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Abstract—In recent studies, researchers have developed var-
ious computation offloading frameworks for bringing cloud
services closer to the user via edge networks. Specifically, an edge
device needs to offload computationally intensive tasks because
of energy and processing constraints. These constraints present
the challenge of identifying which edge nodes should receive
tasks to reduce overall resource consumption. We propose a
unique solution to this problem which incorporates elements
from Knowledge-Defined Networking (KDN) to make intelligent
predictions about offloading costs based on historical data. Each
server instance can be represented in a multidimensional feature
space where each dimension corresponds to a predicted metric.
We compute features for a “hyperprofile” and position nodes
based on the predicted costs of offloading a particular task.
We then perform a k-Nearest Neighbor (kNN) query within
the hyperprofile to select nodes for offloading computation. This
paper formalizes our hyperprofile-based solution and explores the
viability of using machine learning (ML) techniques to predict
metrics useful for computation offloading. We also investigate the
effects of using different distance metrics for the queries. Our
results show various network metrics can be modeled accurately
with regression, and there are circumstances where kNN queries
using Euclidean distance as opposed to rectilinear distance is
more favorable.

Keywords—Knowledge-defined networking, machine learning,
computation offloading, mobile edge networks, k-Nearest Neigh-
bor

I. INTRODUCTION

Internet of Things (IoT) technologies introduce the need

for energy-aware and latency-sensitive management strategies

to ensure reliable performance in resource constrained envi-

ronments. One such situation is disaster incidents where first

responders may be operating in areas with limited network

and computing resources. Disaster response teams may also

benefit from having sensor and visual data processed on site

by utilizing computation offloading strategies to make optimal

decisions based on energy or latency requirements of the user.

The computing environment of disaster response networks

is similar to general edge computing networks in that we

have pervasive computing infrastructure with multi-modal,

multi-dimensional, and geospatially dispersed data sources that

rely on a wide range of services (e.g. pedestrian tracking,

facial recognition, location services) [1]. Typically, the main

challenge of edge computing is concerned with how to execute

these services on resource constrained devices such as mobile

phones or other IoT devices.

A popular and well-studied resolution to this challenge

is computation offloading where resource intensive tasks are

migrated to nearby cloud or edge servers with abundant

computing resources. This is necessary because mobile devices

are limited in terms of battery life, wireless communication,

and computing capabilities [2]. Computation offloading is

ideal because it typically results in lower energy consumption

and processing time for the mobile user [3]. Broadly speaking,

computation offloading can offset the limitations of resource

constrained mobile devices thereby offering a greater variety

of services to the user [4].
The control mechanism for computation offloading has been

a popular research topic and several offloading frameworks

have been proposed [5] [6]. There also exists a desire to

develop intelligent, runtime offloading schemes to make deci-

sions regarding when and how to offload [7]. A new emerging

paradigm known as Knowledge-Defined Networking (KDN)

relies on Network Analytics (NA) and Software-Defined Net-

working (SDN) to efficiently learn stateful information about

a network [8]. KDN makes use of NA to build a high-level

model of the system known as the knowledge plane [9].
Given the heterogeneous nature of edge networks, we

can employ machine learning (ML) techniques to understand

relationships between relevant variables that other analytical

approaches may fail to capture. However, ML is only feasible

if accurate training data is available. Traditionally, this is an

issue as networks are inherently distributed systems and nodes

have limited view and control of the network. However due

to the development of SDN, the control and data planes can

be decoupled which allows for a logically centralized control

plane. SDN offers not only control of the network but also the

ability to collect training data for the ML model.
In this paper, we aim to study the benefits of using KDN

concepts to guide the design of an intelligent computation

offloading framework. By intelligent we imply that our frame-

work uses historical data to build a predictive model that

can encode system and user dynamics that other deterministic

heuristics may fail to capture. We design various network

simulations in ns-3 in order to create a robust dataset that is

used to train an ML model. We account for mobility by varying

distances between the user and access points. The predictions

from the model can then be used as input features in a multi-

dimensional space we call the hyperprofile.
The hyperprofile consists of a set of nodes that correspond to

physical machines which are positioned based on the predicted

performance of that server for a given task. The user is

represented in the feature space such that a query on the

user’s representation returns a set of nodes to which we offload

the task. Our results indicate that the query method can play



an integral role in scheduling tasks to offload to nodes. We

provide a mathematical basis for why the Euclidean distance

metric tends to favor nodes with a balanced trade-off between

features.
The rest of the paper is organized as follows: Section II dis-

cusses previous work on computation offloading frameworks.

In Section III we formalize the offloading problem, Section IV

details our KDN-based model for selecting optimal nodes for

offloading. Different query methods are discussed in Section

V, and Section VI concludes the paper.

II. RELATED WORK

A. Computation Offloading in Mobile Edge Networks

Mobile Edge Computing (MEC) can provide an energy-

aware solution to computation offloading for IoT devices

where energy conservation is more desirable than low-

latency [10]. The mobile users could take photographs of

victim’s faces and then perform facial recognition to identify

the victim. The computation involved for facial recognition

happens on either a core cloud or an edge computer near the

user. However, many offloading frameworks only account for

having one edge computer which limits the user in terms of

mobility [10] [5]. They also rely on the user to decide what

offloading strategy would be best for their situation. We posit

that such decisions are most optimally handled by an ML

model rather than someone unfamiliar with the structure and

operation of networks (e.g. a first responder).
There are a number of existing offloading strategies. Yang

et al. studied the problem under multiple mobile device users

sharing a common wireless connection to the cloud. Their

solution uses a genetic heuristic algorithm and focuses on code

partitioning and deciding whether to offload each partition in-

dividually. Researchers in [3] formulate the offloading problem

as a multiple choice knapsack problem where one is trying to

maximize bandwidth utilization subject to constraints such as

battery life. An optimization approach is also taken in [11],

and their solution utilizes Lagrange multipliers.
It is difficult to adapt these solutions in real-time when

some metrics may be unavailable or when the user needs

change. A key feature of our solution is that it can be adapted

based on the metrics available. This adaptability is achieved

by effectively decoupling the process of developing a network

model (discussed in Section IV) and incorporating the user into

that model to suit his/her needs best (discussed in Section V).

B. Knowledge–Defined Networking

Mestres et al. note in [8] that ML models could work

well with managing network behavior if the training data

adequately represents the network itself. However, the authors

remark it is unclear what constitutes representative training

data in networking. This is left as an open research problem.

On a fundamental level, our paper is motivated by the question

of what characteristics of a network are relevant for devel-

oping ML models? We believe our approach to this problem

is unique because (1) we focus on the performance of feature

selection to develop a hyperprofile space and (2) then we apply

kNN to find optimal destination nodes for offloading. We

describe each formulation in depth in future sections (namely

sections IV-B and IV-D).

III. PROBLEM FORMULATION

Coordinating how computation is offloaded to edge servers

can be seen as a job shop scheduling problem which is a

popular problem in computer science literature [12]. Job shop

scheduling is concerned with optimally scheduling a set of jobs

on machines with varying processing constraints. It minimizes

some objective such as energy consumption or makespan (total

time to process all jobs) [13].

User
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· · · · · · · · · · · · · · · · · ·

Fig. 1: Job scheduling problem represented as a multi-tier partition/aggregate
application structure.

We can further extend the concept of relating computation

offloading to a job shop scheduling problem by viewing the

task of offloading from the mobile user’s perspective. This

is achieved by representing the job scheduling problem as a

directed, acyclic graph. Figure 1 shows one such depiction

where the root node is the user who wishes to offload some

computational tasks to available vertices where the edges

between vertices can be weighted to represent the energy or

latency cost associated with selecting that vertex.
We adopt the popular partition/aggregate application struc-

ture which consists of a distributed set of aggregate and worker

nodes [14]. Depending on the task partitioning, a user can

forward data to the nearest aggregator that then schedules

which worker nodes receive which jobs. Each aggregate node

Ai can be seen as an independent job shop that receives a set

of jobs J and in turn schedules them to be processed on a set

of available worker machines W . In this paper, we focus on

the first level of offloading from the user to the aggregator.

IV. KDN BASED OFFLOADING FRAMEWORK

An overview of our solution framework is illustrated in

Figure 2. The first step to our solution involves collecting

network features for training an ML model. This part is

important for developing the hyperprofile.

Fig. 2: Overview of our proposed offloading framework: after an offloading
request, a pre-trained model is used to estimate features for a hyperprofile that
can be queried using kNN to select destination nodes. The SDN controller
serves to facilitate the offloading process.
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Fig. 3: ns-3 simulations: Energy consumption and data transfer time. The
amount of data to send and bandwidth of the connection varied across simu-
lations. Note the exponential relationship between energy/time and bandwidth
for a fixed data size as well as the linear relationship between energy/time
and data size for a fixed bandwidth.

A. Data Collection

We ran multiple simulations using ns-3 [15], a discrete-event

network simulator that is available for research. Specifically,

we ran our simulations using version 3.26 of ns-3 on Ubuntu

16.04 in parallel using GNU parallel [16]. We chose ns-3

as our network simulator for its tracing subsystem, energy

framework for Wi-Fi devices, and ease of running the same

simulation with modified program parameters. These capabil-

ities allow us to generate training data. We simulated sending

data between a wireless device and access point while varying

bandwidth and total data sent. We measured energy consumed

by the wireless device and the time that passed from the

first packet being sent by the source to the last packet being

received.

The simulations provide a basis for developing the hyper-

profiles for the servers. Our goal is to predict energy con-

sumption and transmission time from bandwidth and data size.

Figure 3 depicts the relationship between energy consumption,

transmission time, bandwidth, and data size as a scatter plot

of the raw data.

B. Predictive Analytics

We found multi-step regression to be the most appropri-

ate approach based on the properties of our training data.

Bandwidth was used to predict the regression line that models

energy consumption and data size. Our results show that the

slope of such lines are exponential with respect to bandwidth.

The same relationships apply to predicting time, as depicted

in Figure 3.

Formally, we can represent the predicted variable as a linear

function

fb(ds) = m(b)ds + c(b)

where the slope m(b) and the y-intercept c(b) are functions of

some bandwidth b. Our results show that m is exponential and

can be defined accurately from historical data. Note that for

energy consumption c(b) = 0 because the amount of energy

consumed when sending 0 bytes of data will always be 0,

regardless of bandwidth.

We perform linear regression for each fixed value of band-

width between energy consumption and data size. In Figure 3

these lines can be seen by connecting scatter points along a

particular bandwidth value. We predict the slope of these lines

using bandwidth values. The results of these predictions are

shown in Table I. The regression resulted in various curves of

best fits which are given explicitly in the table.

Table I also reports the R2 value of the models used to

compute m and c. It also depicts the k-fold cross-validation

score for k = 10. This score validates that for a fixed

bandwidth the relationship between the predicted value and

the data size can be modeled with a linear function.

Energy Consumption (ec) Time (t)

Bandwidth (b)
m1 = 0.015b−1.13

R2 = 0.997

m2 = 8.04·10
6/b

R2 = 1

c = 222873e0.0004b

R2 = 0.918

Data Size (ds)
ec = m1ds

Cross-validation: 0.99

t = m2ds + c

Cross-validation: 0.99

TABLE I: Accuracy of predictions. In all cases, the R2 value is greater than
0.9. The lowest score comes from predicting the y-intercept of transmission
time; to obtain a higher accuracy we could try collecting more data.
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Fig. 4: Analysis of our prediction models. Each point on the x-axis represents
a trial of a specific bandwidth and data size. The trials also varied physical
distance, and even though our model did not account for distance, it still
performed well – as shown by the overlap between the actual points and the
predicted points.

In another set of simulations, we varied the physical distance

between nodes from 10 m to 100 m. We avoided larger

distances because we wanted to focus on scenarios where

packet loss is not part of the issue of offloading. Testing our

prediction model on this data shows that the variation of dis-

tances contributes an insignificant amount of error. The results

of our predictions are given in Figure 4 where the x-axis plots

the index of the data point and the y-axis represents dependent

variable (both predicted and actual). The data clusters naturally

into groups based on bandwidth, the first group being from

index 0 to ∼ 100. The energy consumption/transmission time

increases within the groups because data size is increasing.

Notice that the error is worst for smaller indices. This shows

that the error is worst for small bandwidths and large data

sizes. This observation could be attributed to the way error

compounds with larger transmission times (since the largest

transmission time occurs with a small bandwidth and a large

data size). The main point is that in the vast majority of

cases, we can almost exactly predict energy consumption and

transmission time.

C. Hyperprofiles for Efficient Offloading

Our regression analysis shows that from historical data,

we can develop accurate models of network features. A

natural question is how we can leverage such models to make

intelligent offloading decisions. Given that we are using ML to



predict network metrics specific to a server, an intuitive answer

to this question involves representing the available servers in

a “feature space” where each dimension of the space is a

modeled metric (e.g. energy consumption). The user device (or

aggregator) can then be intelligently placed in the feature space

such that its position relative to the servers’ positions conveys

meaningful information. For our metrics, we want to minimize

energy consumption and transmission time, so the user will

always be represented by the origin. That way, distance from

the origin conveys a level of desirability (i.e. the farther a node

is from the origin the less desirable it is). This representation

is particularly useful because if the device application needs

to partition a task into k parts for computation offloading, it

can perform a kNN query on the origin to get a set of server

points in the feature space with the “optimal” resources for

processing the task.

The metrics or “profiles” that represent available servers

in the feature space do not necessarily have to be predicted

values. They could be specifications of the servers themselves

such as processor clock speed. To help distinguish between

the various profiles, we introduce the following terminology.

Definition 1 (Base Profile). A base profile for an edge

network consists of points in a feature space where each point

represents a unique server instance, and each dimension of

the point represents a deterministic metric. Such metrics may

include internal instance specifications (e.g. internal memory),

characteristics of the network (e.g. bandwidth), or real-time

metrics (e.g. CPU load).

Definition 2 (Hyperprofile). A hyperprofile is similar to the

base profile except each dimension represents a predicted

metric. One example of such a metric is the estimated time to

receive and transmit a data packet from an external host.

The main idea behind the different metrics is that they

indicate a level of “fitness” of each server which can be

quantitatively compared with the user device needs and spec-

ifications. Different profiles may be appropriate for different

tasks and different scenarios. For example, in cases where no

historical data is available one may opt to use the base profiles.

An interesting direction for future research is to investigate

the trade-off between the various profiles and whether one

is significantly more useful than the others. It may even be

helpful to combine the profiles into a hybridprofile. Regardless,

the use of profiles is advantageous because it reduces the

computation offloading problem to a kNN query.

D. Queries on hyperprofile features

We developed the idea of the hyperprofiles with the inten-

tion of performing kNN queries on the user device to obtain

a set of server instances to which we offload. Nonetheless, it

should be noted that different types of queries may employ

different search algorithms. Moreover, it need not be the case

that every dimension is a metric that we want to minimize.

And hence, it may not be the case that the user is always

represented by the origin.

Regardless, for our model, kNN was the most appropriate

algorithm because it returns the points most “optimal” relative

to the user. Formally, kNN returns a set of points for a query

point q such that p ∈ kNN(q) iff |{j ∈ P : d(j, q) <
d(p, q)}| < k where d is a predefined distance metric. Often

the distance metric is Euclidean which means, in our case,

kNN(~0) returns the points pi = (xi, yi) such that the values

of x2
i + y2i are minimal. When x is energy consumption and

y is transmission time, offloading to the servers represented

by points in kNN(~0) minimizes energy loss and latency.

Other approaches (e.g. Chen [17]) minimize x + y which is

effectively the same as performing kNN where d is rectilinear

distance. It may seem that minimizing one may be the same

as minimizing the other, but as Table II depicts, this is not the

case. The next section is dedicated to discussing the difference

between these two distance metrics.

h
h

h
h
h
h
h
h

h
hh

Point
Distance metric

Euclidean Rectilinear

p1 = (0.219, 0.371) 0.431 0.59

p2 = (0.233, 0.361) 0.429 0.594

TABLE II: Example scenario where a query of one point returns different

sets. If using Euclidean distance kNN(~0) = {p2}, whereas if using rectilinear

distance, kNN(~0) = {p1}. Notice that |x− y| is smaller for p2 than for p1.
This relationship is explored further by Proposition 1 (see Appendix).

V. DIFFERENT DISTANCE METRICS FOR kNN QUERIES

We performed a set of simulations on randomly generated

hyperprofiles to evaluate how often a kNN query would give

different results for different distance metrics. Our simulations

consisted of 2 dimensional hyperprofiles ranging in size from

250 points to 5000 points. Each point was computed from ran-

domly generated bandwidth and data size values. Bandwidth

ranged from 250 Kbps to 15 Mbps while data size ranged

from 60 kB to 250 MB. For each hyperprofile we performed

kNN queries where k ∈ {1, 2, 3, 4, 5, 10}. The queries were

performed with both Euclidean and rectilinear metrics and the

mismatches between the two methods is shown in Figure 5.
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Fig. 5: Average mismatches between queries with 95% confidence intervals.
Size of the dataset and queries were varied across simulations. Queries were
performed on a dataset of randomly generated bandwidth and data size values.
Note larger queries have a higher probability of mismatch.

Throughout the simulations, we kept track of the points

that were mismatched, and in all the cases we noticed that

the Euclidean distance queries returned points with minimal

differences between x and y. In other words, it returned points



closer to the line y = x. After formalizing our observation, we

found this was an inherent property of the mismatched points.

Thus, as Proposition 1 (See Appendix) states, if there is a

mismatch in the minimal Euclidean distance and the minimal

rectilinear distance between points then the distance between

the coordinates of the minimal point based on Euclidean

distance is less than the distance between the coordinates of

the minimal point based on rectilinear difference.

Notice that the first condition of the proposition is that the

coordinates are nonnegative. Without this condition, a simple

counterexample such as (x1, y1) = (3, 0) and (x2, y2) =
(−3, 1) would falsify the proposition. The condition is rea-

sonable since often the hyperprofile dimensions represent

nonnegative features of the network or user device such as

energy consumption or latency.

Ultimately, the key point of Proposition 1 is that a Euclidean

distance metric will favor points with a more balanced tradeoff

between the network features represented by the coordinates.

Moreover, the difference becomes more pronounced as k
becomes larger. Hence, whether this tradeoff is favorable

depends on both the size of the edge network and the types

of features with which the user is concerned.

VI. CONCLUSION

In this paper, we outlined a framework for computation

offloading in disaster response networks by creating a hy-

perprofile of predicted resource consumption for edge nodes

based on metrics such as bandwidth and data size. Our solution

is unique because it can be easily adapted to different metrics

based on a user’s needs. This is accomplished by decoupling

the problem of modeling the available network metrics from

the problem of identifying user needs while making use of

machine learning models. Effectively, we have described a way

of encoding available server instances in a multi-dimensional

space to facilitate effective queries. For future work, we

plan to implement a testbed to compare a hyperprofile-based

offloading scheme to standard offloading schemes. Another

area of interest is expanding the concept of a hyperprofile to

other edge network areas such as routing or trust management.

APPENDIX

Proposition 1. If (1) x1, y1, x2, y2 ≥ 0, (2) x2
1+y21 < x2

2+y22 ,

and (3) x2 + y2 < x1 + y1 then |x1 − y1| < |x2 − y2|.

Proof. First note that x2 6= x1 since if they were equal then

we would have y21 < y22 and y2 < y1, a contradiction. The

same reasoning implies y2 6= y1. Now assume without loss of

generality that x1 ≥ y1. We can write (3) as

(x2 − x1) + (y2 − y1) < 0.

We deal with the problem in cases based on whether (x2−x1)
or (y2−y1) is negative. For the first case, assume x2−x1 < 0.

Now write (2) as

(y1 − y2)(y1 + y2) < (x2 − x1)(x2 + x1).

Since x2 − x1 < 0 and the sums are positive, we must have

y1 − y2 < 0. Hence, y2 − y1 > 0. Now write (2) as

(x1 − x2)(x1 + x2) < (y2 − y1)(y2 + y1). (1)

and write (3) as y2 − y1 < x1 − x2. Combining these we get

(x1 − x2)(x1 + x2) < (x1 − x2)(y2 + y1).

Since x1−x2 is positive we can divide it out to get x1+x2 <
y2 + y1 which we rearranging to get,

|x1 − y1| = x1 − y1 < y2 − x2 ≤ |y2 − x2|

by our original assumption that x1 ≥ y1. For case (2) assume

that (y2−y1) < 0. From Equation (1), this means x1−x2 < 0.

Now combining these with our assumption that x1 ≥ y1 we

have x2 > x1 ≥ y1 > y2 ≥ 0. From this, we can write

|x2 − y2| ≥ x2 − y2 > x1 − y1 = |x1 − y1|.
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