize active sessions. In addition, the serialized files are stored on
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the device, utilizing notable disk space. This process also ends up consuming
notable energy. Thus, in cases of highly constrained IoT devices, not having
session resumption enabled within the middleware may be beneficial.

Since our server is considered to be Full Function Device (i.e., a device
that is enterprise data center grade and is generally not limited in terms
of resources and function capabilities), it can be safely assumed that client
benchmarks are the bottleneck, and hence sufficient for forming clusters.
Since the clusters are to choose the optimal security scheme targeted for the
IoT-devices involved, we are able to discard the benchmark values for the
server side without any negative impact on the Optimal Scheme Decider.

Table 3: Parameters used for client benchmark analysis and their descriptions. These
parameters are utilized in Offline and Online phases

Parameter Label | Client Parameter Description Desired Level for RFD
P1 CPU Usage The security scheme’s CPU usage Smaller value
P2 Bandwidth Usage The bandwidth of the security schemes network usage Smaller value
P3 Peak Bytes The peak memory consumption on device Smaller value
P4 Connection Time The elapsed time to successfully connect with server Smaller value
P5 X The speed of transmitting data Higher value
P6 RX The speed of receiving data Higher value

Table 3 shows the parameters used for client benchmark analysis in our
database. The desired level represents whether high value is optimal, or
lower, when operating on a Reduced Function Device (i.e., a sensor device
that is highly constrained in terms of available resources and functioning
capabilities). These 6 metrics under the ‘Client Parameter’ column in Ta-
ble 3 can next be used to form the cluster of devices. By calculating the
mean values of each variable for each cluster, we can classify them into inter-
mediate categories. For instance, if the mean value of the bandwidth for a
specific cluster is larger than other clusters, we classify this cluster as “secu-
rity configuration with high bandwidth need”. The formation of the cluster
of devices is thus fuzzy in nature, but aligns well with our approach for the
security scheme selection. To move forward, we need to perform a set of
operations on the raw data to successfully filter the schemes into appropriate
clusters under each group. Hence, the following steps are followed:

1. Scale the raw data
Note: The parameter labels {P1, P2, P3, P4, P5, P6} can be col-
lectively referred to as members of set “P”. This step is needed to
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decrease the correlation between each metric, in addition to decreas-
ing the influence of units, i.e., Normalization. Hence, we perform data
scaling on our raw data using the scaling formula:

' scaled value

x;; : observations or row vectors of j parameter, where j € P
Ty; © mean value of j* parameter, where j € P

o; : standard variance for j* parameter, where j € P

. Identify principal components and generate weighted formula for clus-

tering

Next step involves applying principal component analysis (PCA) to
decide the number of clusters that may exist in each for the groups
{Group-A, Group-B, Group-C}. The needed number of clusters is
selected by a commonly-used statistic testing index viz., cumulative
proportion of variance explained. Usually, when this index is around
80%, that number of clusters is the appropriate one. After deciding
how many clusters we need to separate at a broad level, we apply the
k-means clustering to see what security combinations should be dis-
tributed to which cluster. After receiving the k-means outcome, we
pick the security combination which best represents the property of a
specific cluster based on: (a) our knowledge of the properties of each
cluster, and (b) the mean values from the PCA result and the security
combinations that are contained in each cluster. The formula for each
potential cluster can be as below:

Zi1 = Q11 Tin + Q12 - Tig + -+ P1p - Ty, (2)
Zig = Q21 Ti1 + oo - Tig + -+ Pop - Ty (3)
Zip = Gp1 - Tit + Pp2 - Tig + -+ pp - Tip (4)
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eigen vectors perpendicular to each other
¢ : eigen vectors that make covariance matrix have length 1
Z;p © value of element

3. Calculate the weight value for data elements

Once we have the principal component formula, we need to calculate
the value of weight ¢ of every element. This is an optimization problem
to calculate the weight ¢:

2
) IS¢
maximize ¢ — AT
P11, ,Pp1 n; ;¢Jl ij
(5)
p
subject to Z gb?l =1.
j=1

Figure 6 shows our results for principal components of Group-A. Every
column is now categorized as per metric value similarity. For example,
PC1 might have all schemes with maximum CPU consumption, PC2
might represent all schemes with maximum network bandwidth, and so
on. Similarly, principal component analysis is generated for Group-B
and Group-C.

PC1 PC2 PC3 PC4 PC5 PC6
0.41360938 0.100293698 0.092052776 0.09619145 0.12976439 -0.20270480
0.36011693 0.135860875 0.379974741 0.15717643 0.19895004 0.41228436
0.34665052 0.014556344  -0.483856615 -0.09589430 0.21425282 0.30167744
0.41213841 0.094629048  -0.008309101 0.04835103 0.05232809 -0.78472538
0.36602790 0.139084453 0.363904173 0.14463286 0.17486990 0.20424488
0.28722876  -0.012811214  -0.615630188 -0.17073142 0.15632095 0.10162907

Figure 6: Group-A principal component raw results

4. Identify number of clusters needed per group

The number of clusters that need to be generated per group can next
be calculated using proportion of variance explained (PVE). We apply
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the following on the dataset:

p

Z\/ar (X,) = Z% ' a:fj (6)

The PVE result for each group is shown in Figures 7, 8, and 9. Ana-
lyzing Group-A PVE in Figure 7 indicates that 89.1% (~90%) of the
schemes in this group can be taken into consideration if we use three
clusters. Any higher cluster count would provide only trivial advan-
tage. For Group-B, the PVE in Figure 8 suggests taking four clusters
to encompass 90.4% (~90%) of the schemes. Similarly, Group-C can
benefit by housing four clusters, i.e., 90.6% (~90%) of the schemes.
Hence, we accept 3 clusters in Group-A, and 4 clusters each in Group-
B and Group-C, as shown in Figure 10. We remark that Figure 10
illustrates a proof-of-concept method to create various categories of se-
curity schemes, and for an optimal scheme to flexibly customize as per
an application’s needs. In the specific case of Figure 10, the cluster
formation is based on our proof-of-concept implementation with wolf-
SSL [29] for crypto and authentication functions with ~200 security
schemes. We choose wolfSSL owing to its lightweight SSL/TLS li-
braries that are small, portable and standardized for development with
embedded system devices. However, our security framework can work
with other categories of security schemes based on any other choice of
implementation stacks (e.g., OpenSSL) suitable to cater to any appli-
cation needs.

[A] 0.493 0.766 0.891 0.966 0.989 0.996 0.998 0.999 1.000 1.000 1.000

Figure 7: Group-A proportion of variance explained results. Forming 3 clusters is sufficient
to include ~90% of the schemes

[B] 0.424 0.769 0.861 0.904 0.946 0.967 0.982 0.992 0.995 0.997 0.998 0.999 0.999 0.999 0.999 0.999

Figure 8: Group-B proportion of variance explained results. Forming 4 clusters is sufficient
to include ~90% of the schemes
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[C] 0.495 0.698 0.825 0.906 0.961 0.981 0.991 0.995 0.998 1.000 1.000

Figure 9: Group-C proportion of variance explained results. Forming 3 clusters is sufficient

to include ~90% of the schemes
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Figure 10: Number of clusters per group, calculated using proportion of variance explained

in Step 4

5. Final clustering

Once we have decided on number of clusters in each group, we can use
k-means clustering by calculating Euclidean distance for each observa-
tion. This can be done by applying the following:

W (C) =

where

b
|Cr|

DO (i —wy)’

i,4'eC, j=1

(7)
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W(Cy) : within-cluster variation, square Euclidean distance

Ch : the amount by which observations within a cluster differ from
each other

x;; — xy; : the distance between different observations, Euclidean
distance

We want to cluster together the observations with minimum distance
between them. Hence, we find the minimum distance in Equation 7:

r%inimize {; w (C’k)} . (8)

1o,CK
where

Ch : set of observations in cluster &

In essence, clustering allows us to reduce the overhead of relying on use
of hundreds of redundant security schemes in our database, and instead finds
the best alternative from a smaller scope containing equivalent schemes. We
are able to choose the most optimal cluster in each group, hence allowing a
small subset of schemes to be used by our middleware in an Online Phase
(i.e., in real-time application use context).

5.1.2. Online Phase

For the online phase, the non-redundant schemes shortlisted in the offline
phase can be accessed using a set of RESTful APIs by our middleware inte-
gration on an IoT device, gateway, or a core cloud. Figure 11 shows a tabular
listing of available APIs for use in our middleware. The Optimal Scheme De-
cider acts as our decision making engine which finds the optimal security
scheme for a given application use case and resource awareness. The metrics
for resource awareness that we consider are: Type of Data, Estimated size of
data transfer, Energy available to the device, Computation power available,
Memory available, and Session Resumption requirement.

The options chosen by the user are each internally mapped to a value
in the range {1,2,---,10}. The mapping has been done by surveying many
devices ranging from lower end of the spectrum in the metric to the higher
end. For example, CPU frequency of over 750 MHz can be safely categorized
as a Level-4 device, considering it is higher than most IoT devices. A full
description of the acceptable parameter values can be viewed in Figure 12.
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URL HTTP Verb Parameters Response Description
{data_type: string,

data_size: integer, Returns a list of loT devices having specified

fapifiot GET energy. integer,  |[{device_id1: integer}, parameters. This request can be made by
cpu: integer, {device_id2: integer}] gateway to obtain devices matching a certain

memory. integer, specification

resumption: boolean}

{data_type: string,

data_size: integer, Returns all data and device metrics for loT

fapifiot:device_id GET 2 ensrgx integer, device with given Device ID. Th[s reques?. can be
cpu: integer, made by gateway to obtain a specified loT

memory: integer, device's metrics

resumption: boolean}

{data_type: string,

data_size: integer, Posts the metrics of an loT device to the gateway

p {status: string, £ ¥
¢ e energy:. integer, : s0 as to receive the optimal scheme for the
fapi/gatewayl:device_id POST cpu: integer, 5 chem‘e"séfnpr?é) application. The response also contains a secret

memory: integer,
resumption: boolean}

as proof of registration with the gateway

Deletes the loT device from Gateway record.
Can be used to revoke secure communication
lapi/gateway/:device_id/delete| DELETE {secret: string} {status: string} with gateway. Only needed if changing
application/requirements. The secret ensures

identity of the loT device

Posts the Gateway's D to the core cloud to

. P " {status: string, register as a connection. This request can be
lapi/cloud/register/gateway POST |{gateway_id: integer} secret: string} made by gateway. The response contains a
secret as proof of registration

Posts an loT Device's ID to the core cloud to

fapi/cloud/registerfiot POST {device_id: integer} {status: string} register as a connection. This request can be
made by gateway

Deletes the loT device from core record. Only

lapi/cloud/:device_id/delete | DELETE {secret: string} {status: string} needed if changing application/requirements.

The secret ensures identity of the gateway

Figure 11: A subset of the RESTful APIs available during Online Phase; Connected
devices in the IoT system may invoke the API methods to collect required target device
or parameter information

5.2. Logic Implementation

Once the internal map has been generated as detailed above, the Optimal
Scheme Decider algorithm shown in Algorithm 2 is invoked to filter good
candidate schemes from the cluster chosen in the Offline Phase. We can see
the various filters applied in the algorithm to narrow down to a single security
scheme from the input metrics. We decided to choose Stream Cipher as the
preferred option over Block Cipher for all multimedia applications, as well as
for general applications with smaller payloads. For further filtering, we have
tied DTLS protocol with STREAM ciphers, and TLS protocol with BLOCK
ciphers. This is because utilizing TLS with STREAM ciphers or DTLS with
BLOCK ciphers would essentially undo the benefits offered by the protocol
or cipher.
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Parameter |Acceptable Values Description
"Multimedia”,
Data Type "Text",
"Other"
Data Size (size in bytes) -
g/ Very Low Energy Capacity
2 Low Energy Capacity
Energy 3 Moderate Energy Capacity
4 High Energy Capacity
5 Very High Energy Capacity
1 [0 MHz - 75 MHz)
2 [75 MHz - 250 MHz)
CPU 3 [250 MHz - 750 MHz)
4 [750 MHz - 1.5 GHz)
5 [1.5 GHz+]
1 [0 KB - 100 KB)
2 [100 KB - 10 MB)
Memory 3 [10 MB - 250 MB)
4 [250 MB - 1 GB)
5 [1 GB+]
; true Supported
Resumption false Not Supported

Figure 12: RESTful API Parameter Values. The acceptable JSON values are mapped
internally as noted in the Description column

In the algorithm, once the data type and size have been used to fil-
ter according to protocol and cipher type, subsequent decisions are based
on the device specifications. Priority is given to energy level of the device
in question, since IoT-based applications are almost invariably limited by
energy consumption or availability to securely handle data. Hence, a low
energy availability and extremely-high security scheme will not be combined
together. Three major threshold variables have been set up to make cer-
tain decisions, mapped on a scale of {1-10}. The threshold value to decide
whether the device has enough energy available to support complex schemes
can be set using the variable iotEnergyThreshold. E.g., a threshold of Level-/
implies any device with energy value below 4 is not to be handed a heavy se-
curity scheme. Similarly, lowCompMem Threshold & medCompMem Thresh-
old are used to filter low or medium security requirements. The best scheme
is picked based on the limiting value between available CPU and Memory.
For instance, a Level-2 CPU in conjunction with Level-9 Memory will still
be incapable of running high security schemes. The same would be true if
the CPU and Memory levels are reversed. Finally, the result is the choice of
scheme that gets used by the middleware to initiate a secure session.
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Algorithm 2: Optimal Security Scheme Decider

Data: Data to be transmitted, data

Data: Protocol to be used for transmission, protocol

Data: Cipher to be used for encryption, mac

Data: Energy Level classification of the device, energyLevel

Data: CPU level classification of the device, cpuLevel

Data: Memory level classification of the device, mem Level

Data: On a scale of 1-10, threshold used to decide low energy availability,
1ot EnergyThreshold

Data: On a scale of 1-10, threshold used to decide low memory/computation
availability, lowCompMemT hreshold

Data: On a scale of 1-10, threshold used to decide medium memory/computation
availability, medCompMemT hreshold

Result: The best security scheme is chosen

/* data. PACKET _SIZE in bits */
if data.TYPE = MULTIMEDIA or data.PACKET_SIZE < 128 then
protocol < DTLS
cipher. TYPE < STREAM
else
protocol < TLS
cipher. TYPE < BLOCK

end

if energyLevel < iotEnergyThreshold then
| Eliminate heavy encryption schemes
end

if min (ecpuLevel, memLevel) < lowCompMemThreshold then
| Choose low-level security scheme

else if min (cpuLevel, memLevel) < medCompMemThreshold then
| Choose medium-level security scheme

else
| Choose high-level security scheme

end
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6. Performance Evaluation

In this section, we compare the performance of various schemes accessible
on our middleware to randomly selected schemes. This allows us to check
the difference in impact caused by a better selection. Since the middleware
has multiple submodules capable of working independently, we perform our
middleware evaluation using two sets of experiments: (i) Validation of Inter-
mittent Security, and (ii) Validation of Resource-aware Security.

6.1. Intermittent Security Validation Results

Our first set of experiments aim to check the impact of utilizing the
middleware to switch from ephemeral, high security protocol schemes to using
static properties such as PSK for secure session. For this, we use a prototype
implementation of our middleware based on wolfSSL [29] within a GENI [30]
Cloud testbed as shown in Figure 13. Live video stream is supported using
OpenCV [31]. The application itself is built completely using C/C++, using
GCC compiler. Our implementation consists of a client and server prototype.
The server is hosted on core cloud and gateway, and listens for client requests
from gateway and [oT nodes. The client side of the system provides an
interactive interface where one can choose from five different levels of security.
The image representing the server side shows the server when DTLS-PSK
cipher scheme is being used. In general case, we choose and recommend the
static PSK scheme.

The first step for security association and communication initiation is
selection of the security protocols to be used. Our middleware supports
different kinds of protocols and allows switching between them. The possible
choices all select one of the options in each category. The categories include
Protocol, Authentication Scheme, Bulk Encryption Scheme, and Message
Authentication Code (MAC) algorithm. Our experiments account for: (i)
Memory Footprint, including number of memory allocations and total size
of allocation, and (ii) Time taken for security association, for initial session
establishment and session resumption scenario.

Figure 14(a) gives the graph generated by comparing different cipher
schemes. The schemes we compared are Datagram TLS (DTLS), and TLS.
The schemes were evaluated using Pre-shared Keys (PSKs) and certificates.
Likewise, Figure 14(b) shows how much memory allocation size it takes to
have the connection established. DTLS-PSK comes out to be low, by order
of millions. We can see that certificate generation takes more size. Hence,
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Figure 13: Testbed setup over the GENI Cloud Infrastructure

choosing PSK for the resumption can be quite an excellent choice. Even
better results are obtained using Static PSK, if high security is not critical
to the use case.

Figure 15 shows results for the connection and resumption time for the
four different schemes we compared in our experiments with our prototype
middleware. Even though using DTLS-certificate gives consistently low time
spent, we see that DTLS-PSK is the fastest scheme. DTLS can offer speed-
up of over a few hundred times, regardless of cases where there is a fresh
handshake or resumed session. Hence, our results show how useful Intermit-
tent security in IoT systems can be, all the while without compromising the
security, by allowing flexibility in configuration.

6.2. Resource-aware Security Validation Results

In our first set of experiments describe above, we established the useful-
ness of utilizing Session Resumption, as well as having the option to choose
from a few different security schemes. In our second set of experiments, we
aim to expand on our results and investigate our middleware’s ability to
form clusters from almost 200 security schemes. To test the offline phase
detailed in Section 5.1.1, we check validity of: (i) the clusters formed using
our method, (ii) the optimal cluster chosen, and (iii) whether limiting scope
is a safe and accurate way of choosing the optimal scheme.
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Figure 14: Memory footprint for different encryption schemes. Our chosen scheme utilizing
DTLS-PSK shows the most promising result in terms of memory consumption
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Figure 15: Time for connection vs. resumption for different encryption schemes. Our

chosen scheme DTLS-PSK has very fast connection, and the fastest reconnection, due to
Session Resumption support

In the offline phase, we attempted forming clusters to narrow down the
choices to a few viable ones. Following the logic and analysis described in
Section 3, the optimal clusters were formed. For our statistical threshold, the
within-cluster sum of squares ratio of at least 60% proves that the cluster
formed is valid and successful. Figures 16, 17, and 18 show the within-
cluster sum of square ratio for the optimum cluster chosen in Group-A, B
and C, respectively. As can be observed, the ratios 61.1%, 69.4%, and 62.1%
are generated, and hence, the clusters are successful. This increases the
certainty of optimal schemes being made available to be sifted through in
the online phase. The schemes in the chosen cluster for Group-A are shown
in Figure 19. Similarly, Group-B and Group-C have their own schemes for
their corresponding chosen cluster.
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Clustering vector:
2 4 6 810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66
1113111311133 1 33222111332 221331111

Within cluster sum of squares by cluster:
[A] 71.84645 17.85738 47.12641

(between_SS / total_SS = 61.1 %)

Figure 16: Within-cluster sum of squares for Group-A. Value of 61.1%(>60%) shows
successful clustering

Clustering vector:
1 3 5 7 91113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65
2 2 2 4 22 2 42 2 2 44433111222 44111 4442 22

Within cluster sum of squares by cluster:
[B] 42.004220 56.013587 4.281206 54.327632
(between_SS / total_SS = 69.4 %)

Figure 17: Within-cluster sum of squares for Group-B. Value of 69.4%(>60%) shows
successful clustering

Clustering vector:
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
2 2 2 42 2 2 4222 443331112 2233111444222

Within cluster sum of squares by cluster:
[C] 20.94528 46.51529 44.52632 21.46218
(between_SS / total_SS = 62.1 %)

Figure 18: Within-cluster sum of squares for Group-C. Value of 62.1%(>60%) shows
successful clustering

Figures 20, 21, and 22 show the selection of best cluster in each category,
as chosen by the Optimal Scheme Decider’s offline phase. We can see the
clusters in each group that are formed after normalization of the computation
index. The computation index is a compilation of the benchmark metrics
used for clustering and decision making. Each of the chosen clusters have
their advantages and disadvantages, which can be filtered in the online phase
by the Optimal Scheme Decider.

To verify that clustering and choosing a narrow scope is still able to
provide us an optimal scheme, a visual representation through Dendrogram
can be used. The dendrogram portrays the relationship between various
schemes in a group. As can be observed in Figure 23, multiple schemes in
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Figure 19: Chosen cluster’s security schemes categorized in Group-A

each group have siblings at the same level. This implies extreme similarities
in the sibling schemes, and an absence of considerable performance benefit.
This redundancy can be easily handled by randomly picking one of the leaves
in the dendrogram and discarding the other scheme.

Cluster 3 is chosen,
due to collectively
18 lowest bandwidth
usage, lowest CPU
usage, fastest
connection speed,
and data exchange
speed

B Bandwidth Usage
W Connect Time
BCPU Usage

B Data Receive Time

Normalized Value

# Data Transmission Time

Maximum Bandwidth Usage

Cluster 1 Cluster 2

Principal Components

Figure 20: Chosen cluster in Group-A, by the Optimal Scheme Decider

Finally, the online phase requires collecting software requirements for the
IoT-based application to be utilized. The current requirement collection
can be done by making an API call to /api/gateway/:device_id service
endpoint. The application user may send the required information using a
parameter list to the gateway. The response from these queries help form the
metrics that are later used by the Optimal Scheme Decider. In our related set
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Figure 21: Chosen cluster in Group-B, by the Optimal Scheme Decider

of experiments, we tested the Optimal Scheme Decider by using random val-
ues as input requirements to check the scheme chosen by our middleware. As
expected, for a low-security and low-resource multimedia application, PSK-
CHACHA20 combination was found to be the optimal choice. To analyze the
trade-off characteristics for various use-cases of IoT-based applications, we
utilize radar diagrams for visual representation of the results. For instance,
as shown in Figure 24(a), PSK-CHACHA20 scheme demands substantial
memory resources, and exhibits fast re/connection speed but at the expense
of a lower level of security.

Similarly, results were analyzed to highlight a contrasting case. The new
requirement priority being high security on a low-resource multimedia ap-
plication, Epehemeral (DHE) PSK-CHACHA20 combination was found to
be the optimal choice. A radar diagram in Figure 24(b) shows the security
mapping of the same. In this case, security was found to be the most impor-
tant criteria, even if at the expense of re/connection speed. Hence, public
key cryptography scheme was chosen for key exchange, along with a highly
reliable integrity check MAC algorithm (POLY1305).

In many other experiment results, we observed the radar diagram to
visualize the trade-offs and analyze when session resumption is useful, and
when it is not. For instance, Figure 25(a) shows the specifications for a
chosen scheme for an application requiring high reconnection speed through

32



672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

Cluster 11 is chosen,
due to collectively
18 lowest bandwidth
usage, lowest CPU
connection speed,
14
312
g i y
S 08 |
0.6
0.4
0.2

and data exchange
speed

B Bandwidth Usage
W Connect Time

BCPU Usage

8 Data Receive Time
® Data Transmission Time

usage, fastest
Maximum Bandwlidth Usage
o

Cluster 8 Cluster 9 Cluster 10

Principal Components

Figure 22: Chosen cluster in Group-C, by the Optimal Scheme Decider

session resumption, having lower memory and security requirements. This
application appears to be a good candidate for ‘austere-edge‘ (constrained
network-edge with limited resource availability) IoT-based application use-
cases. Contrasting this application to a ‘smart edge’ (unconstrained network-
edge with enterprise data center resource availability), Figure 25(b) shows
the corresponding application’s chosen scheme trade-off specifications. We
can observe that a very high level of security can be obtained at expense of
faster reconnection.

Similarly, for another austere-edge loT-based application, chosen scheme’s
specifications are visualized in Figure 26(a). Very high reconnection speed
appears to be a requirement, hence speed is preferred over security. And
finally, for a similar application without session resumption support, the
chosen scheme specifications can be visualized in Figure 26(b). This applica-
tion represents another ‘smart-edge’ IoT-based application, as an all-rounded
security scheme is needed, with a higher priority for security and initial con-
nection speed.
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Figure 24: Radar representation of chosen schemes in two contrasting IoT applications

34



Secure Secure
4 5
3 4
3
28

Transfer Speed Memory Transfer Speed Memory

2

1

(1]
Ld

Reconnection Speed Connection Speed i )
Reconnection Speed Connection Speed
(a) Scheme TLS-DHE-PSK-AES256-GCM-  (b) Scheme TLS-DHE-PSK-AES256-GCM-
SHA384 w/ Session Resumption SHAS384 w/o Session Resumption

Figure 25: Radar representation of two very similar schemes, chosen for ‘Austere-Edge’

and ‘Smart-Edge’ respectively. Presence/Absence of resumption support allows different
use-cases
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Figure 26: Radar representation of two more schemes, chosen for ‘Austere-Edge’ and

‘Smart-Edge’ respectively. In certain cases, lack of resumption might prove more useful,
as shown in (b)
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7. Conclusion

In this paper, we developed a flexible IoT security middleware that can be
used in end-to-end cloud-fog communications involving smart devices at the
network-edge and a cloud-hosted application. The end-to-end feature is pos-
sible due to the middleware’s task of translating protocols between two dif-
ferent network segments (i.e., cloud-to-gateway and gateway-to-edge), hence
resulting in full security without being limited by protocol compatibility be-
tween the networks. Our middleware features two major modules, the first of
which is the ‘Intermittent Security’ module that offers quick re-connections
to aid in situations of unreliable network conditions within cloud-fog commu-
nication platforms. The second module handles ‘Flexibile Security’, which
provides flexibility in choosing an optimal security scheme that is suitable for
securing an IoT-based application depending upon user’s requirements and
edge-resource constraints.

Our results from testbed experiments with a prototype implementation
of our middleware validate its benefits. We showed that whenever feasible
and acceptable, the use of static properties such as Static PSK can notably
speed-up secure communications. Static PSKs in prior literature have not re-
ceived much attention. However, our work demonstrated that they could be
a valuable tool for low-resource, moderate-security applications within IoT
systems in both ‘austere’ and ‘smart’ network-edges, even for unreliable net-
works with frequent disconnections. Our investigations have also shown that
it is possible to find equivalence amongst various kinds of security schemes
available, and there is potential to have real-time advice to select the opti-
mal scheme for a given set of constraints in an IoT application. Towards this
end, we have developed an optimal scheme decider which is capable of using
a security scheme database to find and use the optimal security scheme for a
given set of constraints. This has been done by using a new set of RESTful
APIs that we created, which allows our middleware to collect information
about data and devices involved in the network. We also used supervised
machine learning to narrow down on subsets of appropriate security schemes
by considering different trade-offs involved in IoT-applications.

Future work can involve extending our middleware with a transient repu-
tation scheme that can collect and use short-term knowledge about the con-
necting devices to build a short-lived reputation. This would alleviate the
need to maintain trust states in the network-edge amongst the IoT devices.

36



724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

751

752

753

754

Acknowledgement

This material is based upon work supported by the National Science

Foundation under Award Number: CNS-1647182. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

References

[1]

2]

IoT Trends - Tech Insider, 2016. http://www.businessinsider.com/
top-internet-of-things-trends-2016-1.

J. Gillis, P. Calyam, O. Apperson, S. Ahmad, “Panacea’s Cloud:
Augmented reality for mass casualty disaster incident triage and co-
ordination”, TEEE Annual Consumer Communications & Networking
Conference (CCNC) (2016).

J. Gillis, P. Calyam, A. Bartels, M. Popescu, S. Barnes, J. Doty, D. Hig-
bee, S. Ahmad, “Panacea’s Glass: Mobile Cloud Framework for Com-
munication in Mass Casualty Disaster Triage”, IEEE International Con-
ference on Mobile Cloud Computing, Services, and Engineering (2015).

J. Burchard, D. Chemodanov, J. Gillis, P. Calyam, “Wireless Mesh
networking Protocol for sustained throughput in Edge Computing”, In-
ternational Conference on Computing, Networking and Communications

(ICNC) (2017).

M. Rantz, M. Skubic, C. Abbott, C. Galambos, M. Popescu, J. Keller,
E. Stone, J. Back, S. J. Miller, G. F. Petroski, “Automated in-home fall

risk assessment and detection sensor system for elders”, The Gerontol-
ogist 55 (2015) S78-S87.

P. Calyam, A. Mishra, R. Bazan Antequera, D. Chemodanov, A. Berry-
man, K. Zhu, C. Abbott, M. Skubic, “Synchronous Big Data Analytics
for Personalized and Remote Physical Therapy”, Elsevier Pervasive and
Mobile Computing (2015).

J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions”, Future
generation computer systems 29 (2013) 1645-1660.

37



756

757

758

759

760

761

762

763

764

765

766

767

769

770

771

772

773

774

775

776

e

778

779

780

781

782

783

784

785

786

787

8]

[10]

[11]

[12]

[13]

[15]

M. Ali, N. Ono, M. Kaysar, Z. Shamszaman, T. Pham, F. Gao, K.
Griffin, A. Mileo, “Real-time data analytics and event detection for IoT-
enabled communication systems”, Web Semantics: Science, Services and
Agents on the World Wide Web 42 (2017) 19-37.

C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, “Sensing as a
service model for smart cities supported by internet of things”, Trans-
actions on Emerging Telecommunications Technologies 25 (2014) 81-93.

S. Sicari, A. Rizzardi, L. Grieco, A. Coen-Porisini, “Security, privacy
and trust in Internet of Things: The road ahead”, Computer Networks
76 (2015) 146-164.

R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, M. Rossi,
“Secure Communication for Smart [oT Objects: Protocol Stacks, Use
Cases and Practical Examples”, IEEE World of Wireless, Mobile and
Multimedia Networks (WoWMoM) (2012).

X. S. Huber Flores, V. Kostakos, A. Y. Ding, P. Nurmi, S. Tarkoma,
P. Hui, Y. Li, “Large-scale Offloading in the Internet of Things”, in:
International Conference on Pervasive Computing and Communications
Workshops, PerCom WS.

H. Khemissa, D. Tandjaoui, “A novel lightweight authentication scheme
for heterogeneous wireless sensor networks in the context of Internet
of Things”, in: Wireless Telecommunications Symposium, WTS 2016,
London, United Kingdom, April 18-20, 2016, pp. 1-6.

M. Turkanovi, B. Brumen, M. HIbl, “A novel user authentication and
key agreement scheme for heterogeneous ad hoc wireless sensor networks,
based on the Internet of Things notion”, Ad Hoc Networks 20 (2014)
96 — 112.

Md. A. Igbal, M. Bayoumi, “Secure End-to-End Key Establishment
Protocol for Resource-Constrained Healthcare Sensors in the Context of

[oT”, International Conference on High Performance Computing and
Simulation (HPCS) (2016).

C. Stergiou, K. E. Psannis, B. G. Kim, B. Gupta, “Secure integration
of IoT and Cloud Computing”, Future Generation Computer Systems
(2016).

38



789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

[17]

[18]

[21]

[22]

S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen,
H. Tenhunen, J. Isoaho, “Session Resumption-Based End-to-FEnd Secu-
rity for Healthcare Internet-of-Things”, IEEE International Conference
on Computer and Information Technology (2015) 581-588.

S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen, H.
Tenhunen, J. Isoaho, “End-to-end security scheme for mobility enabled
healthcare Internet of Things”, Future Generation Computer Systems
64 (2016) 108 — 124.

R. Hummen, H. Wirtz, J. H. Ziegeldorf, J. Hiller, K. Wehrle, “Tailoring
End-to-End IP Security Protocols to the Internet of Things”, 21st IEEE
International Conference on Network Protocols (ICNP) (2013).

C. Huth, J. Zibuschka, P. Duplys, T. Guneysu, “Securing Systems on
the Internet of Things via Physical Properties of Devices and Communi-
cations”, Systems Conference (SysCon), 9th Annual IEEE International
(2015).

R. Amin, G. P. Biswas, “A secure light weight scheme for user au-
thentication and key agreement in multi-gateway based wireless sensor
networks”, Ad Hoc Networks 36, Part 1 (2016) 58 — 80.

G. Piro, G. Boggia, L. A. Grieco, “A standard compliant security frame-
work for IEEE 802.15.4 networks”, TEEE World Forum on Internet of
Things (WF-IoT) (2014).

B. Mukherjee, R. Neupane, P. Calyam, “End-to-End IoT Security Mid-
dleware for Cloud-Fog Communication”, IEEE Cyber Security and
Cloud Computing (CSCloud) (2017).

P. Syverson, “A Taxonomy of Replay Attacks [cryptographic proto-
cols]”, Computer Security Foundations Workshop VII. (1994).

F. C. Kuo, H. Tschofenig, F. Meyer, X. Fu, “Comparison Studies be-
tween Pre-Shared and Public Key Exchange Mechanisms for Transport
Layer Security”, IEEE International Conference on Computer Commu-
nications. Proceedings (INFOCOM) (2006).

39



819

820

821

822

823

824

825

826

827

828

829

830

831

[26] J. A. Dev, “Usage of Botnets for High Speed MD5 Hash Cracking”, In-
ternational Conference on Innovative Computing Technology (INTECH)
(2013).

27] D. Lee, “Hash Function Vulnerability Index and Hash Chain Attacks”,
IEEE Workshop on Secure Network Protocols, NPSec (2007).

[28] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, “The
first collision for full SHA-1" Accessed June 2017. https://shattered.
io/static/shattered.pdf.

[29] wolfSSL SSL library, Accessed June 2017. https://www.wolfssl.com/
wolfSSL/Home.html.

[30] NSF-supported GENI Cloud Infrastructure, Accessed June 2017. https:
//www.geni.net.

[31] OpenCV library, Accessed June 2017. http://opencv.org.

Bidyut Mukherjee received his MS degree in Computer
Science from University of Missouri-Columbia in 2017, and
BE degree in Computer Technology from RTM Nagpur Uni-
versity, India in 2015. His current research interests in-
clude: Cloud Computing, Computer Networking, Internet
of Things, and Cyber Security. He is a student member of
IEEE.

Songjie Wang is currently a graduate student pursuing MS
degree in the Department of Computer Science at the Uni-
versity of Missouri-Columbia. His current research interests
include: Cloud Computing, Internet of Things and Data Sci-
ence.

40



n
&
A2

Wenyi Lu received her MS degree in Statistics from Uni-
versity of Missouri-Columbia in 2015. Currently, she is a
PhD student in the Department of Computer Science at MU.
Her current research interests include: Serious-game Design
and Development, Deep-Learning analytics and Data Min-
ing technologies.

Roshan Lal Neupane received his BE degree in Computer
Science and Engineering from Visvesvaraya Technological
University, Karnataka, India. He is currently a graduate
student at University of Missouri-Columbia, pursuing MS in
Computer Science. Cloud Computing, Computer Network-
ing, Internet of Things, and Cyber Security. He is a student
member of IEEE.

Daniel Dunn received his BS degree in Computer Science
from the University of Missouri-Columbia in 2017. He re-
mains a student there with the expectation to receive his
MS degree in Computer Science in 2018 as a student in the
5-year BS/MS Computer Science Fast Track Program. He

is a member and the Vice President of Upsilon Pi Epsilon Computer Science

Honors Society. His current research focus is in Cyber Security.

Computing.

Yijie Ren is now earning her MS degree in Computer Sci-
ence at University of Missouri-Columbia. She also received
her BS Degree in Computer Science at MU, and BE Degree
in Software Engineering at Taiyuan University in China. Her
research interests include: Big Data Analytics and Cloud

41



Qi Su received her bachelor’s degree in Communications
from University of Missouri-Columbia in 2014. She is cur-
rently a MS student in the Department of Computer Science
at MU. Her current research interests include: Cloud Com-
puting and Bioinformatics.

Prasad Calyam received his MS and PhD degrees from
the Department of Electrical and Computer Engineering at
The Ohio State University in 2002 and 2007, respectively.
He is currently an Assistant Professor in the Department of
Computer Science at University of Missouri-Columbia. Pre-
viously, he was a Research Director at the Ohio Supercom-
puter Center. His research interests include: Distributed and Cloud comput-

ing, Computer Networking, and Cyber Security. He is a Senior Member of
IEEE.

42



