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Abstract. Networks capture pairwise interactions between entities and are frequently used in applications such
as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups
of nodes, often form in these applications, and identifying them gives insight into the overall organization of the
network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM
J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular
nonconvex total variation (TV) based functional over a discrete domain. They solve this problem—assuming the
number of communities is known—using a Merriman, Bence, Osher (MBO) scheme.

We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete
domain—again, assuming the number of communities is known. Furthermore, we show that modularity has no convex
relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a
Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We
then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at
solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable.
Our numerical tests include a hyperspectral video whose associated graph has 2.9 × 107 edges, which is roughly 37
times larger than was handled in the paper of Hu et al.
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1. Introduction. Community detection in complex networks is a difficult problem with ap-
plications in numerous disciplines, including social network analysis [55], molecular biology [38],
politics [55], material science [5], and many more [56]. There is a large and growing literature on
the subject, with many competing definitions of community and associated algorithms [24, 64, 26].
In practice, community detection is used as a way to understand the coarse, or mesoscale, properties
of networks. Further investigation into these communities sometimes leads to insights about the
processes that formed the network or the dynamics of processes acting on the network.

In this paper, we focus on the task of partitioning the nodes in a complex network into dis-
joint communities, although many other variations, such as overlapping, fuzzy, and time-dependent
communities are also used in the literature. The proper way to understand such communities in
small networks has been fairly well-studied, and their role in larger networks is the subject of active
research [40].

A great variety of definitions have been proposed to make the partitioning task precise [26], in-
cluding notions involving edge-counting, random walk trapping, information theory, and—especially
recently—generative models such as stochastic block models (SBMs). In this paper, we focus on
modularity optimization [58], which is the most well-studied of existing methods. To define it, we
need the following terminology, which is used throughout the paper.
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Definition 1.1. Let G be a non-negatively weighted, undirected, sparse graph with N nodes,
weight matrix W = (wij), degree vector k satisfying ki =

∑

j wij , and 2m =
∑

i ki.

Modularity-optimizing algorithms seek a partition A1, . . . , An̂ of the nodes of G which maximizes

Q =
1

2m

n̂
∑

`=1

∑

ij∈A`

wij −
kikj
2m

.

Intuitively, we are to understand wij as the observed edge weight and
kikj

2m as the expected weight
if the edges had been placed at random. Thus, there is an incentive to group those nodes which
have an unusually strong connection under the null model.

The results of modularity optimization must be interpreted carefully. For example, the mod-
ularity functional, Q, will find communities in a random graph [36]. In addition, many dissimilar
partitions may yield near-optimal modularity values [35]. This is to be expected, since the network
partitioning problem is very well posed. Real networks are generated by complicated processes with
many factors, and thus there are often multiple ways to partition a network that reflect legitimate
divisions among the objects being studied [63]. One way to leverage this diversity of high-modularity
partitions in practice, as well as prevent the discovery of communities in random graphs, relies on
consensus clustering [78]. Another approach is simply to sample many high-modularity partitions,
expecting that multiple intuitively-meaningful partitions may be found. Such effects have been
observed, for instance, in the Zachary Karate Club network, which has both a community structure
and leader-follower structure [63].

Modularity also has preferred scale for communities [25, 46]. For this reason, one typically
includes a resolution parameter γ > 0 [65, 4], yielding

Q =
1

2m

n̂
∑

`=1

∑

ij∈A`

wij − γ
kikj
2m

When γ is nearly zero, the incentive is to place many nodes in the same community, so that the
edge weight is included in the sum. When γ is large, few nodes are placed in each community, to
avoid including the large penalty term γ

kikj

2m .
A number of heuristics have been proposed to optimize modularity [24, 26], with prominent ap-

proaches including spectral [57, 59], simulated annealing [36], and greedy or Louvain algorithms [7].
It can also be interpreted in terms of force-directed layout and optimized using visualization tech-
niques [61]. The modularity optimization problem is NP-hard [8], so it is not expected that a single
heuristic will suffice for all situations.

In 2013, Hu, Laurent, Porter, and Bertozzi [39] discovered a connection between the modu-
larity optimization problem in network science and total variation (TV) minimization from image
processing. As an application, Hu et al. developed Modularity MBO, a TV-oriented optimization
algorithm that effectively optimizes modularity. The present work strengthens both theoretical and
algorithmic connections from [39]. Specifically, we make the following contributions:

We start with derivations of four formulations of modularity, two in terms of TV and two
in terms of graph cuts, which inspire the subsequent analysis. In addition to being intuitively
simple, these formulas place all of the nonconvexity of the problem into a discrete constraint—
the functionals themselves are convex. We prove a theorem showing that convex relaxation of
modularity is not possible under certain conditions. While many practitioners have observed that
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modularity optimization seems highly nonconvex, ours is the first result of which we are aware
showing this in a rigorous way. We then provide an alternative relaxation, using the Ginzburg-
Landau functional, that smooths the discrete constraint so that it becomes manageable. We end
the theory section by showing that solutions of our relaxed problem converge to maximizers of
modularity in an appropriate sense.

Based on these ideas, and following [39], we develop an MBO-type scheme, Balanced TV, which
quickly and accurately optimizes modularity in several examples. This algorithm seems especially
well-suited to similarity networks from machine learning, where prior knowledge of the number
of communities is available and the number of such communities tends to be modest. Using the
convexity of our formulation of TV, we provide inner- and outer-loop timestep bounds to avoid hand-
tuning parameters, as is necessary in [39]. We also show how to discretize the partial differential
equation (PDE) part of the MBO iteration in an unconditionally stable, efficient way. We test our
algorithm on much larger datasets than are used in [39]. Finally, we show that this approach can
solve semi-supervised problems as well.

The rest of the paper is organized as follows: Section 2 surveys the necessary background in
both modularity optimization and TV minimization. Section 3 develops the main theoretical results
about the optimization problem itself. Section 4 develops the theory and practical implementation
of our algorithm, Balanced TV. Section 5 gives numerical examples. Section 6 concludes. There
are also appendices containing additional background and deferred proofs.

2. Total Variation Optimization: Continuum and Discrete. While modularity opti-
mization is normally understood as a combinatorial problem, TV was historically seen as a con-
tinuum object, with applications in partial differential equations, physics simulation, and image
processing.1 Given a smooth function f from some domain U ⊂ R

n to R, we define the TV of f as

|u|TV =

∫

U

| ∇ f |.

In the special case where n = 1, this is the total rise and fall of the function, hence the name. An
important special case is when n = 2 or 3 and f is the indicator function of a region V ⊂ U . In
such a case, |f |TV is the perimeter or surface area of V .

Total variation minimization is an important heuristic in image processing, where e.g. a black
and white image that is corrupted by noise can be viewed as a function f : [0, 1]2 → [0, 1], where
the value of f varies from 0 (black) to 1 (white). A common task is to remove the noise and recover
the original image. Since noise is manifest as large gradients in f , early approaches found u as the
solution to a minimization problem such as

min
u

∫

[0,1]2
|| ∇u||2 + ||u− f ||2.

The solution to such a problem is a smoothed image, which means that the noise is eliminated, but
all edges are also erroneously eliminated. The correct approach [66], is to modify the problem as
follows

min
u

∫

[0,1]2
|| ∇u||+ ||u− f ||2.

This small change allows the minimization procedure to preserve edges and yields much better
results in many applications. The reason is that minimizers of total variation tend to be piecewise

1See [11] for a more complete treatment.
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smooth. Total variation minimization has other applications as well, such as compressed sensing [10]
and mean curvature flow [12, 45].

Network community detection is in some ways analogous to image segmentation, in that both
seek a partition into coherent subsets, and one of the main ideas behind the use of total variation
in the network context is that it helps us arrive at the “correct” energy to optimize for, as in the
image processing context. An important example is spectral approaches, such at those of [57, 59].
In the case of only two communities, we let u be a real-valued function on the nodes of the graph.
A partition of the nodes into two communities can be encoded in such a function by letting u = 1
on the nodes in one set and u = −1 on the others. The modularity can then be written as

1

4m

∑

ij

(

wij − γ
kikj
2m

)

(1 + uiuj) =
1

4m

∑

ij

(

wij − γ
kikj
2m

)

+
1

4m

∑

ij

(

wij − γ
kikj
2m

)

uiuj(1)

= const+
1

4m

∑

ij

(

wij − γ
kikj
2m

)

uiuj(2)

= const+
1

2
uTMu(3)

where Mij = wij −γ
kikj

2m is the modularity matrix. Thus, (3) is exactly equal to modularity when u
represents a partition but has an obvious extension to all N -vectors. An important idea in spectral
approaches is to maximize (3) or related energies over all real vectors and then employ some kind
of thresholding on the values of the result to recover a binary partition. Recursive bipartitioning
can be used to find partitions into more than two communities. A large number of variations on
this idea exist and are widely used. Such approaches are analogous to ideas from section 2, in that
the solutions are expected to be smooth because of the quadratic term, which is indeed observed
in practice, thus necessitating some kind of thresholding. In contrast, by using a non-quadratic
measure of differences in the value of u across edges, it is possible to promote sharp interfaces in
the solutions.

We now very briefly give the definition of total variation on a graph, referring to [31, 69] for
a complete treatment, where it is shown that these choices are consistent with discrete notions of
Riemannian metrics, inner products, divergences, and so forth. The nonlocal gradient of a function
f : G → R at node i in the direction of the edge from i to j is

∇f(i, j) = f(j)− f(i).

The graph total variation is then given by the 1-norm of ∇f at node i

(4) |f |TV =
1

2

∑

ij

wij |f(j)− f(i)|,

where wij is the i, j entry of the adjacency matrix (see Definition 1.1). We will actually use a slight
generalization of (4) to the case where f : {1, · · · , N} → R

n̂ is vector-valued, in which case

|f |TV =

n̂
∑

`=1

|f`|TV

where f` is the `-th component of f . It is usually convenient in this case to identify f with an N× n̂
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matrix where fi` = f`(i). Then we have

|f |TV =
n̂
∑

`=1

1

2

N
∑

ij=1

wij |fi` − fj`|.

Graph total variation is connected to graph cuts, which correspond roughly to perimeter in
Euclidean space.

Definition 2.1. Let S be a subset of the nodes of G. Then the graph cut associated to S is
given by

Cut(S, Sc) =
∑

i∈S,j∈Sc

wij .

Let f : {1, · · · , N} → R be the characteristic function of a set of nodes S. Then we can calculate

|f |TV =
1

2

∑

ij

wij |f(i)− f(j)| =
∑

i∈S,j∈Sc

wij = Cut(S, Sc).(5)

TV minimization on a graph tends to produce piecewise-constant functions whose corresponding
graph cut is small [52].

3. Equivalence Theorem and its Consequences. In this section, we derive representations
of modularity and explore some consequences. We will need definitions:

Definition 3.1. A family of sets S1, · · · , Sn̂ is a partition of a set S if S =
⋃n̂

`=1 S` and
S`1 ∩ S`2 is empty for each `1 6= `2.

Definition 3.2. Let Π(G) be the set of all partitions of the nodes of G. For each partition
A1, · · · , An̂ in Π(G), there is an N × n̂ partition matrix defined by,

ui` =

{

1 i ∈ A`

0 i ∈ Ac
`

For a matrix u, we say u ∈ Π(G) when u is the partition matrix of some partition.

Definition 3.3. For any subset S of the nodes of G, its volume is given by volS =
∑

i∈S ki.

3.1. Formulations of Modularity on Terms of TV and Graph Cuts. We are now ready
to give the different formulations of modularity that form the basis for our subsequent analysis.

Proposition 3.4 (Equivalent forms of modularity). The following optimization problems all
have the some solution set:

Modularity: argmax
n̂∈N,{A`}n̂

`=1
∈Π(G)

n̂
∑

`=1

∑

ij∈A`

wij − γ
kikj
2m

(6)

Balanced cut (I): argmin
n̂∈N,{A`}n̂

`=1
∈Π(G)

n̂
∑

`=1

(

Cut (A`, A
c
`) +

γ

2m
(volA`)

2
)

(7)

Balanced cut (II): argmin
n̂∈N,{A`}n̂

`=1
∈Π(G)

n̂
∑

`=1

(

Cut (A`, A
c
`) +

γ

2m

(

volA` −
2m

n̂

)2
)

+ γ
2m

n̂
(8)
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Balanced TV (I): argmin
n̂∈N,u∈Π(G)

|u|TV +
γ

2m

∣

∣

∣

∣kTu
∣

∣

∣

∣

2

2
(9)

Balanced TV (II): argmin
n̂∈N,u∈Π(G)

|u|TV +
γ

2m

∣

∣

∣

∣

∣

∣

∣

∣

kTu− 2m

n̂

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+ γ
2m

n̂
(10)

Each of the preceding forms has a different interpretation. The original formulation of modularity
was based on comparison with a statistical model and views communities as regions that are more
connected than they would be if edges were totally random. The cut formulations represent modu-
larity as favoring sparsely interconnected regions with balanced volumes, and the TV formulation
seeks a piecewise-constant partition function u whose discontinuities have small perimeter, together
with a balance-inducing quadratic penalty. The cut and TV forms come in pairs. The first form
(labelled “I”) is simpler to write but harder to interpret, while the second (labelled “II”) has more
terms, but the nature of the balance term is easier to understand, as it is minimized (for fixed
n̂) when each community has volume 2m/ n̂. Furthermore, the third term of the forms labelled II
reveals that the incentive to increase the number of communities n̂ can be quantified in terms of an
O(n̂−1) penalty term, which is not obvious from other formulations of modularity.

One can compare these equivalent formulations with [39], in which minimizing the functional

(11) |u|TV − γ||u−mean(u)||2`2(G) = |u|TV − γ
∑

i`

ki

∣

∣

∣

∣

∣

ui` −
1

2m

N
∑

i′=1

kiui′`

∣

∣

∣

∣

∣

2

is shown to be equivalent to modularity optimization, subject to the same constraint as the other
TV formulas presented here. Thus, in [39], there are two sources of nonconvexity, namely the
balance term and the constraint, while in our formulation, the discrete constraint is the only source
of nonconvexity.2 It is also clearer from our formulation which features of a solution are incentivized
by modularity optimization, namely, the two priorities of having a small graph cut and balanced
class sizes are the only considerations. The relative weight of these considerations, as well as the
number of communities, is governed by γ, via the second and third terms of (10). Overall, these
theoretical simplifications make the nonconvexity of the problem easier to navigate.

We note that forms similar to (7)–(10) have appeared in the literature before (see e.g. [65]),
although the only previous work to consider any modularity formula in terms of total variation
is [39]. To the best of our knowledge, the composition of modularity into the three intuitively
meaningful terms in the forms labelled II is also novel. We will see shortly that the total variation
perspective on (7)–(10), combined with the convexity of the functionals in (9) and (10) leads to a
number of new developments.

Equations (7)–(10) provide a convenient way to incorporate metadata into the partitioning
process. This can be done by simply incorporating a fidelity term and minimizing the functional

(12) |u|TV +
γ

2m
||kTu||22 + λ||χ ∗ (u− f)||22

where λ > 0 is a parameter, f is a term containing the metadata labels, ∗ is the entry-wise matrix
product, and χ is a matrix that is zero except in the entries where labels are known. Including

2To see rigorously that (11) is nonconvex, consider the special case of two nodes connected by a single edge, γ = 1
and u = [λ 0; 0 0]. Then considering (11) as a function of λ immediately shows the nonconvexity. The nonconvexity
is actually very general; computing the second derivative of the second term in (11) with respect to any component of
u gives a negative value for any connected graph with more than one node. Since the TV term grows asymptotically
linearly, it is eventually dominated by the quadratic growth of the second, concave term.
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metadata should always be done with care, of course, but the general utility of semisupervised
learning is well-attested in image processing and machine learning applications. (See Table 3 for
two numerical examples.)

Proof of Proposition 3.4. Notice that the cut and TV formulations are really just a change of
notation, so that there are two nontrivial equivalences, namely the equivalence of (6) with (7) and
the equivalence of (7) and (8). We first show the equivalence of (6) with (7). Fix n̂, and consider
an otherwise arbitrary partition {A1, . . . , An̂} of G. Then we have

Q =
1

2m

n̂
∑

`=1

∑

ij∈A`

wij − γ
kikj
2m

(13)

=
1

2m

n̂
∑

`=1





∑

i∈A`,j∈{1,...,N}

wij −
∑

i∈A`,j∈Ac
`

wij



− γ

2m

n̂
∑

`=1

∑

ij∈A`

kikj
2m

(14)

=
1

2m

N
∑

ij=1

wij −
1

2m

n̂
∑

`=1

∑

i∈A`,j∈Ac
`

wij −
γ

2m

n̂
∑

`=1

∑

ij∈A`

kikj
2m

(15)

= 1− 1

2m

n̂
∑

`=1

∑

i∈A`,j∈Ac
`

wij −
γ

2m

n̂
∑

`=1

∑

ij∈A`

kikj
2m

(16)

= 1− 1

2m

n̂
∑

`=1

Cut(A`, A
c
`)−

γ

2m

n̂
∑

`=1

∑

ij∈A`

kikj
2m

.(17)

Summing along the j index first yields

= 1− 1

2m

n̂
∑

`=1

(

Cut(A`, A
c
`) +

γ

2m

n̂
∑

`=1

∑

i∈A`

ki volA`

)

(18)

= 1− 1

2m

n̂
∑

`=1

(

Cut(A`, A
c
`) +

γ

2m
(volA`)

2
)

(19)

Thus, the maxima of modularity coincide with the minima the functional from (7), as required.
To see that (7) and (8) are equivalent, we calculate:

n̂
∑

`=1

(

Cut (A`, A
c
`) +

γ

2m

(

volA` −
2m

n̂

)2
)

(20)

=

n̂
∑

`=1

(

Cut (A`, A
c
`) +

γ

2m

(

(volA`)
2 − 4m

n̂
volA` +

4m2

n̂2

))

(21)

=

n̂
∑

`=1

(

Cut (A`, A
c
`) +

γ

2m
(volA`)

2
)

− γ

2m

8m2

n̂
+

γ

2m

4m2

n̂
(22)

=

n̂
∑

`=1

(

Cut (A`, A
c
`) +

γ

2m
(volA`)

2
)

− γ
2m

n̂
(23)
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3.2. On convex relaxations. The preceding equivalence theorem makes it very tempting to
look for a convex relaxation of (9). Recall that, given two sets, A ⊂ B where A is discrete and
a functional F : A → R, a relaxation of F is any function F̄ : B → R such that F = F̄ on A.
A relaxation is called exact in the context of minimization if minx∈A F = minx∈B F̄ .3 Finally, a
relaxation is called convex if F̄ is convex.

Modularity (6) and balanced TV (9) are both defined only over a discrete domain, and we would
like an extension, or relaxation, of these functions to a larger, continuum domain so that they are
easier to work with numerically. Ideally, we could arrive at a convex relaxation and have access to
the powerful tools of convex optimization. The formulation in (9) indicates one way to proceed.
Using (9), we already have a convex functional except for the domain, so one would hope that the
obvious relaxation obtained by using formula (9) on all of RN×n̂ would be useful. Unfortunately,
the next theorem shows that this obvious relaxation is minimized by the constant matrix and is
thus not likely to be useful. In fact, it shows that a large class of other convex relaxations will be
uninformative. This will force us to look for nonconvex approaches in the next subsection. Before
we state the theorem, we include three more definitions:

Definition 3.5. The symmetric group on n̂ symbols, Sn̂, is the set of all permutations on
{1, · · · , n̂}. Each element σ ∈ Sn̂ acts on a matrix u ∈ R

N×n̂ with columns u1, · · · , un̂ by sending u
to another matrix, σ(u) with columns uσ(1), · · · , uσ(n̂). If u ∈ Π(G), then σ(u) is the same partition
with the labels permuted.

Definition 3.6. A map F from some set of matrices to the real numbers is symmetric if it is
invariant under column permutations, i.e. F(u) = F(σ(u)) for all σ and u.

The balanced TV functional (9) is symmetric, and most natural relaxations of it are symmetric.

Definition 3.7. Given a set S lying in a vector space V , the convex hull is the smallest convex
set containing S.

It can be shown that in a finite-dimensional vector space, the convex hull exists and is the intersec-
tion of all convex sets containing S. For example, if S is given by three noncolinear points in the
plane, the convex hull is a triangle.

We now state and prove our theorem on convex relaxations of modularity.

Theorem 3.8. Let F be given by (9) with domain Π(G, n̂) = Π(G) ∩ R
N×n̂, and let F̃ be

any symmetric, convex extension of F to the convex hull of Π(G, n̂). Then F̃ has a trivial, global
minimizer ũ that has all columns equal to each other, thus yielding no classification information.

If the symmetry requirement is dropped, then ũ need not be a global minimizer, but will have
an objective value at least as good as any u ∈ Π(G, n̂).

Proof. We consider the symmetric case first. Let u lie in the convex hull of Π(G, n̂). We will
use the symmetry of F̃ plus convexity to average all the column permutations of u and get a value
of F̃ at least as low as u gives. Let ũ = 1

n̂!

∑

σ∈Sn̂
σ(u). Then by Jensen’s inequality we have

F̃(ũ) = F̃
(

1

n̂!

∑

σ∈Sn̂

σ(u)

)

≤ 1

n̂!

∑

σ∈Sn̂

F̃(σ(u)) = F̃(u).

Since u was arbitrary, ũ is a global minimizer.

3Analogous notions apply to maximization problems, but we are using (9) rather than (6) for the moment.



SIMPLIFIED LANDSCAPE FOR MODULARITY USING TV 9

Finally, all the columns of ũ are equal,4 and thus uninformative. To see this, take any k, ` ∈
{1, . . . , n̂}. Let τ be the permutation that swaps these two values and leaves all the others fixed.
Then any σ ∈ Sn̂ can be written uniquely as τ ◦ σ′, with σ′ = τ ◦ σ. (Proof: τ ◦ τ is the identity, so
left-multiply by τ .) Thus the k-th column of ũ is given by

ũk =
1

n̂!

∑

σ∈Sn̂

σ(u)k(24)

=
1

n̂!

∑

σ′∈Sn̂

τ ◦ σ′(u)k(25)

=
1

n̂!

∑

σ′∈Sn̂

σ′(u)` (Note the change in subscript!)(26)

= ũ`(27)

So all columns of ũ are equal.
The non-symmetric case is similar, except that u must lie in Π(G, n̂) since F̃ is not known to

be symmetric. Therefore, in that case, we can only show that the value of F̃ at ũ is at least as
good as at any point in Π(G, n̂).

This means that modularity cannot be convexly relaxed using this embedding of Π(G, n̂) in R
N×n̂.5Thus,

our only option to make use of smooth optimization techniques is a non-convex relaxation. In the
following subsection, we present one such family of relaxations.

3.3. Ginzburg-Landau Relaxation. In this subsection, we develop a way to relax the mod-
ularity problem to a continuum domain, which can make the nonconvexity more manageable. In
other TV problems arising in materials science and image processing, discrete constraints similar
to modularity’s are dealt with using the idea of phase fields, where a thin transition layer be-
tween discrete-valued regions is allowed, making the problem smooth so that it can be attacked
by continuum methods. (See e.g. [71, 22, 2, 6].) As discussed above, TV is used for two of its
properties: promoting small perimeter and encouraging binary results. The Ginzburg-Landau re-
laxation replaces the TV term with two other terms: the Dirichlet energy and a multiwell potential,
each of which has one of the aforementioned properties. Thus the Ginzburg-Landau energy in the
continuum is given by

Fε(u) =

∫

U

ε||∇u(x)||2 + 1

ε
P (u(x)) dx,

where ε is a small parameter and P is a multiwell potential with local minima at the corners of the
simplex, which is the set of nonnegative vectors whose components sum to 1. The exact form of P
will not be important for our purposes, but we will give a concrete example in the next theorem.
A classical result asserts that for u : U ⊂ R → R and P having minima at 0 and 1, we have the
following convergence6result:

Fε(u)
Γ−→
{

const |u|TV if u is binary
+∞ otherwise

4Incidentally, all of the rows are also equal, since row stochasticity is preserved under column permutation.
5We do note, however, that by means of a different embedding [15] was able to obtain a convex relaxation with

solutions which, while not discrete, are also not trivial. Thus, the embedding requirement is a non-trivial part of our
theorem. Other related works include [13] and [1].

Note that our proof does not rely on many specific properties of modularity, and indeed, a similar theorem holds
for any symmetric quality function over a discrete domain.
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as ε → 0, under appropriate conditions.
In order to arrive at the graph Ginzburg-Landau functional, observe that if we ignore boundary

terms, then integration by parts gives

∫

U

||∇u||2 =

∫

U

∇u · ∇u =

∫

U

− div∇u · u =

∫

U

−∆u · u,(28)

which suggests that we use a graph Laplacian in our formulation. The Laplacian that is appropriate
for our context is the combinatorial or unnormalized Laplacian, L = diag(k)−W.

In [6], the idea of using a Ginzburg-Landau functional in graph-based optimization first ap-
peared, and it has subsequently been treated in more depth in [68], where much of the continuum
theory was successfully extended to graphs. Our approach closely mirrors [39], the main difference
in this case simply being that our functionals have better convexity properties, which allows for
different estimates and improved techniques. We begin with a convergence result.

Theorem 3.9 (Γ-convergence for the balanced TV problem). Assume P (ui)
||ui||

→ ∞ as ||ui|| →
∞, where ui is the i-th row of u. Then the functionals7

Fε = ||∇u||22 +
1

ε

N
∑

i=1

P (ui) +
γ

2m
||kTu||22(29)

:= uTLu+
1

ε

N
∑

i=1

P (ui) +
γ

2m
||kTu||22,(30)

defined over all of RN , Γ-converge to the functional

{

|u|TV + γ
2m ||kTu||22 if u corresponds to a partition

+∞ otherwise
(31)

In particular,
• for any sequence εn → 0, and any corresponding sequence uε of minimizers of Fεn , there is
a subsequence that converges to a maximizer of modularity, and

• any convergent subsequence of the uε converges to a maximizer of modularity.

The proof is given in the appendices.
Moving forward, we focus on minimizing the relaxed functionals from Theorem 3.9. While

using the Ginzburg-Landau functional does introduce a Laplacian into our formulation, we stress
that this approach is different from spectral approaches, such as those in [57, 59]—the preceding
result on Γ-convergence shows that the real object we are aiming for is TV, which, as discussed in
the background section, has very different solutions from quadratic optimization problems. In the
results section, we will see numerically that the answers are indeed different from one particular
spectral method.

4. Numerical Scheme.

6See the appendices for an overview of Γ-convergence.
7Note that due to the discrete setting, there is no epsilon factor preceding the Laplacian term, see [68].
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4.1. MBO iteration. We minimize the functional from (30) using an adaptation of the graph
MBO scheme. We call our approach Balanced TV. The acronym “MBO” stands for Merriman,
Bence, and Osher [54], who introduced this algorithm in Euclidean space. It has been widely
used as an approach to motion by mean curvature and TV minimization. The connection between
graph-based TV and MBO was first made in [51] and [28]. The theoretical study of the algorithm
on graphs was initiated in [69]. We sketch the logic of MBO here and refer the reader to [54]
for a more complete treatment. The scheme works by approximating the gradient descent flow of
the Ginzburg-Landau functional in the case where ε is very small. Consider the Ginzburg-Landau
gradient descent equation (at fixed n̂)

d

dt
u = −Lu− 1

ε
P ′(u)− γ

m
kkTu.

One way to approximate this flow is by operator splitting [32, p.22] with time-step dt and tn =

n ∗ dt, n = 0, 1, 2, · · · . Given un one obtains un+ 1

2 as the solution to

d

dt
u1 = −Lu1 −

γ

m
kkTu1, t ∈ [tn, tn+1],

u1(tn) = un, un+1/2 = u1(tn+1).

(32)

Then one gets un+1 by solving

d

dt
u2 = −1

ε
P ′(u2), t ∈ [tn, tn+1],

u2(tn) = un+1/2, un+1 = u2(tn+1).

(33)

The iteration continues until a fixed point is reached. Such operator splitting schemes are typically
first-order accurate in time. In the case where ε is very small, the second flow is essentially a
thresholding operation, pushing all values of u into the nearest well, i.e.

un+1
i` =

{

1 ` = argmaxˆ̀u
n+ 1

2

iˆ̀

0 otherwise

This gives the MBO scheme:

Balanced TV MBO scheme

Initialize u randomly.
Set n = 0.
while A stationary point has not been reached do

un+ 1

2 = e−dtMun where M = L+ γ
mkkT

un+1 = threshold(un+ 1

2 )
n = n+ 1

end while

The most expensive part of this procedure is evaluating the matrix exponential. We accomplish
this efficiently using a pseudospectral scheme, which will be described below.
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We treat the forcing term implicitly, which differs from several recent studies, such as [39,
6, 51]. This can be done efficiently because the operator M is positive semi-definite and can be
applied to a vector in linear time, assuming A is sparse. Implicit treatment has the advantage of
avoiding an inner loop, which is time-consuming, has a timestep-restriction, and adds another user-
set parameter, namely the inner loop timestep. For this reason, the implicit treatment described
herein is much easier and faster than the typical nested-loop approach.

As stated, we assume from here on that A is sparse. The case where A is dense could be
approached using the Nyström method, as in [6]. Beware, however, that one must find a way to
estimate k and 2m efficiently, which is not obvious. An alternative is to sparsify the network in
preprocessing, which is the approach taken in our examples. This is generally cheap compared to
the cost of partitioning the resulting sparse network.

4.2. Treating the matrix exponential. As stated above, the most time-intensive step in
the MBO iteration is the matrix exponential, and this step is repeated many times. Therefore, it
makes sense to use a pseudospectral scheme, as described in, for instance, [6]. This means that we
precompute the eigenvalues and eigenvectors of M , and use them to solve the matrix exponential.
By doing the eigenvalue calculation up front, each iteration is greatly accelerated. Here is how the
scheme looks:

Pseudospectral Balanced TV MBO scheme

Initialize u randomly.
Calculate the eigenvalues of M , and form the diagonal matrix D with its diagonals being
the eigenvalues.
Also calculate the eigenvectors and form the matrix V whose columns are the eigenvectors.
while a stationary point has not been reached do

an = V Tun.
an+1 = e−dtDan

un+ 1

2 = V an+1

un+1 = threshold(un+ 1

2 ).
end while

In practice, it may not be possible to calculate the full spectrum of M , if M is large. In this
case, we calculate the Neig smallest eigenvalues and eigenvectors of M . Then instead of changing
coordinates using a full matrix, use the N × Neig matrix V exactly the same way as before. This
is equivalent to projecting onto a subspace generated by these eigenvectors, and it makes the
algorithms very efficient.

To understand the effect of computing only a few eigenvectors, recall that M is positive semi-
definite. Therefore, it has an orthonormal basis of eigenvectors, and the evolution we are solving,
namely d

dtu = −Mu, can be diagonalized as at = −Da where a = V Tu, and V is the full matrix of
eigenvalues, and D is a non-negative, diagonal matrix. Therefore, the evolution occurs in distinct
“modes”, with rates of decay controlled by the eigenvalues of M . The modes corresponding to
small eigenvalues persist longer than those corresponding to large eigenvalues (which experience
stiff exponential decay), so that it is not a bad approximation to simply project these components
away when it is numerically necessary. Thus, in practice, we collect the smallest eigenvectors of M
and the corresponding eigenvectors, neglecting the others.

We use Anderson’s iterative Rayleigh-Chebyshev code [3]—which the author kindly provided
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to us—to get the eigenvalues and eigenvectors. We generally set Neig = 5 n̂.

4.3. Determining the number of communities. The preceding algorithm assumes a fixed
n̂. In practice, we found three methods of determining the value of n̂:

1. Use domain knowledge—for instance, in two moons, it is known that there are two com-
munities,

2. Try several values of n̂ and take whichever one produces the best modularity—this works
best in cases where there are few communities, as in MNIST. Note that the most time
consuming part of the MBO scheme, namely computation of eigenvectors need only be
done once, so that several different values of n̂ can be tried without incurring much extra
cost.

3. Recursively partition the network—this works when many communities are present, as in
the LFR networks. The partition is only made at each step if it increases modularity.
This approach worked well in our examples, although in the case of LFR, where O(N)
communities are present, a lot of recursion is needed. This is compensated for by the fact
that the subgraphs grow smaller and smaller near the end.

4.4. Scaling. We expect the scaling of our approach to be roughly linear, as suggested by the
following informal argument. The main components of the algorithm are

1. finding eigenvalues and eigenvectors (probably O(N logq N) for some q),8

2. changing coordinates using only the leading eigenvectors (O(N) per iteration, with empir-
ically O(1) iterations needed to converge),

3. evaluating the exponential of a vector componentwise (also O(N) per iteration), and
4. thresholding (O(N) per iteration).

The preceding estimates all apply in the case where no recursion is needed, i.e. the number of
communities is known in advance. If the recursion is done by partitioning the graph into n̂ pieces
at each level, then the cost is heuristically on the order of

Õ(N) + n̂ Õ

(

N

n̂

)

+ n̂2 Õ

(

N

n̂2

)

+ · · ·+O(N)O(1) = Õ(N)

where Õ means that logarithmic terms are neglected, and each term in the sum is the product
of the number of partitioning problems to be solved with the size of the partitioning problems.
This scalability is roughly borne out in our example data sets, although we warn that there are
additional complications, based on the varying number of communities to be produced, differences
in the efficiency of parallelization at different scales, and possibly other factors.

4.5. On the choice of timestep. Our approach requires the selection of parameters γ, dt,
Neig, n̂, and various other parameters and methods. In order to simplify the exploration of this
parameter space in practical applications, it is useful to have some theory about the choice of these
parameters. Here, we describe how to set dt in the MBO scheme. This is especially useful in
the recursive implementation, as the appropriate timestep empirically decreases as the graph gets
smaller, and it would be laborious for a human to check at each recursion step.

Our derivations are inspired by those in [69], and proofs are deferred to an appendix. First, we
consider a lower bound on the timestep:

8There is no rigorous result for the Rayleigh-Chebyshev procedure, but numerical evidence suggests strongly
better than quadratic convergence, and O(N logq N) is the convergence speed for some similar algorithms.
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Proposition 4.1 (Lower bounds on the timestep). Let u0 ∈ Π(G, n̂). If u satisfies d
dtu = −Mu

with initial data u0, then we have the following bounds:
1.

||u(τ)− u0||∞ ≤ e2(γ+1)kmaxτ .

2. In the case where n̂ = 2, this bound implies that if the MBO timestep τ satisfies

τ <
log 2

2(γ + 1)kmax
≈ 0.15

(γ + 1)kmax
,

then the MBO iteration is stationary.
3. If ρ is the spectral radius of M , we also have

||u(τ)− u0||∞ ≤
√
n̂||u0||2 (eτρ − 1) .

4. If n̂ = 2, the MBO iteration is guaranteed to be stationary whenever

τ < ρ−1 log
(

1 +N− 1

2

)

.

Although we had to restrict to n̂ = 2 in the above, we used the timestep restriction regardless of
n̂—indeed the authors expect that n̂ = 2 is the worst case, although we are unable to prove it at
present.

The upper bound on the timestep is more delicate. Normally, the upper bound would be
determined by convergence theory, using error bounds and stability estimates, the theory of which
is incomplete in the graph setting at present. Instead, we use the following heuristic to motivate
our bounds: In most cases, M is strictly positive definite, so the evolution d

dtu = −Mu forces u to
decay toward 0. The idea behind MBO is that the diffusion effects give information about curvature
on short time scales, and the long time scales give information about more global quantities, which
is useless in that context. Therefore, in the graph context, it makes sense to try to understand the
time scale that is “long” and set the timestep to be shorter than that. Using the approach to 0 as
a convenient notion of long-time behavior, we obtain the following useful bounds:

Proposition 4.2 (Decay estimates for M). Let d
dtu = −Mu with initial data u0 ∈ Π(G, n̂).

Then the following bounds hold:
1. Assume λ1 is the smallest eigenvalue of M . Then

||u||2 ≤ e−τλ1 ||u0||2.

2. Let M be nonsingular. Then for any ε > 0, we have ||u(τ)||∞ < ε if

τ > λ−1
1 log

( ||u0||2
ε

)

.

In practice, setting the timestep as the geometric mean between this upper bound and the lower
bound from Proposition 4.1 has produced good results without resorting to hand-tuning of param-
eters.9

9We also found empirically that a simple time stepping procedure improved results sometimes: Let the algorithm
run to convergence, then continue with a smaller timestep until convergence occurs again.
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5. Results.

5.1. Summary. Tables 1 and 2 summarize the results of our Balanced TV algorithm on several
examples, mostly drawn from machine learning and image processing problems. 10 We compared
our method to the Modularity MBO algorithm from Hu et al. [39], as well as three other well-known
algorithms: the Louvain method [7], the hierarchical method of Clauset, Newman, and Moore [17],
and a classic spectral recursive bipartitioning method of Newman [57]. Our own method and that of
Hu et al. were written in MATLAB except for the eigenvector computations, which use Anderson’s
Rayleigh-Chebyshev code [3], written in C++ with OpenMP support. The three other methods
are slight modifications of igraph’s C library implementations [18]. In practice, the difference in
programming language may make a difference in speed, although the eigenvalue computation is
typically the most time-intensive part of the computation. We chose a single conservative timestep
for Modularity MBO rather than hand-tuning for each experiment. Our method and that of Hu et
al. use a random starting seed, so we ran those codes 20 times and report the best modularity and
classification rate and the median time.

Overall, we found that our method is competitive with the state of the art on these data
sets. Our method generally found higher-modularity partitions and had faster run times than
either the method of Hu et al. or of Newman.11 The Louvain method and our method often
gave similar modularity scores, although the partitions they uncovered were not necessarily similar.
For example, on the MNIST example, our method achieved the better modularity score, but the
Louvain partition matched the true labels more closely. On the Plume40 example, the opposite
effect occurs, with our method achieving the lower modularity score but finding a partition that
is closer to the true labeling of the pixels. Such issues are a manifestation of the well-known
degeneracy of the modularity energy [35], where a number of dissimilar partitions can receive
similarly high modularity scores. It is also an indication that modularity needs to be complemented
with supervision, regularization, biased initialization, or some other device in order to reliably find
the partition that is most appropriate for the problem. In Figure 3, we illustrate the effectiveness
of including a small amount of supervision with our method. (See (12).)

5.2. Analysis of each experiment. We now describe the individual experiments.
Two Moons Two moons consists of 2,000 points in 100-dimensional space, sampled from two

half-circles, with Gaussian noise added, see Figure 1. We constructed a 13-nearest neighbors graph
with the edge weights given by a Gaussian law, with locally-determined decay parameters [77].
The number of classes was assumed known, where the class of a point is the half-circle to which it
originally belonged.

MNIST MNIST consists of 70,000 28x28-pixel images, each of which contains a single hand-
written digit [48]. The task is to identify the digit in each image. The graph was constructed
by projecting onto 50 principle components for each image and then using a 10-nearest neighbors
graph with self-tuning Gaussian decay [77]. The number of classes was assumed known. As in [39],
11 classes were used, as there are two different ways to write the digit 1, with or without the top
flag and flat base. This modularity landscape was particularly troublesome, with about 25% of the
partitions we found having better modularity than the ground truth partition, despite the fact that

10We also performed some brief tests of our method on biological and social networks but found that the results
were not as encouraging, apparently due to some structural differences from our machine learning networks—it would
be interesting to understand this issue more.

11We chose this particular spectral method because it was available in igraph. A complete comparison with other
spectral methods would be interesting but is beyond the scope of this paper.
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Moons MNIST LFR50k Urban Plume7 Plume40

Nodes 2,000 70,000 50,000 94,249 286,720 1.6 ∗ 106
Edges 1.8 ∗ 104 4.7 ∗ 105 7.9 ∗ 105 6.8 ∗ 105 5.3 ∗ 106 2.9 ∗ 107
Communities 2 10 2,000 5 5 5
Res. Param. 0.2 0.5 15 0.1 1 1

Modularity

Our method 0.84 0.92 0.77 0.95 0.76 0.64
Hu et al. 0.85 0.91 0.58 0.95 0.74 0.64
Hierarchical 0.77 0.88 0.88 0.94 0.65 0.92
Louvain 0.72 0.83 0.89 0.90 0.78 0.97
Spectral 0.60 0.56 -5.88 0.90 0.30 0.04
Ref 0.83 0.92 0.89 0.90 0.00 0.00

Classification
Our method 0.97 0.90 0.92 —- —- —-
Hu et al. 0.95 0.80 0.72 —- —- —-
Hierarchical 0.98 0.93 0.80 —- —- —-
Louvain 0.98 0.96 0.87 —- —- —-
Spectral 0.95 0.30 0.09 —- —- —-

Time
(sec.)

Our method 0.55 59 63 19 135 1284
Hu et al. 0.80 167 206 42 152 39196
Hierarchical 0.55 16 6 44 3066 9437
Louvain 0.38 9 6 14 89 520
Spectral 0.87 301 1855 24 265 1804

Table 1

Results on six data sets. Our method generally does better than that of Newman and Hu et al. It is also
notable that the choice of metric matters. For instance, on the MNIST example, the Louvain method gets a worse
modularity score than our method but better agreement with the ground truth labels. Conversely, our method gets
a lower modularity score than Louvain on the Plume40 example, but the segmentation our method produced for
Figure 3 more closely agrees with domain experts’ knowledge of how the plume really looks. See Table 3 for an
example of how a small amount of supervision with our method reduces this ambiguity. Dashes denote missing
entries in cases where metadata was not available. The LFR50k example illustrates the ability of our approach to
deal with a large number of small communities using recursive partitioning.

partitions with a classification accuracy greater than 95% were found only about 4% of the time.
LFR 50k This is a well-known ensemble of artificial networks [47]. We used the following

parameters to generate it: average degree of 20, maximum degree of 50, degree distribution expo-
nent of 2, community size distribution exponent of 1, effective mixing parameter of 0.2, maximum
community size of 50, minimum community size of 10. The large number of small communities
makes this a challenging problem—similar experiments on a 1,000-node networks with 40 commu-
nities gave near-perfect classification. We use purity to gauge classification accuracy. Given two
partitions g1 and g2, the purity is defined as 1

N

∑n̂
α=1 maxβ=1,...,n̂ #{i : g1 = α and g2 = β}, where

# denotes the cardinality.
Urban Image The urban hyperspectral image is a 307×307 image of an urban setting, where

each pixel encodes the intensity of light at 129 different wavelengths. The classification problem is
to identify pixels that contain similar materials, such as dirt, road, grass, etc.

The graph representation was computed using “nonlocal means” [9], which means that for each
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Jas. Rid. Samson Cuprite FLC Pavia U Salinas Salinas 1

Nodes 19,800 14,820 30,162 208,780 207,400 7,092 111,063
Edges 1.1 ∗ 105 8.3 ∗ 104 1.6 ∗ 105 1.5 ∗ 106 1.6 ∗ 106 4.7 ∗ 105 8.4 ∗ 105
Communities 4 3 12 3 9 6 16

Modularity

Our method 0.99 0.98 0.99 0.94 0.93 0.97 0.96
Hu et al. 0.99 0.98 0.90 0.94 0.94 0.97 0.96
Hierarchical 0.98 0.98 0.99 0.93 0.93 0.97 0.96
Louvain 0.99 0.98 0.99 0.90 0.88 0.95 0.95
Spectral 0.91 0.90 0.91 0.90 0.90 0.96 0.90
Ref 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Time
(sec.)

Our method 17 13 42 121 160 4.6 96
Hu et al. 40 27 63 203 270 3.3 117
Hierarchical 1.5 1.1 2.4 378 411 0.74 66
Louvain 1.5 1.2 2.7 39 40 0.75 15
Spectral 28 10 148 38 65 6.5 24

Table 2

Results on additional hyperspectral data sets. The resolution parameter was 0.1, and the reference partition has
all nodes in the same community. Our method achieves a top modularity score in each network except for Salinas,
where Hu et al.’s method gets slightly higher results. Our method partitioned recursively and initialized with kmeans
clustering on leading eigenvectors that had been computed for use in the pseudospectral scheme.

Figure 1. Projection of the two moons example onto two dimensions

pixel p, a vector vp was constructed by concatenating the data in a 3×3 window centered at p. One
then uses a weighted cosine distance on these 3 × 3 × 162 = 1, 458 component vectors, where the
components from the center of the window are given the most weight. For each pixel, we obtained
the 10 nearest neighbors in this distance using a k-d tree and the VLFeat software package [70]. The
images in Figure 2 were selected from a collection of 200 segmentations as being the most visually
appealing. We compared with a recent NLTV-based algorithm [79], which is specifically designed
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Moons MNIST

Modularity
Unsupervised 0.84 0.91
10% supervised 0.84 0.92
Reference 0.83 0.92

Classification
Unsupervised 0.97 0.90
10% supervised 0.97 0.97

Modularity Consistency
Unsupervised 0.75 0.65
10% supervised 1.00 1.00

Classification Consistency
Unsupervised 0.75 0.05
10% supervised 1.00 0.65

Table 3

Results of our method using networks constructed from the two moons and MNIST examples with and without
10% supervision. Consistency here denoted percent of cases for which the results were within 2% of the best value
achieved. In the two moons example, supervision improves consistent matching to metadata. In the MNIST example,
both consistency and peak metadata matching are substantially improved. Note that in both cases, the peak modularity
is not changed, indicating that the supervision helps the solver find local maxima that are more relevant to the
classification task, thus addressing the well-known degeneracy issues of modularity’s energy landscape. The code
was run 20 times on each example.

for hyperspectral imaging applications and found our segmentation competitive. We also compared
with Modularity MBO and GenLouvain [41] segmentations. For instance, Balanced TV does well
at placing the grass into a single class and correctly resolved the difference between pavement and
dirt. Balanced TV gives the sharpest resolution of the roads and the surrounding dirt in the upper
right. Our method does have a little trouble compared to GenLouvain when resolving the buildings
just below the large road in the upper left corner of the picture, although this is partly due to the
fact that the roofs there are made of different materials from most of the houses further down in
the image, and NLTV has a similar problem.

Plume Hyperspectral Video The gas plume hyperspectral video records a gas plume being
released at the Dugway Proving Ground [29, 49, 53].12 The graph was constructed by the same
procedure as the urban dataset, simply concatenating each frame side-by-side into one large image
and using nonlocal means to form the graph. Each frame has 320 × 128 pixels with data from
129 wavelengths. Two versions of this dataset were used, one with 7 frames, and another with 40
frames. We have included the segmentation of one frame in Figure 3, together with segmentations
produced by competing algorithms. Our method is the only one that places the entire plume in a
single class. The images shown were chosen as the best out of thirty for visual appeal.

12In [53], a semi-supervised MBO-type approach was used.
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RGB image Our method

Modularity MBO GenLouvain segmentation

NLTV segmentation [79]

Figure 2. The urban dataset segmented using different methods. Our method effectively separates the dirt from
roads, resolving the roads in the upper right corner, and placing all of the grass into a single class. It has some
difficulty with the buildings in the upper left corner, just below the main road, which are a different material from
the other buildings.
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Our method Spectral Clustering

NLTV [79] GenLouvain

Figure 3. Segmentations of the plume hyperspectral video using different methods. Observe that our method is
the only method that gets the whole plume into a single class without any erroneous additions.

Other Hyperspectral Examples We included seven additional hyperspectral image exam-
ples, which are well-known in the image processing community. In each case, we formed the k-nearest
neighbor graph using nonlocal means and VLFeat. See Appendix C for more details. Overall, our
algorithm performs very competitively on these examples in terms of modularity. The speed is
slower than Louvain, but the run time is still very reasonable, and the modularity scores are more
consistently good.

6. Conclusion. We have shown that modularity optimization can be framed as a balanced TV
problem that is convex except for a discrete constraint. This formulation yields an energy landscape
that is easier to understand by using terms with a ready intuitive meaning and by putting all of
the nonconvexity into a simple discrete constraint. We have given a rigorous nonconvexity result
and shown how to use the Ginzburg-Landau functional to approximate modularity optimization
by more convex problems. We have also proposed an improved modularity optimization scheme,
Balanced TV, which works very well even on large graphs and which requires much less hand-tuning.
Numerical tests show that our method is competitive in terms of accuracy, while being faster than
its predecessor, Modularity MBO.
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A. Gamma convergence. The following are some basic facts about Gamma-convergence to
aid in understanding the results of this paper. See [68] for more details.

Definition A.1. Let X be a topological space, and Fn a sequence of real-valued functionals of
X. Then the sequence is said to Γ-converge to a functional F on X if the following two conditions
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hold:
1. For convergent sequence xn → x, we have lim infn→∞ Fn(xn) ≤ F(x).
2. For every x, there exists a convergent sequence xn → x such that lim supn→∞ Fn(xn) ≥

F (x).

For our purposes, Γ-convergence is primarily a tool for ensuring that the minimizers of Fn approach
the minimizers of F , as guaranteed by the following:

Theorem A.2. Let Fn Γ-converge to F , and let xn be a minimizer of Fn. Then every cluster
point of the xn is a minimizer of F . If G is continuous, then Fn + G Γ-converges to F + G.

We end with the proof of Theorem 3.9.

Proof. We largely follow [68], generalizing and filling in a minor hole from that proof.
Observe that all of the terms not involving the potential are continuous and independent of

ε, so they cannot interfere with the Γ-convergence [19]. Therefore, it suffices to prove that 1
εT

Γ-converges to

χ(u) =

{

0 if u corresponds to a partition

+∞ otherwise.

To prove the lower bound, let un → u and εn → 0. If u corresponds to a partition, then
χ(u) = 0, which is automatically less than or equal to 1

εn
T (un) for each n. If u does not correspond

to a partition, then χ(u) = +∞. Pick N1 such that whenever n > N1, the distance from un to
the nearest feasible point is at least c > 0. Letting Tc be the infimum of T on all of RN×n̂ minus
the balls of radius c surrounding each feasible point (so T0 > 0 in particular). Then we have
lim infn→∞

1
εn
T (un) ≥ limn→∞

1
εn
T0 = +∞. Thus, the lower bound always holds.

To prove the upper bound, let u be any N × n̂ matrix. If u corresponds to a partition, then
letting un = u for all n gives the required sequence. If u does not correspond to a partition, then
un = u for all n still satisfies the upper bound requirement.

Thus both the upper and lower bound requirements hold, and we have proved Γ-convergence.

B. Deferred proofs. In this section, we give proofs of propositions stated earlier in the paper.

Proof of Proposition 4.1. We first get pointwise estimates on u− u0:

||u− u0||∞ ≤ ||e−τM − I||∞||u0||∞ = ||e−τM − I||∞ ≤
∞
∑

k=1

1

k!
τk||M ||k∞ = eτ ||M ||∞ − 1(34)

We estimate ||M ||∞ as follows:

||M ||∞ = max
i

∑

j

|Lij +
γ

m
kikj | = max

i

∑

j

|kiδij − wij +
γ

m
kikj |

≤ max
i

ki + ki +
γ

m
ki2m = 2(1 + γ)kmax

These computations do not depend on n̂, but in order to get a timestep, we assume that n̂ = 2.
In this case, let u1 and u2 be the columns of u. We have u1

t = −Mu1 and u2
t = −Mu2. Subtracting

these, and letting v = u1−u2 yields vt = −Mv. Allowing v to evolve until the time of thresholding,
we see that node i will switch classes if and only if v(i) has changed sign, that is if |v − v0|i > 1.
The quantity in (34) is less than 1 exactly when τ < log 2

2(γ+1)kmax

≈ 0.15
(γ+1)kmax

. This is exactly the

bound we sought.
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Next, we work on the L2 bound

||u− u0||∞ ≤
√
n̂||u− u0||2 ≤

√
n̂||e−τM − I||2||u0||2 ≤

√
n̂||u0||2

∞
∑

k=1

1

k!
τk||M ||k2(35)

=
√
n̂||u0||2

(

eτ ||M ||2 − 1
)

=
√
n̂||u0||2 (eτρ − 1)(36)

As before, when we let n̂ = 2, one can subtract the columns to get v, so that no node will switch

communities as long as ||v − v0||∞ < 1, which is guaranteed if τ < ρ−1 log
(

1 +N− 1

2

)

.

Proof of Proposition 4.2. To get the bound, we let Λ be a diagonal matrix with the eigenvalues
of M on the diagonal. Since M is positive semi-definite, we can write M = QΛQT for some
orthogonal matrix Q. Then we have

||u(τ)||2 = ||e−τMu0||2 ≤ ||e−τM ||2||u0||2 = ||e−τΛ||2||u0||2 = e−τλ1 ||u0||2

Setting the latter quantity less than ε and then solving for τ yields the required bound.

C. Hyperspectral Image Details. In this appendix we collect some basic facts about the
images used in Table 2.

• Jasper Ridge: An image of a river area. It has 198 channels and 100x100 pixels. Retrieved
from http://www.escience.cn/people/feiyunZHU/Dataset GT.html.

• Samson: An image of a coastline. It has 156 channels and 952x952 pixels. Retrieved from
http://www.escience.cn/people/feiyunZHU/Dataset GT.html.

• Cuprite: An image of ground near Las Vegas. It has 224 channels and 250x190 pixels.
Retrieved from http://www.escience.cn/people/feiyunZHU/Dataset GT.html.

• FLC: A moderate-dimensional image. It has 12 channels and 949x220 pixels. Available at
ftp://www.daba.lv/pub/TIS/atteelu analiize/MultiSpec/tutorial/ModDimensionDataSet.zip.

• Pavia U: An image of Pavia University in Northern Italy. It has 103 channels and 610x610
pixels. Retrieved from http://lesun.weebly.com/hyperspectral-data-set.html.

• Salinas: An image containing vineyard fields, soils, and vegetation. It has 224 chan-
nels and 512x217 pixels. Retrieved from http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral Remote Sensing Scenes.

• Salinas 1: A subimage of the previous image containing 86x83 pixels.
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