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Abstract—1oT (Internet of Things) devices such as sensors
have been actively used in ‘fogs’ to provide critical data
during e.g., disaster response scenarios or in-home healthcare.
Since IoT devices typically operate in resource-constrained
computing environments at the network-edge, data transfer
performance to the cloud as well as end-to-end security have
to be robust and customizable. In this paper, we present
the design and implementation of a middleware featuring
“intermittent” and “flexible” end-to-end security for cloud-fog
communications. Intermittent security copes with unreliable
network connections, and flexibility is achieved through
security configurations that are tailored to application needs.
Our experiment results show how our middleware that
leverages static pre-shared keys forms a promising solution for
delivering light-weight, fast and resource-aware security for a
variety of IoT-based applications.

IoT Security Middleware, Mobile Edge Cloud, Cloud-Fog
Communication, Secure IoT Applications

I. INTRODUCTION

Internet of Things (IoT) systems typically comprise of a
network of connected devices with limited computation and
networking capacity. The term “thing” here can constitute
any smart device ranging from sensor devices in automobiles,
bio-chemical sensing devices in homeland security, to heart
monitoring devices inside of a human body. In fact, any
object that has the ability to collect and transfer data across
the network can be a part of the IoT system.

IoT devices are used in various fields e.g., Geo Sensors
collect all sorts of geographical information related to soil,
forest terrains, and weather and transmit related data sets
to nearby fog computing platforms for aggregation and
analysis/visualization. They can also provide critical data
during e.g., disaster response scenarios or in-home health-
care. As mentioned in [1], emerging IoT trends are set to
completely change the way businesses, governments, and
consumers interact with each other, and transact in a data-
driven economy.

Since IoT devices typically operate in resource-constrained
(computing, memory, storage) environments at the network-
edge, data transfer performance to the cloud as well as end-
to-end security have to be robust and customizable. Consider
the use-case of disaster response systems such as [2]; the
edge network here comprising of IoT devices and network
gateways to the cloud (i.e., location of abundant resources)
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could be highly unstable due to physical infrastructure dam-
age or lossy edge links. On the other end of the IoT use-
case spectrum, the fog nodes might be used for providing
ElderCare-as-a-Service, as in [3] that requires significant
amount of resources to handle the big data generated from
patient homes. In this case, security needs to be configured
smartly for data confidentiality and integrity, even if data
transfer speeds are affected due to security overhead. Thus,
IoT-based applications can have extremely broad use-cases,
and ad-hoc implementations may not be suitable to address
the wide-ranging IoT-based application security needs.

In this paper, we address the above challenges and propose
the design and implementation of an end-to-end IoT secu-
rity middleware for cloud-fog communication that can be
suitably used with most IoT-based applications. Our goal is
to primarily secure the network located at the user fogs, i.e.,
where the IoT devices are located. However, we also seek to
maintain security compatibility with an existing core cloud
network using System Level or Application Level deployment
at a given network edge location. The core features of our
end-to-end IoT security middleware, and the main paper
contributions are:

o Intermittent Security: Our middleware uses a Session
Resumption concept in order to reuse encrypted sessions
from recent past, if a recently disconnected device wants
to resume a prior connection that was interrupted due
to an unreliable network connection.

o Flexible Security: Our middleware allows users to flex-
ibly configure required security based on the appli-
cation resource-awareness versus blindly following a
rigid security configuration. This enables the user to
thus configure higher security or prioritize faster data
transfer.

The remainder of the paper is as follows: Section II
discusses related works. Section III describes our end-to-
end IoT security middleware scheme. Section IV presents
our performance evaluation and findings from testbed exper-
iments. Section V concludes the paper.

II. RELATED WORK

IoT-based application deployment is a relatively new trend,
however methods to secure networked IoT devices have
been explored in the past. Work in [4] discusses security
procedures for constrained IoT devices. An architecture to of-
fload computation intensive tasks to the gateway is proposed,
which helps in reducing the cost of security encryptions
at the IoT node side. However, offloading at a large scale
is a tedious task as mentioned in [5]. Similarly, in [6], a
light-weight authentication scheme is used in the context
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of IoT systems. In comparison, our work investigates a
security middleware which makes use of static Pre-Shared
Keys (PSKs) that is different from the multi-phase encryption
and decryption used earlier works. We phase down to just one
iteration for authentication and thus our approach reduces
security overhead and is less time consuming.

Furthermore, [7] is a closely related finding. It provides a
secure end-to-end protocol for resource-constrained devices,
especially in context of health-care sensors. Their work uses
same security functionality as unconstrained devices, but
without computationally intensive operations. Heavy compu-
tation at constrained devices are offloaded to the neighboring
trusted nodes/devices. The session key created, however, is
ephemeral. They propose a selection criteria based on trust
level to select the assisting nodes. The protocol is compatible
with other end-to-end security protocols. Our work builds
on top of this work, and uses an easier, yet effective key
management scheme. Specifically, we create static keys
which are not short-lived, reducing the key exchange cost
and time significantly.

A comprehensive session resumption mechanism is dis-
cussed in [8]. The work uses HIP DEX i.e., Host Identity
Protocol Diet EXchange which provides secured end-to-end
connections in IoT systems. Perfect forward secrecy and non-
repudiation properties of HIP result in significantly decreased
protocol handshake overhead and reduced handshake run-
time. Storage of session state after session tear-down enables
efficient re-authentication and re-establishment of a secure
payload channel in an abbreviated session resumption hand-
shake. Our work utilizes the concept of session resumption
but makes a few changes for broader compatibility. Instead
of HIP, we utilize Device ID, which can additionally act as
a static unique device property.

Authors in [9] give a standard security compliant frame-
work to secure the IEEE 802.15.4 networks in low power
lossy network (LLNs). The framework supports five different
levels of security with their proposed security configurations
(i.e., Fully Secured, Unsecured, Partial Secured, Hybrid Se-
cured and Flexible Secured). Flexible secured configuration
has the potential to change the level of security based on
requirements when needed, and shifts from full secured state
to hybrid secured state. However, the approach is not quite
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scalable since re-entry of device request is not supported.
This is a gap that can be filled by the presence of a flexible,
dynamic security middleware to act as an interface for fast or
secure encrypted communication. Hence, our work takes the
security framework a step further towards a more practical
layer for use within IoT-based applications.

II1. IoT END-TO-END SECURITY SCHEME

I Gatoway
MAC Encryption | . | .

Algor@ Ciph Q Authenticator Flexlb_le
Security

I (D)TLS Module |=

=

o

/ \ 2

. <

Session Session Session Intermlt_tent &)

Serializer Resumer Verifier Security |®
Module
10T Node

*Recommended. over Certificates

Fig. 2. End-to-End IoT Security Middleware Module Diagram

A. Overview

As mentioned earlier, our work closely follows the idea of
flexible security framework described in [9]. We build upon
the previous framework by adapting their implementation for
our core features suited for a variety of application use cases.

Figure 1 illustrates a physical infrastructure perspective
of our middleware in action. The infrastructure primarily
constitutes of a core cloud infrastructure, a gateway, and sev-
eral edge IoT devices. The core cloud has a communication
channel with gateways at the edge. The edge gateways form
an interface to the network for the IoT devices. Parts of
the primary middleware are installed on both the gateway
and the fog IoT devices. The fog network can constitute



any number or type of IoT device, such as heart monitor,
beacon, geo sensor, etc. The primary middleware allows
secure and fast data transfer between the sensor devices
and the gateway, using security schemes chosen through our
“flexible security” module, and ensuring robustness using the
“intermittent security” feature to accommodate frequent dis-
connections. This is possible because the middleware stores
and tracks sessions, certificates, or keys, between both the
fog and the gateway. Once data has been securely transferred
to the gateway, it handles the translation of protocols to
allow compatibility between the core cloud protocols and the
IoT protocols. Optionally, secondary middleware can exist
between the gateway and the core cloud to provide flexibility
and robustness, if needed. There is a key benefit of having
this setup. The presence of intermediate gateways allows
for decoupling of services and protocols between the cloud-
gateway and gateway-iot subnets, essentially paving way for
end-to-end security via our intermediate middleware. Our
model consists of a middleware in the core cloud network
side, and another middleware at the fog network side. Each
middleware consists of a server-client pair interacting with
just each other. At the gateway, the client of cloud inter-
acts with the server of edge, allowing end-to-end secured
communication. The middleware supports flexible security
by allowing different protocols for individual nodes in the
fog network, in addition to being ready to use static PSKs for
quick encryption setup, and support for intermittent security
through session resumption.

A modular diagram of our proposed middleware is shown
in Figure 2. The involved devices keep track of (D)TLS
sessions, PSKs, and the Device IDs. The security association
occurs first by letting the Intermittent Security module try
and resume a past connection, by first verifying session ex-
istence and validity. If the resumption fails, Flexible Security
module acts as an interface to allow configuration of required
security schemes. These two modules in conjunction form
the middleware.

Our middleware allows flexibility of security through
various available protocols. The reasoning behind providing
flexibility is because all applications and devices are not built
with same level of security in mind. There is a trade-off
between security and speed when it comes to a preset of a
security protocol. High level of security is usually desired,
but not always needed. Based on the application, it might
be detrimental to have full-fledged security. For instance,
if an edge beacon (based on e.g., iBeacon technology)
is transmitting confidential medical information, the data
security is a major priority. However, if the same beacon
is to be reused for emergency medical triage, the priority for
speed and low power consumption goes up, at the expense
of high security.

In practical IoT-based deployments, the middleware can
be installed at various levels, including System Level and
Application Level. A System Level installation could in-
volve integrating the features of the middleware into the
Operating System services of the device, ideally by the
device manufacturer or software developer. This approach
allows an application developer to incorporate the features
of the middleware for customization by users. On the other
hand, Application Level installation can allow an application

developer to directly integrate the middleware features into
the application logic. This approach could be useful if full
device control is not available at the Application Level.

B. Intermittent Security

Intermittent security utilizes session resumption to quickly
bring a disconnected device back in the network when next
needed. This concept closely follows the ideas proposed
in [8], and modifies a few factors. Our middleware imple-
ments intermittent security using “Device ID”, instead of
Host Identity Protocol (HIP). This allows compatibility with
a broader range of device types. The device IDs of the edge
nodes are managed by the nearest hop gateway. (D)TLS
sessions are stored by the devices on disconnection for future
use. If such a recently disconnected edge node attempts to
make a connection with the gateway, the gateway uses the
client Device IDs to determine the session to resume for
that requesting node. This scheme allows security handshake
steps and time to be minimized, and the data to be transmitted
can still successfully be transferred, in intermittent chunks.

A possible major concern in a session resumption imple-
mentation is the possibility of Replay Attacks [10]. Given
that the serialized sessions are tied to the property of the
device, i.e, the Device ID, replaying using the same session
is made extremely difficult by any malicious device, almost
certainly having a different Device ID. To prevent an active
session from being replayed by a spoofing device, a simple
flag is sufficient to block such replay requests.
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Data Encryption is commonly done using keys established
through Public Key Cryptography (PKC). Instead of using
PKC, our middleware chooses to go with static elements
such as Static Pre-shared Key (PSK) or Certificates. This
is because PKC can be quite slow, in addition to being
intensive in terms of time, computation, bandwidth, and
memory resources, [11]. Despite lacking in nonce and en-
tropy compared to ephemeral schemes, static PSKs still are
capable of providing a reasonable level of encryption using
the user’s choice of cipher, such as block or stream ciphers.



TABLE I
Different security schemes for flexible security

Security Scheme Protocol |Authentication| Encryption MAC Description
DTLS_PSK_WITH_.CHACHA20_SHA256 DTLS Static PSK ChaCha20 |SHA2(256) Very fast, secure. Excellent for secure video streaming
DTLS_-DHE_WITH-NULL_SHA384 DTLS Certificate - SHA2(384) Fast scheme, high security
DTLS_DHE_PSK_WITH_3DES_EDE_SHA | DTLS PSK 3DES (EDE) SHAL1 Fast, but risk of integrity loss due to SHAI.
TLS_PSK_WITH_AES_128_CBC_SHA TLS Static PSK | AES128(CBC)| SHAI Fast, highly secure, suitable for moderately heavy data
TLS_PSK_-WITH_CHACHA20_POLY 1305 TLS Static PSK ChaCha20 |POLY1305 Fast, highly secure, suitable for quick bulk data transfer
TLS_ECDHE_WITH_AES_256_GCM_SHA384| TLS Certificate  |AES256(GCM)|SHA?2(384)|Very high security, suitable for confidential data on a reliable network

Hence, it is a preferred scheme for most use cases, allowing
a tradeoff balance between speed and security requirements
of an IoT-based application [12].

Figure 3 shows a flowchart illustration of how our middle-
ware handles intermittent security with session resumption
for quick data transmission. A contingent flexible security
scheme is used to quickly establish lost connections with
the fastest possible way, based on the security needs of an
IoT-based application.

Algorithm 1: Intermittent Security Handler

Data: Device ID dID. Protocol p, either DTLS or TLS

Data: Authentication Scheme auth, Encryption Scheme en

Data: Message Authentication Code mac

Data: session variable holds encrypted session info

Data: stored_session holds deserialized session fetched from
device storage

Data: first_connect is true if this is the first time connecting

Result: The latest session is stored on the respective devices

to be quickly resumable

function initSession ()

/* Creates a new session from specified configuration */

session <—

flex_security_vector(dID, {p, auth, en, mac}),

end
function resume ()
/* Pulls the stored session and uses it as new session */
session <— stored_session,
end
function serializeSession (x)
/* Store the session in storage of member devices */
while true do

‘ sleep (x);

stored_session < session

en

end

function main ()

/* Decide and create or resume a session */

if firstConnect or stored_session.isNull then
| initSession();

else
| resume();

end

serializeSession();

transmit();

end

Algorithm 1 shows our pseudocode for providing inter-
mittent security. The main() function gets executed first,
to check whether the connection between the associated
devices is being made for the very first time. Or, if there
already is a valid session corresponding to these devices.
If so, we can simply fetch the stored session from device
storage and attempt to resume it, allowing quick reconnection
between them. If not, a new connection has to be established,

plugging into the flexible security scheme, i.e., based on
chosen protocol, authentication scheme, encryption scheme,
and message authentication code algorithm, a new session
would be initiated.

Once a session has been found (either new or resumed),
two operations occur in parallel: First, serializeSession()
ensures that the current session state is serialized to the
device storage every few seconds, as represented by variable
x. Based on the need, the value of x can be made higher or
lower. Higher value of x would result in more frequent writes
to the storage, providing more reliability for future session
resumptions at the expense of using higher computation and
storage. Conversely, less frequent writes would be less reli-
able, but faster and resource conservative. Second, transmit()
keeps data flow active between the connected devices.
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C. Flexible Security: Protocol Selection

The first step for security association and communication
initiation is selection of the security protocols to be used. Our
middleware supports different kinds of protocols and allows
switching between them. The possible choices all select one
of the options in each category. The categories include Pro-
tocol, Authentication Scheme, Bulk Encryption Scheme, and
Message Authentication Code (MAC) algorithm as shown in
Figure 4.

The Protocol selection allows a choice between {TLS,
DTLS}. TLS (Transport Layer Security) and DTLS (Data-
gram Transport Layer Security) are both extremely secure
protocols enforcing network encryption between participants.
Both of these protocols ensure confidentiality and integrity of
data. DTLS is a better choice for stream-based applications,
and works over UDP (User Datagram Protocol). For use with
TCP based applications, TLS is the preferred choice. Next,
Authentication Scheme can be {PSK, Certificate}.

If PSK is chosen, the default setup goes for Static PSK.
In fact, Static PSK can exist as a device property on the IoT
devices, allowing many benefits, such as quick connection,
resumption, low memory footprint, low bandwidth consump-
tion, low CPU usage. If the requirement is for even higher
security, ephemeral PSK or Certificate can be generated
using Key Exchange algorithms, such as RSA, DH (Diffie-
Hellman), etc.
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Once authentication is chosen, the Bulk Encryption
scheme is the next option. Encryption can be done using
either Block Ciphers, or Stream Ciphers. Block Ciphers are
useful for sending large chunk of data, and can consume a
lot of bandwidth and memory if the payload is small. This
is due to the padding added to each block of data being
sent. Hence, for small payload applications (such as video
streams) it is better to opt for Stream Cipher, which encrypts
small chunks of data before sending. The most common
Stream Cipher is RC4, but ChaCha20 is starting to take over
as the next generation of much faster and more secure stream
ciphers. All ciphers can be configured to various key sizes
(if applicable), including 128-bit, 224-bit, 256-bit, and so on.

Lastly, the chosen Message Authentication Code algorithm
is used to generate checksum, to ensure integrity of data
being sent. The available options are MD5, SHA {1/2/3},
and a few lesser-used options. SHA2 or SHA3 should be
used whenever possible, since MD5 and SHA1 have been
found vulnerable to various checksum attacks ([13], [14]) and
collision attacks [15]. Through permutation and combination,
the possible choices for the security scheme can be many.
Table I shows a few of the possible schemes.

IV. PERFORMANCE EVALUATION

In this section, we compare the performance of various
schemes accessible on our middleware to illustrate the need
for flexibility. A minimum viable implementation of the
middleware has been used on a GENI [16] Cloud testbed.

Figure 5 shows the network setup using the GENI Cloud
infrastructure. To assess the lightweight nature of schemes,
we use the following qualitative and quantitative metrics.

(a) Memory footprint (accounts for both Number of mem-
ory allocations and the Size of memory allocations)
(b) Time taken for Security Association

Our implementation of crypto and authentication uses
WolfSSL [17], an embedded SSL implementation library.
Live video stream is supported using OpenCV [18]. The
application itself is built completely using C/C++, using
GCC compiler.

Figure 6(a) gives the graph generated by comparing dif-
ferent cipher schemes. The schemes we compared are Data-
gram TLS (DTLS), and TLS. The schemes were evaluated



using Pre-shared Keys (PSKs) and certificates. Likewise,
Figure 6(b) shows how much memory allocation size it takes
to have the connection established. DTLS-PSK comes out
to be low, by order of millions. We can see that certificate
generation takes more size. Hence, choosing PSK for the
resumption can be quite an excellent choice. Even better
results are obtained using Static PSK, if high security is not
critical to the use case.

Figure 7 shows results for the connection and resumption
time for the four different schemes we compared in our
experiments with our prototype middleware. Even though
using DTLS-certificate gives consistently low time spent,
we see that DTLS-PSK is the fastest scheme. DTLS can
offer speed-up of over a few hundred times, regardless of
cases where there is a fresh handshake or resumed session.
Hence, our results show the need for Intermittent security in
IoT systems, without compromising the security, by allowing
flexibility in configuration.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed an end-to-end IoT security
middleware between devices at the network edge and the
core cloud side of an application system. Our middleware is
based on a novel security scheme, which provides flexibility
for securing IoT-based application data, along with offering
quick re-connections to aid in situations of unreliable net-
work conditions within cloud-fog communication platforms.

Our results demonstrate the need for flexibility in choice
of an IoT security scheme based on resource constraints in
computation, bandwidth, memory, network reliability, as well
as the application for which the IoT system is being designed.
We show that whenever feasible and acceptable, the use of
static properties such as Static PSK can notably speed-up
secure communications. Static PSKs in prior literature have
not received much attention, however they could be a useful
tool for low-resource, moderate-security within IoT systems.

Future work can extend our middleware with a transient
reputation scheme that can collect and use short-term knowl-
edge about the connecting devices to build a short-lived
reputation. This would deprecate the need to maintain trust
state in the network amongst the IoT devices.
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