
Mathematical Models and Methods in Applied Sciences
Vol. 28, No. 9 (2018) 1857–1880
c© The Author(s)
DOI: 10.1142/S0218202518400080

Crime modeling with truncated Lévy flights
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Statistical agent-based models for crime have shown that repeat victimization can lead
to predictable crime hotspots (see e.g. M. B. Short, M. R. D’Orsogna, V. B. Pasour,
G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of
criminal behavior, Math. Models Methods Appl. Sci. 18 (2008) 1249–1267.), then a recent
study in one-space dimension (S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov
and S. G. McCalla, Crime modeling with Lévy flights, SIAM J. Appl. Math. 73 (2013)
1703–1720.) shows that the hotspot dynamics changes when movement patterns of the
criminals involve long-tailed Lévy distributions for the jump length as opposed to clas-
sical random walks. In reality, criminals move in confined areas with a maximum jump
length. In this paper, we develop a mean-field continuum model with truncated Lévy
flights (TLFs) for residential burglary in one-space dimension. The continuum model
yields local Laplace diffusion, rather than fractional diffusion. We present an asymptotic
theory to derive the continuum equations and show excellent agreement between the
continuum model and the agent-based simulations. This suggests that local diffusion
models are universal for continuum limits of this problem, the important quantity being
the diffusion coefficient. Law enforcement agents are also incorporated into the model,
and the relative effectiveness of their deployment strategies are compared quantitatively.

Keywords: Crime models; truncated Lévy flights; law enforcement agents.

AMS Subject Classification: 35R60, 35Q84, 60G50

1. Introduction

Residential crime is one of the toughest issues in modern society. A quantita-

tive, informative and applicable model of crime is needed to assist law enforce-

ment. Crimes of opportunity often have consistent statistical properties, and it is

possible to model them using quantitative tools.36 In the past 10 years, applied

mathematicians have been working in the burgeoning area of crime modeling

and prediction (see e.g. Refs. 1, 2, 10, 11, 18, 19, 20, 23, 25, 27–37, 39, 41, 42),

since the seminal work36 on the mathematics of agent-based models for residential

burglary.

Roughly speaking, there are two classes of burglary models. Class I is statistical

in nature aiming to predict the patterns of observed events. Among them, self-

exciting point process models in Ref. 28 have led to the development of software

products for field use.29 Class II is agent-based and describes the actions of indi-

viduals that lead to aggregate pattern formation. It is this class of models that we

address here. Agent-based models could be used for prediction if all model param-

eters were known. Parameters for environmental variables can be well estimated

from field data, however movement patterns of individual burglars are difficult to

track. Therefore, it is imperative to identify the simplest class of universal models

for criminal movement.
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Reference 36 used a biased random walk (BRW), that is, short hops, for criminal

agents. It is well known that people foraging in an environment are more likely to

move according to a Lévy flight than a random walk.3,9,13 A later paper6 analyzed

such processes for this model and showed that such processes lead to fractional

diffusion rather than classical Brownian motion in the continuum. Here, we refo-

cus the analysis to truncated Lévy flights (TLFs) since they are the most realistic.

The truncation size represents the maximum mobility of an agent. We show that

an analogue mean-field continuum model exists with local diffusion replacing frac-

tional diffusion. Specifically, for a range of length scales TLFs behave similarly to

a Brownian process with a modified diffusion coefficient.

As for the coupling of the dynamics of criminals and of the environment vari-

ables, following Ref. 36, we incorporate the repeat and near-repeat victimization

and the broken windows effect. These are concepts in criminology and sociology

that have been empirically observed.4,8,12 Specifically, residential burglars prefer

to return to a previously burglarized house and its neighbors.7,14–16,35 These are

known as repeat and near-repeat events. Also, according to the “broken windows”

theory, it is very likely that the visible signs of the past crimes in a neighborhood

may create an environment that encourages further illegal activities.41

In addition following Ref. 17, we introduce the effects of law enforcement agents

into the model. In Ref. 17, all the agents are assumed to take random walks, while

here law enforcement agents follow TLFs whose maximum jump length can be

different from that of the criminals. The relative effectiveness of several policing

strategies is compared quantitatively.

This is the first time that TLFs have been applied in crime modeling. Previously,

they have only been applied in other areas such as finance22,24,26 and networks.5

The paper is organized as follows. In Sec. 2, we introduce the discrete model and

compare it for different values of the jump length. In Sec. 3, we derive the mean-

field continuum model and compare it with the discrete model through computer

simulations. Next in Sec. 4, we incorporate law enforcement agents into the system,

derive the continuum equations, and then compare the relative effectiveness of the

deployment strategies both quantitatively and qualitatively.

2. Discrete Model

2.1. Overview

As in Ref. 6, the system is defined on a one-dimensional grid which represents

the stationary burglary sites. We assume constant grid lattice spacing l and peri-

odic boundary conditions. Our model consists of two components — the stationary

burglary sites and a collection of burglar agents jumping from site to site. The

system evolves only at discrete time steps t = nδt, n ∈ N, δt > 0. Attached to each

grid, k ∈ Z is a vector (nk(t), Ak(t)), representing the number of criminals and the

“attractiveness” at site k at time t. The attractiveness refers to the burglar’s beliefs

about the vulnerability and value of the target site and it is assumed to consist of
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a static background term and a dynamic term:

Ak(t) = A0
k + Bk(t). (2.1)

The dynamic term Bk(t) represents the component associated with repeat victim-

ization and broken windows effect, whose behavior will be discussed shortly. Our

model unfolds starting with some initial distribution of criminal agents and attrac-

tiveness field over the lattice grid. At each time step, the system gets updated as

follows:

Step 1. Every criminal decides if he will commit a burglary at his current site with

probability

pk(t) = 1 − e−Ak(t)δt. (2.2)

This means that the Poisson instantaneous burglary rate is roughly Ak(t), and that

Ak(t)δt is the expected number of burglary events in the time interval of length δt

from a single burglar at site k.

Step 2. If a criminal agent chooses to commit a burglary then he will be immedi-

ately removed from the system. Otherwise he will move to another site according

to a truncated Lévy distribution biased towards areas with a high attractiveness.

More specifically, the probability of an agent jumping from site k to i is

qk→i(t) =
wk→i(t)∑

j∈Z

j �=k

wk→j(t)
, k �= i, (2.3)

where the corresponding relative weight wk→i(t) is defined as

wk→i(t) =






Ai(t)

lµ|i − k|µ , 1 ≤ |i − k| ≤ L,

0, otherwise.

(2.4)

Here, µ ∈ (1, 3) is the exponent of the underlying power law of the Lévy distribution,

and L ∈ N is the truncation size. These parameters represent the mobilities of the

criminal agents. Different types of agents often assume different mobilities. For

example, the parameter µ for professional criminals is typically lower than that of

amateur criminals.38,40 We call the movement pattern defined by (2.3) and (2.4)

a TLF. When L = ∞, we call it a Lévy flight. When L = 1, then (2.3) and (2.4)

imply

qk→i(t) =
Ai(t)

Ak−1(t) + Ak+1(t)
, i = k − 1 or i = k + 1,

and we call this a BRW. If the random walk is unbiased, that is, if qk→k−1(t) =

qk→k−1 = 1/2, then we call it an unbiased random walk (URW).

Step 3. The attractiveness field gets updated according to the repeat victimization

and the broken windows effect.4,8,12 The repeat victimization is introduced by let-

ting the dynamic attractiveness depend upon previous burglary events at the local
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site. Whenever there is a burglary event, the local attractiveness will get increased

by an absolute constant θ. However, it is reasonable to suppose that this higher

probability of burglary at a site has a finite lifetime. This increase and decay can

be modeled according to the following update rule

Bk(t + δt) = Bk(t)(1 − ωδt) + θEk(t),

where ω is an absolute constant representing the decay rate, and Ek(t) denotes the

number of burglary events occurred during the time interval (t, t + δt] at site k.

To further incorporate the broken windows effect, we allow the dynamic attractive-

ness field to spread spatially from each site to its nearest neighbors. This can be

accomplished by modifying the above equation as

Bk(t + δt) =
[
(1 − η)Bk(t) +

η

2
(Bk−1(t) + Bk+1(t))

]
(1 − ωδt) + θEk(t),

where η ∈ (0, 1) is an absolute constant representing the strength of the near-repeat

victimization effect. Since on average the attractiveness can be roughly expressed

by replacing Ek(t) with δtAk(t)nk(t) according to (2.2), we finally set the evolution

of the dynamic attractiveness term as

Bk(t + δt) =
[
(1 − η)Bk(t) +

η

2
(Bk−1(t) + Bk+1(t))

]
(1 − ωδt) + θδtAk(t)nk(t).

(2.5)

Step 4. At each site, a new agent is replaced with rate γ.

Figure 1 presents a visual summary of these four steps in the form of a flow

chart.

Fig. 1. Flowchart summarizing the discrete model.
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To conclude, the discrete mean field equation of (Ak(t), nk(t)) consists of (2.5)

and the following equation:

nk(t + δt) =
∑

i∈Z

1≤|i−k|≤L

[1 − Ai(t)δt]ni(t)qi→k(t) + γδt. (2.6)

When L = 1 and L = ∞, the assumptions above yield respectively the random-

walk model (RWM) in Ref. 36, and the Lévy-flight model (LFM) in Ref. 6. Hence

our first task is to see how varying L will affect the behavior of the truncated-Lévy-

flight model (TLFM).

2.2. Computer simulations

We simulate the TLFM for several different values of jump length L. An example

output can be seen in Fig. 2 below. The domain is [0, 1] and l = 1/60. The compu-

tations assume periodic boundary conditions. Here the initial conditions (at t = 0)

are taken to be Bk ≡ 0 and nk ≡ 1. The parameters are A0 = 1 − 0.4 cos(4πx),

µ = 2.5, l = 1/60, δt = 0.01, η = 0.1, γ = 6, ω = 1, and θ = 1.

(a) t = 8 (b) t = 20

(c) t = 8 (d) t = 20

Fig. 2. Results of the model (2.1)–(2.5) for different values of L, using the parameters described
in the text. The plots of the attractiveness field are shown in (a), (b), and the plots of the criminal
number distribution are shown in (c), (d). For L = 1, 3, 7, and 60, they are shown respectively
with dashed lines, dotted lines, dash-dotted lines, and solid lines.
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We observe that the behavior of the model varies considerably with different

choices of L. This was already noted in the prior work.6 This suggests that more

careful analysis should be carried out to connect the two ideas. Here, we show that

truncation is precisely the correct parameter for this research direction.

3. Continuum Model

3.1. Derivation

In this section, we derive an asymptotic theory when δt and l become small under

some suitable spatial–temporal scaling for generic L ∈ N.

We first derive the dynamics of the continuum version of the attractiveness

field. Following Ref. 36, we observe that the Brownian scaling is a suitable spatial–

temporal scaling for (2.5). That is, as l and δt become smaller, the quantity l2/δt

remains constant. Using the same calculations as in Ref. 36, from (2.5) and (2.1),

we infer

∂A

∂t
=

l2η

2δt
Axx − ω(A − A0) + θnA. (3.1)

The derivation of the dynamics of the continuum version of nk, however, is more

complicated. From (2.6), we infer

nk(t + δt) − nk(t)

δt
=

1

δt




∑

i∈Z

1≤|i−k|≤L

ni(1 − Aiδt)qi→k − nk



 + γ. (3.2)

We define

zµ,L := 2
L∑

k=1

1

kµ
, (3.3)

L(fi) :=
∑

j∈Z

1≤|i−j|≤L

fj − fi

(|j − i|l)µ
. (3.4)

It follows from (2.4) that
∑

i∈Z

1≤|i−k|≤L

wi→k = l−µzµ,LAi + L(Ai). (3.5)

With (3.5) and (2.3), we obtain

qi→k =
wi→k

l−µzµ,LAi

(
L(Ai)

l−µzµ,LAi
+ 1

)

∼ wi→k

[
1

l−µzµ,LAi

− L(Ai)

(l−µzµ,LAi)2

]

=
Ak

|i − k|µ

(
1

zµ,LAi

− L(Ai)l
µ

A2
i z

2
µ,L

)
, 1 ≤ |i − k| ≤ L. (3.6)
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Here we have used the fact that 1/(1 + x) approximates 1−x as long as x2 ∼ o(1).

Applying (3.6) to the right-hand side of (3.2), we obtain

nk(t + δt) − nk(t)

δt

=
1

δt

∑

i∈Z

1≤|i−k|≤L

ni(1 − Aiδt)
Ak

|i − k|µ

(
1

zµ,LAi

− L(Ai)l
µ

A2
i z

2
µ,L

)
− nk

δt
+ γ

=
Ak

δt




∑

i∈Z

1≤|i−k|≤L

(1 − Aiδt)
ni

Ai

1

zµ,L|i − k|µ − nk

Ak





− Ak

δt

∑

i∈Z

1≤|i−k|≤L

[
(1 − Aiδt)

ni

|i − k|µ
L(Ai)l

µ

A2
i z

2
µ,L

]
+ γ. (3.7)

In order to simplify (3.7), from (3.4), we infer

∑

i∈Z

1≤|i−k|≤L

ni

|i − k|µ =
∑

i∈Z

1≤|i−k|≤L

ni − nk

|i − k|µ +
∑

i∈Z

1≤|i−k|≤L

nk

|i − k|µ

= lµL(nk) + zµ,Lnk ∼ zµ,Lnk,

where the O(lµ) terms have been ignored in the final step. This together with (3.7)

implies that

nk(t + δt) − nk(t)

δt

=
Ak

δt

∑

i∈Z

1≤|i−k|≤L

[
ni

Ai

1

zµ,L|i − k|µ − δt
ni

|i − k|µzµ,L

− nk

Ak

1

zµ,L|i − k|µ
]

− Ak

δt

∑

i∈Z

1≤|i−k|≤L

[
ni

|i − k|µ
L(Ai)l

µ

A2
i z

2
µ,L

− niLAi

Aizz2
µ,L|i − k|µ lµδt

]
+ γ

∼ Ak

δt

∑

i∈Z

1≤|i−k|≤L

[
ni

Ai
− nk

Ak

|i − k|µzµ,L

− ni

|i − k|µ
L(Ai)l

µ

A2
i z

2
µ,L

− δt
ni

|i − k|µzµ,L

]
+ γ

∼ lµ

zµ,Lδt

[
AkL

(
nk

Ak

)
− nkL(Ak)

Ak

]
− Aknk + γ. (3.8)
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Here at the second step, all the O(lµδt) terms have been ignored in the summation.

We now simplify

L(Ak) =
∑

j∈Z

1≤|j−k|≤L

Aj − Ak

(|j − k|l)µ
. (3.9)

Let x = kl and then Ak = A(x). When l is small, we can apply the Taylor expansion

to the integrand near x and obtain

L(Ak) =
∑

j∈Z

1≤|j−k|≤L

(|j − k|l)−µ

×
[
Ax(kl)(j − k)l + Axx(kl)

((j − k)l)2

2
+ O((|j − k|l)3)

]

∼




∑

j∈Z

1≤|j−k|≤L

Ax(kl)(j − k)l

(|j − k|l)µ
+

∑

j∈Z

1≤|j−k|≤L

Axx(kl)((j − k)l)2

2(|j − k|l)µ





=
1

2

∑

j∈Z

1≤|j−k|≤L

(|j − k|l)2−µAxx(kl)

= l2−µ

L∑

j=1

j2−µAxx(kl). (3.10)

Here at the second step, the O((|j − k|l)3−µ) terms and lower order terms are all

ignored as µ < 3. We then obtain

L(Ak) = l2−µz∗µ,LAxx(kl), (3.11)

where

z∗µ,L :=

L∑

j=1

j2−µ. (3.12)

From (3.11) and (3.8), we infer

∂n

∂t
= D∇ ·

[
∇n − 2n

A
∇A

]
− An + γ, (3.13)

where

D =
l2

δt

z∗µ,L

zµ,L

. (3.14)

Here D is the diffusion coefficient which depends on µ and L. Particularly when

L = 1, then D = l2/2δt.

To validate the continuum model, we next perform direct numerical simulations

and compare it with the discrete model.
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Remark 3.1. When L = 1 and L = ∞, we recall that the mean field continuum

equations of the RWM and the LFM have been derived in Refs. 36 and 6:

Continuum RWM






∂A

∂t
=

l2η

2δt
Axx − ω(A − A0) + θAn,

∂n

∂t
=

l2

2δt
∇ ·

[
∇n − 2n

A
∇A

]
− An + γ,

(3.15)

Continuum LFM






∂A

∂t
=

l2η

2δt
Axx − ω(A − A0) + θAn,

∂n

∂t
=

l2s

δt

√
π2−2s|Γ(−s)|
zΓ(s + 1

2 )

[
A∆s

( n

A

)
− n

A
∆sA

]
− An + γ.

(3.16)

Here, s = (µ − 1)/2, z = 2
∑∞

k=1 k−µ, and Γ(·) denotes the gamma function. We

also note that when L = 1, (3.13) coincides with (3.15)2 as desired. For generic

L ∈ N, however, (3.15) and (3.16) may not be applicable anymore seen from Fig. 2,

and this is why we need to derive new continuum equations for the TLFM.

Furthermore, in (3.13), the Laplacian operator replaces the fractional Laplacian

operator in (3.16). This happens essentially because the infinitesimal generator of

TLFs is a local operator. An analogous fact is that the sum of N independent copies

of TLFs can be approximated by a Gaussian process when N is large.21

3.2. Computer simulations

Figures 3–5 below show the comparison between the discrete and the continuum

TLFMs. The computation overall assumes periodic boundary conditions. The algo-

rithm used for the continuum simulation is very similar to the one applied to the

continuum RWM (see (3.11)–(3.13) in Ref. 36). Particularly, we use a semi-implicit

time discretization as follows:

A(m+1) = A(m) + ∆t(ηA(m)
xx − A(m) + A(m)n(m) + A0), (3.17)

n(m+1) = n(m) + D∆t

[
n(m)

xx −
(

2nA
(m+1)
x

A(m+1)

)

x

]

+ ∆t(−A(m+1)n(m) + γ). (3.18)

Here, f (m) represents a quantity f at mth time step.

In Fig. 3, we set L as 1/l. We include the continuum LFM (3.16) with the

equivalent parameters in the comparison, as an implicit jump range of L = 1/l was

used in the discrete simulation of the LFM.6 Figure 4 displays the comparison of

the discrete and the continuum models for several different values of L, and Fig. 5

displays the comparison for different values of µ.
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(a) t = 6 (b) t = 12

(c) t = 6 (d) t = 12

Fig. 3. Comparisons of the discrete and the continuum TLFMs, and the continuum LFM with
the equivalent parameters. The plots of the attractiveness field are shown in (a), (b), and those
of the criminal number distribution are shown in (c), (d). The discrete model (2.1)–(2.5) is shown
with cross lines, the continuum TLFM (3.1), (3.13) is shown with solid lines, and the continuum
LFM (3.16) is shown with dashed lines. Here, L = 1/l = 60, η = 0.55, γ = 3.5, and all the other
parameters and data are the same as in Fig. 2. The system enters a steady state at roughly t = 12.

Fig. 4. (Color online) Comparisons of the discrete and the continuum TLFMs for different values
of L. The shots are taken at t = 2. The discrete model (2.1)–(2.5) is shown with the cross lines, and
the continuum model (3.1) and (3.13) is shown with the solid lines. The plots of the attractiveness
field are shown with the green lines, and those of the criminal number distribution are shown with
the red lines. Here, all the parameters and data are the same as in Fig. 2 except for η = 0.12 and
L as indicated.
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Fig. 5. (Color online) Comparisons of the discrete and the continuum TLFMs for different values
of µ. The shots are taken at t = 2. The discrete model (2.1)–(2.5) is shown with the cross lines, and
the continuum model (3.1) and (3.13) is shown with the solid lines. The plots of the attractiveness
field are shown with the green lines, and those of the criminal number distribution are shown with
the red lines. Here, all the parameters and data are the same as in Fig. 2 except for η = 0.12,
L = 3, and µ as indicated.

In all these cases, we observe a good agreement between the discrete and the con-

tinuum models all the way to the boundary. In Figs. 3(a) and 3(b), the continuum

TLFM fits better than the continuum LFM with the discrete model.

3.3. Linear stability analysis

In this section, we analyze the formation of the hotspots (spatial–temporal collec-

tions of criminal activities) as observed in the previous simulations and develop a

stability condition. Since the continuum equations (3.1) and (3.13) are very similar

to (3.15)1 and (3.15)2, except for a modified diffusion coefficient, the previous sta-

bility analysis for the RWM (see e.g. (3.21) in Ref. 36) can be extended directly to

suit for the TLFM.

As in Refs. 36 and 6, we first rescale the variables in the continuum equations:

A = A∗ω, n =
n∗ω

θ
, t =

t∗

ω
, η∗ =

l2η

2ωδt
. (3.19)

Applying (3.19) to (3.1) and (3.13), we obtain (the ∗’s are omitted)

∂A

∂t
= ηAxx − A + α + An, (3.20)

∂n

∂t
= D̄∇ ·

[
∇n − 2n

A
∇A

]
− An + β, (3.21)

where

D̄ =
l2

δt

z∗µ,L

ωzµ,L

, α =
A0

ω
, β =

γθ

ω2
. (3.22)

Let the steady states be (Ā, n̄),

Ā = α + β, n̄ =
β

α + β
. (3.23)
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We find the following stability conditions of the system around the homogeneous

steady states:

Theorem 3.1. When n̄ < 1/3, the homogeneous equilibrium in (3.23) is stable.

When n̄ > 1/3, the equilibrium is unstable if

η < D̄ 3n̄ + 1 −
√

12n̄

Ā
. (3.24)

Proof. The proof is very similar to that in Ref. 36, that is, we apply a linear Turing

stability analysis on (3.20) and (3.21) around the homogeneous steady state. We

decompose the solutions as perturbations from the steady states:

A(x, t) = Ā + δAeσteikx, n(x, t) = n̄ + δneσteikx. (3.25)

Substituting (3.25) into (3.20) and (3.21), we obtain



−η|k|2 − 1 + n̄ Ā

2n̄

Ā
D̄|k|2 − n̄ −D̄|k|2 − Ā








δA

δn



 = σ




δA

δn



. (3.26)

We solve for the eigenvalue problem (3.26). We first rewrite it as



−η|k|2 − 1 + n̄ − σ Ā

2n̄

Ā
D̄|k|2 − n̄ −D̄|k|2 − Ā − σ








δA

δn



 = 0. (3.27)

Setting the determinant of the square matrix on the left-hand side as zero, we

obtain

σ2 − τσ + δ = 0, (3.28)

where

τ = −D̄|k|2 − η|k|2 − Ā − 1 + n̄, (3.29)

δ = D̄|k|2(η|k|2 + 1 − 3n̄) + η|k|2Ā + Ā. (3.30)

The equilibrium is stable if both solutions to (3.28) have negative real parts. Since

α, β > 0, thus Ā > 0, 0 < n̄ < 1, we observe that τ ≤ 0. Therefore, the equilibrium

is stable if δ > 0. We then observe that if n̄ < 1/3, then δ > 0. It follows that the

equilibrium is stable when n̄ < 1/3.

Now, we consider the case when n̄ > 1/3. Since the equilibrium is unstable if

δ < 0, from (3.30), we rewrite the condition δ < 0 equivalently as

Ā < D̄|k|2
(
−1 +

3n̄

η|k|2 + 1

)
, ∀ k. (3.31)

Setting x = η|k|2, from (3.31), we infer

Ā < max
x≥0

[
D̄η−1x

(
−1 +

3n̄

x + 1

)]
. (3.32)
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To calculate the right-hand side of (3.32), we set the derivative of the corresponding

function in x equal to zero, and arrive at

D̄η−1 −3n̄x

(x + 1)2
+ D̄η−1

(
−1 +

3n̄

x + 1

)
= 0,

x2 + 2x + 1 − 3n̄ = 0. (3.33)

We substitute the positive root x = −1 +
√

3n̄ into (3.32) and obtain

Ā < D̄η−1(−1 +
√

3n̄)2. (3.34)

This together with (3.31) implies (3.24) as desired.

4. Incorporation of Law Enforcement Agents

In the field, there is another essential component that affects the criminal behav-

ior, namely, the presence of law enforcement agents. We incorporate their effects

into the TLFM. We assume that the law enforcement agents also follow TLFs,

whose mobility parameters are possibly different than those of the criminal agents.

These parameters will determine their deployment strategy. We study the effects

of these law enforcement agents on the formation of the hotspots and total number

of criminal activities, and how they depend on the mobility parameters quantita-

tively and qualitatively. In Ref. 17, only qualitative comparisons were carried out.

In Ref. 42, law enforcement agents were also incorporated but the focus was on

the optimization of the deployment strategy through the study of a free boundary

problem.

4.1. Discrete model

Let ψk(t) be the number of the law enforcement agents at site k at time t, and

Ãk(t) be the attractiveness perceived by the criminals in the presence of the police

agents. As in Ref. 17, we assume that

Ãk(t) := e−χψk(t)Ak(t), (4.1)

where χ is a given constant measuring the effectiveness of the patrol strategy. Now,

we modify the model to include the effects of the law enforcement agents. The

probability of burglarizing and moving of the criminal agents are the same as in

Sec. 2.1, except for Ã replacing A. Thus at each time step, the system gets updated

as follows:

Step 1. Each criminal agent decides to burglarize with probability

p̃k(t) = 1 − e−Ãk(t)δt. (4.2)

Step 2. If a criminal agent chooses to commit a burglary then he will be immedi-

ately removed from the system. Otherwise he will move from site k to site i with
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probability

q̃k→i(t) =
w̃k→i(t)∑

j∈Z

j �=k

w̃k→j(t)
, k �= i, (4.3)

where

w̃k→i(t) =






Ãi(t)

lµ|i − k|µ , 1 ≤ |i − k| ≤ L,

0, otherwise.

(4.4)

Step 3. The law enforcement agents move following a TLF biased according to

the original attractiveness field. Hence the probability of a law enforcement agent

moving from site k to site i is

q̂k→i(t) =
ŵk→i(t)∑

j∈Z

j �=k

ŵk→j(t)
, k �= i, (4.5)

where

ŵk→i(t) =






Ai(t)

lbµ|i − k|bµ , 1 ≤ |i − k| ≤ L̂,

0, otherwise.

(4.6)

Here µ̂ ∈ (1, 3) and L̂ ∈ N. These mobility parameters of the law enforcement agents

are not necessarily the same with those of the criminal agents. We also demand that

the total number of law enforcement agents remains a constant in time; there is no

removal or replacement of the police agents.

Step 4. The attractiveness evolves in a way similar to (2.5) except for a change in

the number of burglary events in the time interval (t, t + δt]. From (4.2), we infer

that there are on average δtÃk(t)nk(t) crimes in each time interval on site k, and

we define the update rule as

Bk(t + δt) =
[
(1 − η)Bk(t) +

η

2
(Bk−1(t) + Bk+1(t))

]
(1 − ωδt) + θδtÃk(t)nk(t),

(4.7)

where η, ω and θ are the same parameters as in (2.5).

Step 5. At each site, a new criminal agent is replaced with rate γ.

Figure 6 presents a visual summary of steps in the form of a flow chart.

To conclude, the discrete mean field equation of (Ak(t), Ãk(t), nk(t), ψk(t)) con-

sists of (4.1), (4.7), and the following equations:

nk(t + δt) =
∑

i∈Z

1≤|i−k|≤L

[1 − Ãi(t)δt]ni(t)q̃i→k(t) + γδt, (4.8)

ψk(t + δt) =
∑

|i−k|≤bL

ψi(t)q̂i→k(t). (4.9)
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Fig. 6. Flowchart summarizing the discrete model with the incorporation of law enforcement
agents.

4.2. Continuum model

The derivation of the continuum equations for the attractiveness field and the crim-

inal number distribution is very similar as that in Sec. 3; basically, from (4.7) and

(4.8), we obtain (3.1) and (3.13) with A replaced by Ã when suitable:

∂A

∂t
=

l2η

2δt
Axx − ω(A − A0) + θnÃ, (4.10)

∂n

∂t
= D∇ ·

[
∇n − 2n

Ã
∇Ã

]
− Ãn + γ. (4.11)

This however will not lead to the identical system since now (4.10) and (4.11) are

part of a larger system which also includes the dynamics of the component of law

enforcement agent. With a similar derivation as in Sec. 3, from (4.9), we obtain

∂ψ

∂t
= D̂∇ ·

[
∇ψ − 2ψ

A
∇A

]
, (4.12)

where

D̂ =
l2

δt

z∗
bµ,bL

z
bµ,bL

. (4.13)

To conclude, the continuum model with law enforcement effects consists of (4.1)

and (4.10)–(4.12).

4.3. Computer simulations

In order to verify the validity of our continuum model, and to compare results with

the discrete model, we perform direct numerical simulations. We consider the basic
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deployment strategies including a BRW and a TLF with the same mobilities as

those of the criminal agents. As in Ref. 17, we also include the base case where

the law enforcement agents patrol random routes, that is, an URW. Here, the law

enforcement agents do not focus their attention on any particular place. In this

case, the continuum equation for the dynamics of law enforcement agents is just

the unbiased Brownian motion.6

To implement the discrete model, we consider a lattice grid on a spatial domain

[0, 1] with the lattice spacing being l = 1/60. The computation assumes periodic

boundary conditions. The algorithm used for the continuum simulation is very sim-

ilar to that used in Sec. 3.2. Particularly, we use a semi-implicit time discretization

with the time-stepping algorithms as follows:

Ã(m) = A(m)e−χψ(m)

, (4.14)

A(m+1) = A(m) + ∆t(ηA(m)
xx − A(m) + A0 + n(m)Ã(m)), (4.15)

n(m+1) = n(m) + D∆t

[
n(m)

xx −
(

2nÃ
(m+1)
x

Ã(m+1)

)

x

]

+ ∆t(−Ã(m+1)n(m) + γ), (4.16)

ψ(m+1) = ψ(m) + D̂∆t

[
ψ(m)

xx −
(

2ψ(m)A
(m+1)
x

A(m+1)

)

x

]
. (4.17)

Here, f (m) represents a quantity f at mth time step. To discretize the functional

space of the solutions, we use the fast Fourier transform (FFT).

Figures 7–9 below show the discrete and the continuum models corresponding

to the three deployment strategies. Good agreement is observed in all cases, which

(a) t = 5 (b) t = 10

Fig. 7. (Color online) Comparisons of the discrete and the continuum models with the URW
deployment strategy. The discrete model (4.1)–(4.7) is shown with cross lines, and the continuum
model (4.1) and (4.10)–(4.12) is shown with solid lines. The attractiveness field, the criminal and
the law enforcement agent number distributions are shown with green, red and blue lines. The
initial conditions (at t = 0) are taken to be ψ = 1/3 sin(πx), B ≡ 0 and n = 1 − 0.3 cos(4πx).
Parameters are χ = 8, A0 = 1 − 0.5 cos(4πx), l = 1/60, δt = 0.01, L = 9, η = 0.1, γ = 0.3, ω = 1,
θ = 1, and bL = 1. The system enters a steady state at roughly t = 10.



1874 C. Pan et al.

(a) t = 5 (b) t = 10

Fig. 8. Comparisons of the discrete and the continuum models with a BRW deployment strategy.
All the parameters and data are the same as in Fig. 7. The system enters a steady state roughly
at t = 10.

(a) t = 5 (b) t = 10

Fig. 9. Comparisons of the discrete and the continuum models when the deployment strategy of
a TLF is adopted. Here, bL = L = 9, bµ = µ = 2.5, and all the other parameters and data are the
same as in Fig. 7. The system enters a steady state roughly at t = 5.

validates the continuum models. It is expected that the URW in Fig. 7 does not

reduce hotspot activity and is the least effective of all the three strategies, which

agrees with the empirical evidence in Ref. 17. However, the comparison of Figs. 8

and 9 is less trivial. It seems that Fig. 9 shows higher deployment effectiveness, as

a steady state is reached faster. However for a better comparison, we need to first

quantify the effectiveness of the deployment strategies.

Remark 4.1. In Ref. 17, a “peripheral interdiction” was also considered, which

sends the police to the perimeters of the crime hotspots instead of the centers.

However, this deployment strategy is not considered here, as the criminals can take

long jumps now, and protecting the perimeters of a hotspot no longer necessarily

prevents them from entering the center.
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4.4. Quantitative comparisons of the patrol effectiveness

We compute the cumulative number of burglaries for the system. From (4.2), we

infer that the total expected number of burglary events over the whole domain up

to time T equals to
∑

k

∑
t=nδt, 0<t<T Ãk(t)nk(t)δt, where k is sum over all the

grid points in the domain. When the domain size is kept fixed and l is sent to zero,

the total number of grid points in this domain will increase to infinity. Therefore,

to make sense of the above quantity, we rescale it by multiplying it with l, and

physically it means the averaged expected number of burglaries. Then taking the

limit as δt and l become small, the rescaled double sum yields a double integral

denoted as S(T ):

S(T ) =

∫ T

0

∫

M

Ã(x, t)n(x, t)dxdt, (4.18)

where M denotes the spatial domain on which the lattice grid lives. The instanta-

neous global crime rate can be defined as

R(t) :=
∂S(t)

∂t
=

∫

M

Ã(x, t)n(x, t)dx. (4.19)

Figure 10 below shows the simulations of R(t) and S(t) when zero law enforcement

agent is put in the system, and when one of the deployment strategies mentioned

Fig. 10. Output of R(t) and S(t), when there is no law enforcement agent, and when the deploy-

ment strategy of an URW, a BRW, or a TLF is adopted. Here, all the parameters and data are
the same as in Figs. 7–9 except for l = 1 and the spatial domain M = [0, 60].
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in Sec. 4.3 above is employed, that is, an URW and a BRW, and a TLF with the

same mobility parameters as the criminals.

We observe that R(t) approaches a constant steady state independent of the

incorporation of law enforcement agents. In fact, we find that this steady state only

depends on the rate of criminals entering the system and the size of the domain:

Theorem 4.1. Once the system (4.1) and (4.10)–(4.12) is in a steady state at time

T, we have

R(t) = γ|M|, ∀ t ≥ T, (4.20)

where |M| is the size of the domain M.

Proof. We integrate (4.11) over the domain M
d

dt

∫

M

n dx =

∫

M

nt dx

= D
∫

M

[
Ã

(
n

Ã

)

xx

− n

Ã
Ãxx

]
− Ãn + γ dx

= D
[
Ã

(
n

Ã

)

x

− n

Ã
Ãx

] ∣∣∣∣
M

−
∫

M

(Ãn − γ) dx

= γ|M| −
∫

M

Ãn dx. (4.21)

Here, the periodic boundary conditions are applied. When the system is at a steady

state, the left-hand side of (4.21) vanishes, and hence (4.20) follows as desired.

In the original random-walk model,36 the crime suppression was built-in to the

decay of the attractiveness. This was used to model the finite lifetime of the repeat

victimization effect. Here, we add additional law enforcement who curb the crimes

by decreasing the attractiveness. We noted that in Fig. 10 with or without law

enforcement agents the steady state crime rate is identical. This happens essentially

because of the constant replacement rate, and was first observed in the original

RWM.36 Nevertheless, Fig. 10 shows that law enforcement agents do affect the

number of burglary events cumulated before the crime rate enters the steady state.

Thus, it seems reasonable to measure the deployment efficiency using S(T ) at the

time T , when R(T ) just enters the equilibrium. In Fig. 10, T can be chosen as 5,

as R(T ) is always within negligible difference from the steady state crime rate after

time 5.

Tables 1–3 below display S(5) for the three deployment strategies shown in

Fig. 10 (the system enters the steady state roughly at T = 5 in all three cases). We

observe from these tables that the TLF with the same mobility parameters as the

criminals is the most effective deployment strategy in terms of reducing the total

number of crime events. This quantitative result coincides with our intuition and

the qualitative comparisons in Figs. 7–9.
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Table 1. Comparisons of the global cumulative number of the burglary events

till time T = 5 between different deployment strategies. “Improvement I” shows
the improvement compared to the base case with zero enforcement agents.
“Improvement II” corresponds to the improvement compared to the URW
deployment strategy. The parameters and initial conditions are the same as
in Fig. 10. In this case, there are initially two regions of high attractiveness.

The police deployment strategy S(5) Improvement I Improvement II

Zero law enforcement agent 137 — —
Unbiased random walk 91.87 32.94% —
Biased random walk 88.91 35.1% 3.22%
Truncated Lévy flight 85.26 37.76% 7.19%

Table 2. Comparisons of the global cumulative number of the burglary events
till time T = 5 between different deployment strategies. Here, the initial condi-

tions (at t = 0) are taken to be n = 1− 0.3 cos(8πx) and A0 = 1− 0.5 cos(8πx),
and all the other parameters and data are the same as in Table 1. In this case,
there are four regions of high attractiveness initially.

The police deployment strategy S(5) Improvement I Improvement II

Zero law enforcement agent 136.46 — —
Unbiased random walk 97.83 28.3% —
Biased random walk 85.69 37.2% 12.41%
Truncated Lévy flight 82.73 39.37% 15.44%

Table 3. Comparisons of the global cumulative number of the burglary events
till time T = 5 between different deployment strategy. Here, the initial condi-
tions are taken to be n = 1− 0.3 cos(16πx) and A0 = 1− 0.5 cos(16πx), and all
the other parameters and data are the same as in Table 1. In this case, there

are eight regions of high attractiveness initially.

The police deployment strategy S(5) Improvement I Improvement II

Zero law enforcement agent 136.4 — —
Unbiased random walk 102.74 24.68% —
Biased random walk 83.11 39.07% 19.1%
Truncated Lévy flight 79.2 41.93% 22.91%

5. Conclusion

In this paper, we apply the TLFs to the class of agent-based crime models for

residential burglary. The truncation becomes a parameter that restricts the mobility

of the agents. We study both the discrete model and its continuum limit which agree

very well in computer simulations. We find that the continuum system behaves like

modified Brownian dynamics. This indicates that the continuum version of the

original RWM in Ref. 36, which also has a Brownian dynamics, can be utilized

here with a modified diffusion coefficient. For instance, the stability analysis in

the original paper36 can be modified and applied to our model efficiently. This

serves as a first step towards the weakly nonlinear analysis and bifurcation theory

which can help law-enforcement to understand the feedback between treatment
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and hotspot dynamics.33,34 Then we examine the impact of introducing police into

the TLFM, whose mobility parameters determine the deployment strategies. We

observe that the strategies can affect the global cumulative number of the burglary

events before the steady state is reached. We make a quantitative comparison of

the deployment strategy efficiency accordingly. We find that the TLF with the

same mobility parameters as those of the criminal agents is the most efficient one

compared to the deployment strategies of an URW and a BRW.

For the future work, on the one hand, we can extend the TLFM to two-

dimensional space, which is more realistic when modeling household distributions in

typical urban area. Then we can explore whether the “finite size effects” observed

previously in the original model36 is also an attribution of our model, namely,

whether the transience of the hotspot dynamics in the discrete simulations will

depend on the initial population size. On the other hand, we can continue the

study of the dependence of the law enforcement patrol efficiency upon the mobility

parameters of the agents. A complete parametrization of the efficiency with the

mobility parameters may be suggestive for the police patrol strategy design.
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a Gaussian: The truncated Lévy flight, Phys. Rev. Lett. 73 (1994) 2946–2949.
22. M. C. Mariani and Y. Liu, Normalized truncated Levy walks applied to the study of

financial indices, Physica A, Stat. Mech. Appl. 377 (2007) 590–598.
23. G. A. Marsan, N. Bellomo and L. Gibelli, Stochastic evolutionary differential games

toward a systems theory of behavioral social dynamics, Math. Models Methods Appl.

Sci. 26 (2016) 1051–1093.
24. A. Matacz, Financial modeling and option theory with the truncated Lévy process,
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