Journal of Machine Learning Research 19 (2018) 1-49 Submitted 11/17; Revised 7/18; Published 8/18

Covariances, Robustness, and Variational Bayes

Ryan Giordano RGIORDANO @ BERKELEY.EDU
Department of Statistics, UC Berkeley

367 Evans Hall, UC Berkeley

Berkeley, CA 94720

Tamara Broderick TBRODERICK @ CSAIL.MIT.EDU
Department of EECS, MIT

77 Massachusetts Ave., 38-401

Cambridge, MA 02139

Michael 1. Jordan JORDAN @ CS.BERKELEY.EDU
Department of Statistics and EECS, UC Berkeley

367 Evans Hall, UC Berkeley

Berkeley, CA 94720

Editor: Mohammad Emtiyaz Khan

Abstract

Mean-field Variational Bayes (MFVB) is an approximate Bayesian posterior inference technique that is in-
creasingly popular due to its fast runtimes on large-scale data sets. However, even when MFVB provides
accurate posterior means for certain parameters, it often mis-estimates variances and covariances. Further-
more, prior robustness measures have remained undeveloped for MFVB. By deriving a simple formula for the
effect of infinitesimal model perturbations on MFVB posterior means, we provide both improved covariance
estimates and local robustness measures for MFVB, thus greatly expanding the practical usefulness of MFVB
posterior approximations. The estimates for MFVB posterior covariances rely on a result from the classical
Bayesian robustness literature that relates derivatives of posterior expectations to posterior covariances and
includes the Laplace approximation as a special case. Our key condition is that the MFVB approximation
provides good estimates of a select subset of posterior means—an assumption that has been shown to hold in
many practical settings. In our experiments, we demonstrate that our methods are simple, general, and fast,
providing accurate posterior uncertainty estimates and robustness measures with runtimes that can be an order
of magnitude faster than MCMC.

Keywords: Variational Bayes; Bayesian robustness; Mean field approximation; Linear response theory;
Laplace approximation; Automatic differentiation

1. Introduction

Most Bayesian posteriors cannot be calculated analytically, so in practice we turn to approximations. Vari-
ational Bayes (VB) casts posterior approximation as an optimization problem in which the objective to be
minimized is the divergence, among a sub-class of tractable distributions, from the exact posterior. For
example, one widely-used and relatively simple flavor of VB is “mean field variational Bayes” (MFVB),
which employs Kullback-Leibler (KL) divergence and a factorizing exponential family approximation for the
tractable sub-class of posteriors (Wainwright and Jordan, 2008). MFVB has been increasingly popular as an
alternative to Markov Chain Monte Carlo (MCMC) in part due to its fast runtimes on large-scale data sets.
Although MFVB does not come with any general accuracy guarantees (except asymptotic ones in special
cases (Westling and McCormick, 2015; Wang and Blei, 2017)), MFVB produces posterior mean estimates of
certain parameters that are accurate enough to be useful in a number of real-world applications (Blei et al.,
2016). Despite this ability to produce useful point estimates for large-scale data sets, MFVB is limited as
an inferential tool; in particular, MFVB typically underestimates marginal variances (MacKay, 2003; Wang
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and Titterington, 2004; Turner and Sahani, 2011). Moreover, to the best of our knowledge, techniques for
assessing Bayesian robustness have not yet been developed for MFVB. It is these inferential issues that are
the focus of the current paper.

Unlike the optimization approach of VB, an MCMC posterior estimate is an empirical distribution formed
with posterior draws. MCMC draws lend themselves naturally to the approximate calculation of posterior
moments, such as those required for covariances. In contrast, VB approximations lend themselves naturally to
sensitivity analysis, since we can analytically differentiate the optima with respect to perturbations. However,
as has long been known in the Bayesian robustness literature, the contrast between derivatives and moments is
not so stark since, under mild regularity conditions that allow the exchange of integration and differentiation,
there is a direct correspondence between derivatives and covariance (Gustafson, 1996b; Basu et al., 1996;
Efron, 2015, Section 2.2 below).

Thus, in order to calculate local sensitivity to model hyperparameters, the Bayesian robustness liter-
ature re-casts derivatives with respect to hyperparameters as posterior covariances that can be calculated
with MCMC. In order to provide covariance estimates for MFVB, we turn this idea on its head and use the
sensitivity of MFVB posterior expectations to estimate their covariances. These sensitivity-based covariance
estimates are referred to as “linear response’ estimates in the statistical mechanics literature (Opper and Saad,
2001), so we refer to them here as linear response variational Bayes (LRVB) covariances. Additionally, we
derive straightforward MFVB versions of hyperparameter sensitivity measures from the Bayesian robustness
literature. Under the assumption that the posterior means of interest are well-estimated by MFVB for all the
perturbations of interest, we establish that LRVB provides a good estimate of local sensitivities. In our exper-
iments, we compare LRVB estimates to MCMC, MFVB, and Laplace posterior approximations. We find that
the LRVB covariances, unlike the MFVB and Laplace approximations, match the MCMC approximations
closely while still being computed over an order of magnitude more quickly than MCMC.

In Section 2 we first discuss the general relationship between Bayesian sensitivity and posterior covari-
ance and then define local robustness and sensitivity. Next, in Section 3, we introduce VB and derive the
linear system for the MFVB local sensitivity estimates. In Section 4, we show how to use the MFVB local
sensitivity results to estimate covariances and calculate canonical Bayesian hyperparameter sensitivity mea-
sures. Finally, in Section 5, we demonstrate the speed and effectiveness of our methods with simple simulated
data, an application of automatic differentiation variational inference (ADVI), and a large-scale industry data
set.

2. Bayesian Covariances and Sensitivity
2.1 Local Sensitivity and Robustness

Denote an unknown model parameter by the vector § € R, assume a dominating measure for # on R¥ given
by ), and denote observed data by . Suppose that we have a vector-valued hyperparameter o € A C R” that
parameterizes some aspects of our model. For example, o might represent prior parameters, in which case
we would write the prior density with respect to A as p (f|«), or it might parameterize a class of likelihoods,
in which case we could write the likelihood as p (|6, ). Without loss of generality, we will include « in the
definition of both the prior and likelihood. For the moment, let p,, (6) denote the posterior density of 6 given
x and «, as given by Bayes’ Theorem (this definition of p,, (#) will be a special case of the more general
Definition 2 below):

e pE)p@la) _ pElha)p@l)
Pa (0):=p Ol 0) = o ) p @) A (@)~ plala)

We will assume that we are interested in a posterior expectation of some function g (8) (e.g., a parameter
mean, a posterior predictive value, or squared loss): E,_ [g(#)]. In the current work, we will quantify
the uncertainty of ¢ (¢) by the posterior variance, Var,_ (g (#)). Other measures of central tendency (e.g.,
posterior medians) or uncertainty (e.g., posterior quantiles) may also be good choices but are beyond the
scope of the current work.
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Note the dependence of E,, [g (6)] on both the likelihood and prior, and hence on «, through Bayes’
Theorem. The choice of a prior and choice of a likelihood are made by the modeler and are almost invariably
a simplified representation of the real world. The choices are therefore to some extent subjective, and so
one hopes that the salient aspects of the posterior would not vary under reasonable variation in either choice.
Consider the prior, for example. The process of prior elicitation may be prohibitively time-consuming; two
practitioners may have irreconcilable subjective prior beliefs, or the model may be so complex and high-
dimensional that humans cannot reasonably express their prior beliefs as formal distributions. All of these
circumstances might give rise to a range of reasonable prior choices. A posterior quantity is “robust” to the
prior to the extent that it does not change much when calculated under these different prior choices.

Quantifying the sensitivity of the posterior to variation in the likelihood and prior is one of the central
concerns of the field of robust Bayes (Berger et al., 2000). (We will not discuss the other central concern,
which is the selection of priors and likelihoods that lead to robust estimators.) Suppose that we have deter-
mined that the hyperparameter v belongs to some open set A, perhaps after expert prior elicitation. Ideally,
we would calculate the extrema of E,,_ [g (0)] as « ranges over all of A. These extrema are a measure of
global robustness, and their calculation is intractable or difficult except in special cases (Moreno, 2000; Hu-
ber, 2011, Chapter 15). A more practical alternative is to examine how much E,_ [g (9)] changes locally in
response to small perturbations in the value of « near some tentative guess, ag € A. To this end we define
the local sensitivity at o (Gustafson, 2000).

Definition 1 The local sensitivity of E,, [g (8)] to hyperparameter o at o is given by

dEy, [9 (0)]

Sao da

(D

@

S.,. the local sensitivity, can be considered a measure of local robustness (Gustafson, 2000). Throughout the
paper we will distinguish between sensitivity, which comprises objectively defined quantities such as S,,,
and robustness, which we treat as a more subjective concept that may be informed by the sensitivity as well
as other considerations. For example, even if one knows S, precisely, how much posterior change is too
much change and how much prior variation is reasonable remain decisions to be made by the modeler. For a
more in-depth discussion of how we use the terms sensitivity and robustness, see Appendix C.

The quantity S, can be interpreted as measuring sensitivity to hyperparameters within a small region
near o = ag where the posterior dependence on « is approximately linear. Then local sensitivity provides an
approximation to global sensitivity in the sense that, to first order,

E,, [9(0)] = E,,, [g(0)] + ST, (o —ap).

Generally, the dependence of E,,, [g (#)] on « is not given in any closed form that is easy to differentiate.
However, as we will now see, the derivative S, is equal, under mild regularity conditions, to a particular
posterior covariance that can easily be estimated with MCMC draws.

2.2 Covariances and Sensitivity

We will first state a general result relating sensitivity and covariance and then apply it to our specific cases of
interest as they arise throughout the paper, beginning with the calculation of S, from Section 2.1. Consider
a general base density po (6) defined relative to A and define p (6, ) to be a A\-measurable log perturbation
function that depends on o € A C R”. We will require the following mild technical assumption:

Assumption 1 For all o € A, p (0, ) is continuously differentiable with respect to o, and, for a given \-
measurable g (0) there exist A-integrable functions fo (0) and f1 (0) such that |po (0) exp (p (0, @)) g ()] <
fo (0) and |po () exp (p (0, )| < f1 (6).

Under Assumption 1 we can normalize the log-perturbed quantity po (8) exp (p (0, «)) to get a density in 6
with respect to \.
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Definition 2 Denote by p,, (6) the normalized posterior given «:

___ po(B)exp(p(0,a))
P (6) =1 0 exp (0 (07, ) A (d07)

For example, p, (6) defined in Section 2.1 is equivalent to taking pg () = p(0|z, ) and p (0, ) =

logp (20, &) +log p (0]a) —logp (x[6, ag) —log p (6]exo)-
For a A-measurable function g (), consider differentiating the expectation E,, [g ()] with respect to o

Tre 001 = & [ a9 7(a0). @

2

When evaluated at some o € A, this derivative measures the local sensitivity of E,, [g ()] to the index o
at ap. Define Ay C A to be an open ball containing ap. Under Assumption 1 we assume without loss of
generality that p (0, ap) = 0 so that pg (0) = pa, (8); if p (0, ) is non-zero, we can simply incorporate it
into the definition of pg (6). Then, under Assumption 1, the derivative in Eq. (3) is equivalent to a particular
posterior covariance.
) . 4)
(675}

Theorem 1 is a straightforward consequence of the Lebesgue dominated convergence theorem; see Appendix
A for a detailed proof. Versions of Theorem 1| have appeared many times before; e.g., Diaconis and Freedman
(1986); Basu et al. (1996); Gustafson (1996b); Pérez et al. (2006) have contributed variants of this result to
the robustness literature.

By using MCMC draws from pg(6) to calculate the covariance on the right-hand side of Eq. (4), one
can form an estimate of dE,,_ [g (6)] /da™ at @ = «p. One might also approach the problem of calculating
dE,, [g(8)] /daT using importance sampling as follows (Owen, 2013, Chapter 9). First, an importance
sampling estimate of the dependence of E,, [¢ (¢)] on a can be constructed with weights that depend on «.
Then, differentiating the weights with respect to « provides a sample-based estimate of dE,,_ [g (€)] /daT.
We show in Appendix B that this importance sampling approach is equivalent to using MCMC samples to
estimate the covariance in Theorem 1.

An immediate corollary of Theorem 1 allows us to calculate S, as a covariance.

Theorem 1 Under Assumption I,

dEp,, [g(9)]
daTt

Op (0,
= Cov,, <g 0, 28

@0

Corollary 1 Suppose that Assumption 1 holds for some oy € A, some g (6), and for

p(0,a) =logp(z]0,a) + logp (0]a) — log p (2|6, ap) — logp (0|ao) -

) . (5)

Corollary 1 can be found in Basu et al. (1996), in which a version of Corollary 1 is stated in the proof of
their Theorem 1, as well as in Pérez et al. (2006) and Efron (2015). Note that the definition of p (6, ) does
not contain any normalizing constants and so can typically be easily calculated. Given Ny MCMC draws
{en}jf; , from a chain that we assume to have reached equilibrium at the stationary distribution pg (¢), one
can calculate an estimate of S,,, using the sample covariance version of Eq. (4):
)
[e™h)

1 s 1 2 9p (6,
. (m%g(en)> <sz(3a)

° n=1

Then Theorem I implies that

Op (6, a
Sao = COVPO (g (9)’ %

N,
g(6,) 22020)

a 1
TNy~ dox
for 8,, ~ po (0), wheren =1, ..., N;.

S
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3. Variational Bayesian Covariances and Sensitivity
3.1 Variational Bayes

We briefly review variational Bayes and state our key assumptions about its accuracy. We wish to find
an approximate distribution, in some class Q of tractable distributions, selected to minimize the Kullback-
Leibler divergence (KL divergence) between g € Q and the exact log-perturbed posterior p,,. We assume that
distributions in Q are parameterized by a finite-dimensional parameter 7 in some feasible set £2,, C R%n,

Definition 3 The approximating variational family is given by

Q = {q:q=q(0;n) forneQy,}. (7)

Given Q, we define the optimal ¢ € Q, which we call g, (f), as the distribution that minimizes the KL
divergence KL (q(6;7) ||p (0)) from p,, (6). We denote the corresponding optimal variational parameters
asn*.

Definition 4 The variational approximation qq, (0) to p, () is defined by

4o (0) :==q(0;n") = argmingco {KL(q(6;n)]lpa (6))}, ®)

where

KL (q(0;n)|[pa (0)) = Eqo:m) [log q (051) — log pa ()] -

In the KL divergence, the (generally intractable) normalizing constant for p, (6) does not depend on ¢ (6)
and so can be neglected when optimizing. In order for the KL divergence to be well defined, we assume
that both pg (0) and ¢ (6) are given with respect to the same base measure, \, and that the support of ¢ (6) is
contained in the support of p,, (). We will require some additional mild regularity conditions in Section 3.2
below.

A common choice for the approximating family Q in Eq. (7) is the “mean field family” (Wainwright and
Jordan, 2008; Blei et al., 2016),

Qs = {q(ﬁ) 1q(0) = Hq(Gk;nk)}, 9
k

where k indexes a partition of the full vector 6 and of the parameter vector n. That is, Q,, approximates
the posterior p, (0) as a distribution that factorizes across sub-components of §. This approximation is
commonly referred to as “MFVB,” for “mean field variational Bayes.” Note that, in general, each function
q (0x; ) in the product is different. For notational convenience we write g (0x;7y) instead of gy (6x; k)
when the arguments make it clear which function we are referring to, much as the same symbol p is used to
refer to many different probability distributions without additional indexing.

One may additionally assume that the components g (6x;7y) are in a convenient exponential family.
Although the exponential family assumption does not in general follow from a factorizing assumption, for
compactness we will refer to both the factorization and the exponential family assumption as MFVB.

In an MFVB approximation, {2,, could be a stacked vector of the natural parameters of the exponential
families, or the moment parameterization, or perhaps a transformation of these parameters into an uncon-
strained space (e.g., the entries of the log-Cholesky decomposition of a positive definite information matrix).
For more concrete examples, see Section 5. Although all of our experiments and much of our motivating
intuition will use MFVB, our results extend to other choices of Q that satisfy the necessary assumptions.
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3.2 Variational Bayes sensitivity

Just as MCMC approximations lend themselves to moment calculations, the variational form of VB approxi-
mations lends itself to sensitivity calculations. In this section we derive the sensitivity of VB posterior means
to generic perturbations—a VB analogue of Theorem 1. In Section 4 we will choose particular perturbations
to calculate VB prior sensitivity and, through Theorem 1, posterior covariances.

In Definition 4, the variational approximation is a function of « through the optimal parameters n* (a),
ie., ¢o (8) = ¢(0,7* (o). In turn, the posterior expectation E,_ [g ()] is also a function of «, and its
derivative at ay—the local sensitivity of the variational approximation to a—has a closed form under the
following mild technical conditions. As with py, define qo := ¢4, and define 13 := n* (ap).

All the following assumptions are intended to hold for a given p,, (#), approximating class Q, A-measurable
function g (#), and to hold for all & € A and all 7 in an open neighborhood of 7;.

Assumption 2 The KL divergence at KL (q(0;n) ||po (0)) and expected log perturbation Eyg.,) [p (60, )]
are twice continuously differentiable in n and o.

Assumption 3 There exists a strict local minimum, n* (&), of KL (q(0;n)||pa (0)) in Eq. (8) such that
n* («) is interior to Q.

Assumption 4 The expectation Ey ., [9 (0)] is a continuously differentiable function of 1.

We define the following quantities for notational convenience.

Definition 5 Define the following derivatives of variational expectations evaluated at the optimal parame-

ters:
H, = KL(0m)lpo(6)) _ PEqoin[p(0:0)] — %y [9(6)]
n

n = anonT fon = dadnT 8n = anT

n=ng n=mng,a=0a0 n=ng

Since g (), «, and 7 are all vectors, the quantities H,,, f.,, and g,, are matrices. We are now ready to state
a VB analogue of Theorem 1.

Theorem 2 Consider a variational approximation q,, (0) to p. (0) as given in Definition 4 and a A-measurable
Sunction g (6). Then, under Assumptions 1-4., using the definitions given in Definition 5, we have

dEq, [ (0)]

e = g,H, I (10)

nm ~an:
@o

A proof of Theorem 2 is given in Appendix D. As with Theorem 1, by choosing the appropriate p (6, ) and
evaluating f,,,, we can use Theorem 2 to calculate the exact sensitivity of VB solutions to any arbitrary local
perturbations that satisfy the regularity conditions. Assumptions 1-4 are typically not hard to verify. For an
example, see Appendix E, where we establish Assumptions 1-4 for a multivariate normal target distribution
and a mean-field approximation.

Eq. (10) is formally similar to frequentist sensitivity estimates. For example, the pioneering paper of Cook
(1986) contains a formula for assessing the curvature of a marginal likelihood surface (Cook, 1986, Equation
15) that, like our Theorem 2, represents the sensitivity as a linear system involving the Hessian of an objective
function at its optimum. The geometric interpretation of local robustness suggested by Cook (1986) has been
extended to Bayesian settings (see, for example, Zhu et al. (2007, 2011)). In addition to generality, one
attractive aspect of their geometric approach is its invariance to parameterization. Investigating geometric
interpretations of the present work may be an interesting avenue for future research.

3.3 Approximating with Variational Bayes

Recall that we are ultimately interested in E,, [g (¢)]. Variational approximations and their sensitivity mea-
sures will be useful to the extent that both the variational means and sensitivities are close to the exact means
and sensitivities. We formalize these desiderata as follows.
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Condition 1 Under Assumptions 1-4 and the quantities defined therein, we additionally have, for all o € A,

Eq. l9(0)] = Ep, [9(0)] and (11)
dBq [9(O)]| dEp, [9(0)]
daT o ~ doT . (12)

We will not attempt to be precise about what we mean by the “approximately equal” sign, since we are
not aware of any practical tools for evaluating quantitatively whether Condition 1 holds other than running
both VB and MCMC (or some other slow but accurate posterior approximation) and comparing the results.
However, VB has been useful in practice to the extent that Condition 1 holds true for at least some parameters
of interest. We provide some intuition for when Condition 1 might hold in Section 5.1, and will evaluate
Condition 1 in each of our experiments below by comparing the VB and MCMC posterior approximate
means and sensitivities.

Since Condition 1 holds only for a particular choice of g (), it is weaker than the assumption that g, is
close to p, in KL divergence, or even that all the posterior means are accurately estimated. For example,
as discussed in Appendix B of Giordano et al. (2015) and in Section 10.1.2 of Bishop (2006), a mean-field
approximation to a multivariate normal posterior produces inaccurate covariances and may have an arbitrarily
bad KL divergence from p,, but Condition 1 holds exactly for the location parameters. We discuss the
multivariate normal example further in Section 4.1 and Section 5.1 below.

4. Calculation and Uses of Sensitivity

In this section, we discuss two applications of Theorem 1 and Theorem 2: calculating improved covariance
estimates and prior sensitivity measures for MFVB. Throughout this section, we will assume that we can
apply Theorem 1 and Theorem 2 unless stated otherwise.

4.1 Covariances for Variational Bayes

Consider the mean field approximating family, Q,,, ¢, from Section 3.1 and a fixed exact posterior pg (6). It
is well known that the resulting marginal variances also tend to be under-estimated even when parameters
means are well-estimated (see, e.g., (MacKay, 2003; Wang and Titterington, 2004; Turner and Sahani, 2011;
Bishop, 2006, Chapter 10)). Even more obviously, any ¢ € Q,, ¢ yields zero as its estimate of the covariance
between sub-components of # that are in different factors of the mean field approximating family. It is
therefore unreasonable to expect that Covg, (g (¢)) ~ Cov,, (g9 (¢)). However, if Condition 1 holds, we
may expect the sensitivity of MFVB means to certain perturbations to be accurate by Condition 1, and, by
Theorem 1, we expect the corresponding covariances to be accurately estimated by the MFVB sensitivity. In
particular, by taking p (0, ) = aTg (#) and g = 0, we have by Condition 1 that

e e = Covy, (9 (9)). (13)

a=0 a=0

We can consequently use Theorem 2 to provide an estimate of Cov,,, (g (#)) that may be superior to Covg, (g (6)).
With this motivation in mind, we make the following definition.

Definition 6 The linear response variational Bayes (LRVB) approximation, COV(?OR (g (9)), is given by

Covili(g(0)) == g,H, g (14)

q0
Corollary 2 For a given pq (0), class Q, and function g (0), when Assumptions 1-4 and Condition 1 hold for
p(0,0) = aTg(0) and ag = 0, then

CovEE (g (0)) = Covy, (g(6)).

q0
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The strict optimality of 75 in Assumption 3 guarantees that H,,, will be positive definite and symmetric, and,
as desired, the covariance estimate CovgoR (g (9)) will be positive semidefinite and symmetric. Since the op-

timal value of every component of E,, [g (§)] may be affected by the log perturbation ag (9), CovéﬂR (g(09))
can estimate non-zero covariances between elements of g (6) even when they have been partitioned into sep-
arate factors of the mean field approximation.

Note that CoquOR (g (6)) and Covy, (g (0)) differ only when there are at least some moments of pg that
qo fails to accurately estimate. In particular, if g, provided a good approximation to p,, for both the first and
second moments of g (@), then we would have CoquOR (g(8)) ~ Covy, (g (8)) since, for gy and py,

qu [g (9 ] ~ EPO [g (9)] and
Eqo [9(0)g(0)] ~ By, [9(0) g (0)T] =
Covy, (9(0)) = Covy, (9 (0)),

and, for ¢, and p,,

Eq. [9(0)] = Ep, g (0)] =
CovER (g(8)) =~ Covy, (g(9)).

q0

Putting these two approximate equalities together, we see that, when the first and second moments of g,
approximately match those of p,,

Covg, (9(6)) = Covgf (9 (6)).

However, in general, CoquOR (g(8)) # Covy, (g(0)). In this sense, any discrepancy between CovgoR (9(9))
and Cov,, (g (#)) indicates an inadequacy of the variational approximation for at least the second moments
of g (0).

Let us consider a simple concrete illustrative example which will demonstrate both how Cov, (g (€)) can
be a poor approximation to Covp, (g (¢)) and how CoquOR (g (0)) can improve the approximation for some
moments but not others. Suppose that the exact posterior is a bivariate normal,

po (0) =N (0]p, 2), (15)

where 6 = (601,02)T, u = (1, po)T, X is invertible, and A := X', One may think of z and X as known
functions of = via Bayes’ theorem, for example, as given by a normal-normal conjugate model. Suppose we
use the MFVB approximating family

Qs ={q(0) : q() =q(61) q(62)}.
One can show (see Appendix E) that the optimal MFVB approximation to p, in the family Q,, is given by

Q0 (01) = N (01 |1, ATT)
Qo (02) = N (02| 2, ASy) -

Note that the posterior mean of #; is exactly estimated by the MFVB procedure:
Egy [01] = 1 = Ep, [01].-

However, if 315 # 0, then A1_11 < 311, and the variance of #; is underestimated. It follows that the
expectation of 67 is not correctly estimated by the MFVB procedure:

Eq. [07] = pi + A <pi + 211 =E,, [07].
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An analogous statement holds for 65. Of course, the covariance is also mis-estimated if 315 # 0 since, by
construction of the MFVB approximation,

COVQO (917 02) =0 7& Y = COVpo (91, 92) .

Now let us take the log perturbation p (6, o) = 611 + 20c2. For all « in a neighborhood of zero, the log-
perturbed posterior given by Eq. (2) remains multivariate normal, so it remains the case that, as a function of
a, By, [01] = Ep, [61] and E, [02] = E,, [02]. Again, see Appendix E for a detailed proof. Consequently,
Condition 1 holds with equality (not approximate equality) when g (§) = 6. However, since the second
moments are not accurate (irrespective of «), Condition 1 does not hold exactly when g (6) = (9%, 9§)T, nor
when g () = 6160,. (Condition 1 may still hold approximately for second moments when 315 is small.) The
fact that Condition 1 holds with equality for g (6) = 6 allows us to use Theorem 1 and Theorem 2 to calculate
Covi (g (0)) = Covy, (g (9)), even though E,, [0162] and E,,, [(67,63)"] are mis-estimated.

In fact, when Condition 1 holds with equality for some 6;, then the estimated covariance in Eq. (14)
for all terms involving 6; will be exact as well. Condition 1 holds with equality for the means of 6; in
the bivariate normal model above, and in fact holds for the general multivariate normal case, as described
in Appendix E. Below, in Section 5, in addition to robustness measures, we will also report the accuracy
of Eq. (14) for estimating posterior covariances. We find that, for most parameters of interest, particularly
location parameters, CoquoR (g (6)) provides a good approximation to Cov,, (g (6)).

4.2 Linear Response Covariances in Previous Literature

The application of sensitivity measures to VB problems for the purpose of improving covariance estimates has
a long history under the name “linear response methods.” These methods originated in the statistical physics
literature (Tanaka, 2000; Opper and Saad, 2001) and have been applied to various statistical and machine
learning problems (Kappen and Rodriguez, 1998; Tanaka, 1998; Welling and Teh, 2004; Opper and Winther,
2004). The current paper, which builds on this line of work and on our earlier work (Giordano et al., 2015),
represents a simplification and generalization of classical linear response methods and serves to elucidate the
relationship between these methods and the local robustness literature. In particular, while Giordano et al.
(2015) focused on moment-parameterized exponential families, we derive linear-response covariances for
generic variational approximations and connect the linear-response methodology to the Bayesian robustness
literature.

A very reasonable approach to address the inadequacy of MFVB covariances is simply to increase the
expressiveness of the model class Q—although, as noted by Turner and Sahani (2011), increased expressive-
ness does not necessarily lead to better posterior moment estimates. This approach is taken by much of the
recent VB literature (e.g., Tran et al., 2015a,b; Ranganath et al., 2016; Rezende and Mohamed, 2015; Liu and
Wang, 2016). Though this research direction remains lively and promising, the use of a more complex class
Q sometimes sacrifices the speed and simplicity that made VB attractive in the first place, and often without
the relatively well-understood convergence guarantees of MCMC. We also stress that the current work is not
necessarily at odds with the approach of increasing expressiveness. Sensitivity methods can be a supple-
ment to any VB approximation for which our estimators, which require solving a linear system involving the
Hessian of the KL divergence, are tractable.

4.3 The Laplace Approximation and Linear Response Covariances

In this section, we briefly compare linear response covariances to the Laplace approximation (Gelman et al.,
2014, Chapter 13). The Laplace approximation to pg (6) is formed by first finding the “maximum a posteri-
ori” (MAP) estimate,

éLap := argmax pg (6) , (16)
0
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and then forming the multivariate normal posterior approximation

L 52290 (6)
A "
Cov, ™ () :=Hp,,
Lap (0) = N (9|éLap, Covler (9)) . (18)

Since both LRVB and the Laplace approximation require the solution of an optimization problem (Eq. (8) and
Eq. (16) respectively) and the estimation of covariances via an inverse Hessian of the optimization objective
(Eq. (14) and Eq. (17) respectively), it will be instructive to compare the two approaches.

Following Neal and Hinton (1998), we can, in fact, view the MAP estimator as a special variational
approximation, where we define

QLap r={q(9;90) : /q(9;90)10gpo (0) A (d#) = logpo (6) and

/q (0;60) log g (0;6p) X (db) = Constcmt},

where the C'onstant term is constant in 6. That is, Q) consists of “point masses” at §y with constant en-
tropy. Generally such point masses may not be defined as densities with respect to A, and the K L divergence
in Eq. (8) may not be formally defined for ¢ € Qy,;,. However, if Q) can be approximated arbitrarily well
by well-defined densities (e.g., normal distributions with variance fixed at an arbitrarily small number), then
we can use Q4 as a heuristic tool for understanding the MAP estimator.

Since Qr.qp contains only point masses, the covariance of the variational approximation is the zero ma-
trix: Covy,,, (6) = 0. Thus, as when one uses the mean field assumption, Cov,, , (f) underestimates the
marginal variances and magnitudes of the covariances of Cov,, (#). Of course, the standard Laplace approx-
imation uses CoquL“fp (), not Covy,,, (0), to approximate Cov,, (€). In fact, CoquL“fp (0) is equivalent to a
linear response covariance matrix calculated for the approximating family Qpqp:

KL(q(6;00)||lpo(9)) = —logpo (6p) — Constant =
OLap = argmax po (0) = argomin KL (q(0;00)||po (0)) = 65

9°po (6) _ O?K L (q(6;60) |lpo (8))

Hpep = — =t
Lo 90007 |, 900007 o

=H,,.
Lap
So 6 Lap = 06, Hrap = Hyy, and CoquLafp (0) = CoquOR () for the approximating family Qp,qp.

From this perspective, the accuracy of the Laplace approximation depends precisely on the extent to which
Condition 1 holds for the family of point masses Qr,. Typically, VB approximations use a Q that is more
expressive than Qp,p, and we might expect Condition 1 to be more likely to apply for a more expressive

family. It follows that we might expect the LRVB covariance estimate COV(I;OR for general Q to be more
Lap

accurate than the Laplace covariance approximation Covqmp

in the experiments of Section 5.

. We demonstrate the validity of this intuition

4.4 Local Prior Sensitivity for MFVB

We now turn to estimating prior sensitivities for MFVB estimates—the variational analogues of S, in Defi-
nition 1. First, we define the variational local sensitivity.

Definition 7 The local sensitivity of E,,, [g (0)] to prior parameter « at o is given by

dEq, g (6)]
da

q .
S¢, =

@

10
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Corollary 3 Suppose that Assumptions 1-4 and Condition 1 hold for some oy € A and for

p(0,a) =logp (x|, a) +logp (0|la) — log p (x|0, ap) — logp (0]c) .
Then SY,, ~ S,,.

Corollary 3 states that, as with the covariance approximations in Section 4.1, S{, is a useful approximation to
Sa, to the extent that Condition 1 holds—that is, to the extent that the MFVB means are good approximations
to the exact means for the prior perturbations o € Aj.
Under the p (6, ) given in Corollary 3, Theorem 2 gives the following formula for the variational local
sensitivity:
|

We now use Eq. (19) to reproduce MFVB versions of some standard robustness measures found in the
existing literature. A simple case is when the prior p (6|«) is believed to be in a given parametric family,
and we are simply interested in the effect of varying the parametric family’s parameters (Basu et al., 1996;
Giordano et al., 2016). For illustration, we first consider a simple example where p (6|«) is in the exponential
family, with natural sufficient statistic 6 and log normalizer A («), and we take ¢ (6) = 6. In this case,

19)

. 0 Op (0, o)
S&, =& mzl %Eq(&n) [ Do

U

logp(fla) = a0 — A(a)

0 0
fon = TnTEq(H;n) [&X(QTHA(O‘)) ]
(674} 778
- 0 0 0A(a)
= (anT]Eq(@;n) 0] — 677)T dax . )
0 773
0
= TnTEq(f?m) [6]
6
= gn.

Note that when f,,,, = g,, Eq. (19) is equivalent to Eq. (14). So we see that
LR
Si, = Cov,, (9).

In this case, the sensitivity is simply the linear response covariance estimate of the covariance, CoquOR (9).
By the same reasoning, the exact posterior sensitivity is given by

Sa, = Covp, (0).

Thus, S ~ S,, to the extent that CovfoR (0) ~ Cov,, (6), which again holds to the extent that Condition 1
holds. Note that if we had used a mean field assumption and had tried to use the direct, uncorrected response
covariance Covy, (0) to try to evaluate S% , we would have erroneously concluded that the prior on one
component, 0, , would not affect the posterior mean of some other component, 6y, for ko # k;.

Sometimes it is easy to evaluate the derivative of the log prior even when it is not easy to normalize it. As
an example, we will show how to calculate the local sensitivity to the concentration parameter of an LKJ prior
(Lewandowski et al., 2009) under an inverse Wishart variational approximation. The LKJ prior is defined as
follows. Let 3 (as part of §) be an unknown K x K covariance matrix. Define the K x K scale matrix M
such that

0 otherwise.

MU:{JEMiﬁ:j

11
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Using M, define the correlation matrix R as
R=M"'sSM"
The LKIJ prior on the covariance matrix R with concentration parameter « > 0 is given by:
prks (Rla) oc |R‘a71 :

The Stan manual recommends the use of prk;, together with an independent prior on the diagonal entries of
the scaling matrix M, for the prior on a covariance matrix that appears in a hierarchical model (Stan Team,
2015, Chapter 9.13).

Suppose that we have chosen the variational approximation

q (X) := InverseWishart (3| ¥, v),

where W is a positive definite scale matrix and v is the number of degrees of freedom. In this case, the
variational parameters are = (¥, v). We write 1 with the understanding that we have stacked only the
upper-diagonal elements of ¥ since W is constrained to be symmetric and n* must be interior. As we show
in Appendix G,

K
E, [logprks (Rle)] = (e — 1) <log || — g (g) - Zlog (;‘Ilkk> + Ky (VQI(H)) + Constant,
k=1

where C'onstant contains terms that do not depend on «, and where ¥ i denotes the multivariate digamma
function. Consequently, we can evaluate

0 0
ff”] = 87771'1[4:(1(0;77) l:aa logp (E|Oé):|

n=ng,a=oag
b n\ e 1 n—K4+1
o <1og|‘1’| - YK (5) - gl% (2‘I’kk) + Ky (2)>

This derivative has a closed form, but the bookkeeping required to represent an unconstrained parameteri-
zation of the matrix ¥ within 7 would be tedious. In practice, we evaluate terms like f,,, using automatic
differentiation tools (Baydin et al., 2018).

Finally, in cases where we cannot evaluate E, g, [logp (0]c)] in closed form as a function of 7, we
can use numerical techniques as described in Section 4.5. We thus view S7 as the exact sensitivity to an
approximate KL divergence.

(20)

U

4.5 Practical Considerations when Computing the Sensitivity of Variational Approximations

We briefly discuss practical issues in the computation of Eq. (10), which requires calculating the product
g,,H;n1 (or, equivalently, H;nl g} since H,,, is symmetric). Calculating H,,, and solving this linear system
can be the most computationally intensive part of computing Eq. (10).

We first note that it can be difficult and time consuming in practice to manually derive and implement
second-order derivatives. Even a small programming error can lead to large errors in Theorem 2. To en-
sure accuracy and save analyst time, we evaluated all the requisite derivatives using the Python autograd
automatic differentiation library (Maclaurin et al., 2015) and the Stan math automatic differentiation library
(Carpenter et al., 2015).

Note that the dimension of H,, is as large as that of 7, the parameters that specify the variational distribu-
tion ¢ (; ). Many applications of MFVB employ many latent variables, the number of which may even scale
with the amount of data—including several of the cases that we examine in Section 5. However, these appli-
cations typically have special structure that render H,,,, sparse, allowing the practitioner to calculate g, H;nl

12
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quickly. Consider, for example, a model with “global” parameters, 64, that are shared by all the individual
datapoint likelihoods, and “local” parameters, 0;,. r, associated with likelihood of a single datapoint indexed
by n. By “global” and “local” we mean the likelihood and assumed variational distribution factorize as

N
p (.2?, 9glOb7 eloc,ly ey eloc,N) =P (eglob) H p (xwloc,na eglob) p (Gloc,n|eglob) (21)
n=1
N
q(051) = q (Ogion; giov) | [ ¢ (Broc.ninm) forall ¢ (6;m) € Q.
n=1

In this case, the second derivatives of the variational objective between the parameters for local variables
vanish:

O*K L (q(0;n)lpo (0))

=0.
anloc,nan;’oc’m

for all n # m,

The model in Section 5.3 has such a global / local structure; see Section 5.3.2 for more details. Additional
discussion, including the use of Schur complements to take advantage of sparsity in the log likelihood, can
be found in Giordano et al. (2015).

When even calculating or instantiating H,,,, is prohibitively time-consuming, one can use conjugate gradi-
ent algorithms to approximately compute H;nl g) (Wright and Nocedal, 1999, Chapter 5). The advantage of
conjugate gradient algorithms is that they approximate H;nl g, using only the Hessian-vector product H,, g,
which can be computed efficiently using automatic differentiation without ever forming the full Hessian H,,,.
See, for example, the hessian_vector_product method of the Python aut ograd package (Maclaurin
etal., 2015). Note that a separate conjugate gradient problem must be solved for each column of g7, so if the
parameter of interest g (¢) is high-dimensional it may be faster to pay the price for computing and inverting
the entire matrix H,,,,. See 5.3.2 for more discussion of a specific example.

In Theorem 2, we require 7; to be at a true local optimum. Otherwise the estimated sensitivities may not
be reliable (e.g., the covariance implied by Eq. (14) may not be positive definite). We find that the classical
MFVB coordinate ascent algorithms (Blei et al. (2016, Section 2.4)) and even quasi-second order methods,
such as BFGS (e.g., Regier et al., 2015), may not actually find a local optimum unless run for a long time
with very stringent convergence criteria. Consequently, we recommend fitting models using second-order
Newton trust region methods. When the Hessian is slow to compute directly, as in Section 5, one can use the
conjugate gradient trust region method of Wright and Nocedal (1999, Chapter 7), which takes advantage of
fast automatic differentiation Hessian-vector products without forming or inverting the full Hessian.

5. Experiments

We now demonstrate the speed and effectiveness of linear response methods on a number of simulated and
real data sets. We begin with simple simulated data to provide intuition for how linear response methods
can improve estimates of covariance relative to MFVB and the Laplace approximation. We then develop
linear response covariance estimates for ADVI and apply them to four real-world models and data sets
taken from the Stan examples library (Stan Team, 2017). Finally, we calculate both linear response co-
variances and prior sensitivity measures for a large-scale industry data set. In each case, we compare linear
response methods with ordinary MFVB, the Laplace approximation, and MCMC. We show that linear re-
sponse methods provide the best approximation to MCMC while still retaining the speed of approximate
methods. Code and instructions to reproduce the results of this section can be found in the git repository
rgiordan/CovariancesRobustnessVBPaper.

5.1 Simple Expository Examples

In this section we provide a sequence of simple examples comparing MFVB and LRVB with Laplace ap-
proximations. These examples provide intuition for the covariance estimate COV(I;OR (g (0)) and illustrate how

13
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the sensitivity analysis motivating CovﬁoR (g (9)) differs from the local posterior approximation motivating
Covg® (g(6)).

drLa

For each example, we will explicitly specify the target posterior pg (#) using a mixture of normals. This
will allow us to define known target distributions with varying degrees of skewness, over-dispersion, or
correlation and compare the truth with a variational approximation. Formally, for some fixed K ,, component

indicators 2z, k = 1, ..., K., component probabilities 7, locations px, and covariances Yy, we set
K.
)=11=
k=1
K.
)= p(2)p0l2) =Y p) [[N(0:m, Zp)™
z z

The values 7, m and X will be chosen to achieve the desired shape for each example using up to K, = 3
components. There will be no need to state the precise values of w, m, and X; rather, we will show plots of
the target density and report the marginal means and variances, calculated by Monte Carlo.!

We will be interested in estimating the mean and variance of the first component, so we take g (6) = 6.
Consequently, in order to calculate Cov 2(6,), we will be considering the perturbation p (6, &) = af; with
scalar o and ag = 0.

For the variational approximations, we will use a factorizing normal approximation:

Oy = {q(@) 1q(0) = HN(QIC;/’[/IC?O’]%)}'

k=1

In terms of Eq. (7), we take n = (g1, ..., fix,10g 01, ..., log ok )T Thus Eq g,y [g (0)] = Eqeosm) [01] = 11
In the examples below, we will use multiple distinct components in the definition of pg (6), so that pg (0) is
non-normal and pg (0) ¢ Q.

Since the expectation E, g, [log p ()] is intractable, we replace the exact KL divergence with a Monte
Carlo approximation using the “re-parameterization trick” (Kingma and Welling, 2013; Rezende et al., 2014;
Titsias and Lazaro-Gredilla, 2014). Let o denote the Hadamard (component-wise) product. Let &,, ud
N (0,Ig) form =1,..., M. We define

em =00 §m + 1%
KLappTOZE ( 9 77 Hpo ( - Z 1ng0 Z log Ok,

which is a Monte Carlo estimate of K'L (g (6;7) ||po (#)). We found M = 10000 to be more than adequate
for our present purposes of illustration. Note that we used the same draws &, for both optimization and for
the calculation of H,,, in order to ensure that the 7g at which H,,,, was evaluated was in fact an optimum.
This approach is similar to our treatment of ADVI; see Section 5.2 for a more detailed discussion.

5.1.1 MULTIVARIATE NORMAL TARGETS

If we take only a single component in the definition of py (6) (K, = 1), then p,, (6) is a multivariate normal
distribution for all «, and the Laplace approximation gr.qp (¢) is equal to p, (6) for all . Furthermore, as
discussed in Section 4.1 and Appendix E, the variational means E,_ [0] = p are exactly equal to the exact
posterior mean E,, [#] = my for all a (even though in general Cov,, (6) # ¥1). Consequently, for all «,

1. MFVB is often used to approximate the posterior when the Bayesian generative model for data x is a mixture model (e.g., Blei et al.
(2003)). By contrast, we note for clarity that we are not using the mixture model as a generative model for « here. E.g., z is not one
of the parameters composing 6, and we are not approximating the distribution of z in the variational distribution ¢ (). Rather, we
are using mixtures as a way of flexibly defining skewed and over-dispersed targets, p (6).
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Exact posterior and approximations Effect of tilting on exact posterior
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Figure 1: A univariate skewed distribution. Vertical lines show the location of the means.
Posterior means vs amount of tilting
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Figure 2: Effect of tilting on a univariate skew distribution.

the variational approximation, the Laplace approximation, and the exact py (@) all coincide in their estimates
of E [6], and by, Corollary 2, ¥ = Cov,, (§) = CovéﬂR 0) = CoquL“fp (0). Of course, if X is not diagonal,
Covyg, (0) # X because of the mean field assumption. Since this argument holds for the whole vector 6, it
holds a fortiori for our quantity of interest, the first component g (6) = 6.

In other words, the Laplace approximation will differ only from the LRVB approximation when pq (6) is
not multivariate normal, a situation that we will now bring about by adding new components to the mixture;
i.e., by increasing K.

5.1.2 A UNIVARIATE SKEWED DISTRIBUTION

If we add a second component (K, = 2), then we can make pg (0) skewed, as shown (with the approx-
imations) in Fig. 1. In this case, we expect E, [¢1] to be more accurate than the Laplace approximation
E,, ., [01] because Q,, is more expressive than Qr.p. This intuition is born out in the left panel of Fig. 1.

Since 6 Lap Uses only information at the mode, it fails to take into account the mass to the right of the mode,
and the Laplace approximation’s mean is too far to the left. The MFVB approximation, in contrast, is quite
accurate for the posterior mean of 6, even though it gets the overall shape of the distribution wrong.

This example also shows why, in general, one cannot naively form a “Laplace approximation” to the
posterior centered at the variational mean rather than at the MAP. As shown in the left panel of Fig. 1, in
this case the posterior distribution is actually convex at the MFVB mean. Consequently, a naive second-order
approximation to the log posterior centered at the MFVB mean would imply a negative variance.
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Exact posterior and approximations Effect of tilting on exact posterior
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Figure 3: A univariate over-dispersed distribution. Vertical lines show the location of the means.

The perturbation p (6, ) = af; is sometimes also described as a “tilting,” and the right panel of Fig. 1
shows the effect of tilting on this posterior approximation. Tilting increases skew, but the MFVB approxima-
tion remains accurate, as shown in Fig. 2. Since local sensitivity of the expectation of 6; to « is the variance
of 01 (see Eq. (13)), we have in Fig. 2 that:

e The slope of the exact distribution’s line is Cov,,, (61);

e The slope of the MFVB line is the LRVB variance CovgoR (61); and

e The slope of the Laplace line is Cov:“? (6,).

qLap

Since the MFVB and exact lines nearly coincide, we expect the LRVB variance estimate to be quite accurate
for this example. Similarly, since the slope of the Laplace approximation line is lower, we expect the Laplace
variance to underestimate the exact variance. This outcome, which can be seen visually in the left-hand panel
of Fig. 2, is shown quantitatively in the corresponding table in the right-hand panel. The columns of the table
contain information for the exact distribution and the three approximations. The first row, labeled “mean,”
shows E [01] and the second row, labeled “var,” shows Cov (61). (The “LRVB” entry for the mean is blank
because LRVB differs from MFVB only in covariance estimates.) We conclude that, in this case, Condition 1
holds for Q,, s but not for Qrqp.

5.1.3 A UNIVARIATE OVER-DISPERSED DISTRIBUTION

Having seen how MFVB can outperform the Laplace approximation for a univariate skewed distribution,
we now apply that intuition to see why the linear response covariance can be superior to the Laplace ap-
proximation covariance for over-dispersed but symmetric distributions. Such a symmetric but over-dispersed
distribution, formed with K, = 3 components, is shown in Fig. 3 together with its approximations. By sym-
metry, both the MFVB and Laplace means are exactly correct (up to Monte Carlo error), as can be seen in
the left panel of Fig. 3.

However, the right panel of Fig. 3 shows that symmetry is not maintained as the distribution is tilted.
For o« > 0, the distribution becomes skewed to the right. Thus, by the intuition from the previous section,
we expect the MFVB mean to be more accurate as the distribution is tilted and « increases from zero. In
particular, we expect that the Laplace approximation’s mean will not shift enough as « varies, i.e., that the
Laplace approximation variance will be underestimated. Fig. 4 shows that this is indeed the case. The slopes
in the left panel once again correspond to the estimated variances shown in the table, and, as expected the
LRVB variance estimate is superior to the Laplace approximation variance.
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Posterior means vs amount of tilting
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Figure 4: Effect of tilting on a univariate over-dispersed distribution.
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Figure 5: A bivariate over-dispersed distribution.

In this case, Condition 1 holds for Q,,, . For the Laplace approximation, E,,  [g(0)] = Ep, [g(6)] for
a =0, so Qr4,p satisfies Eq. (11) of Condition 1 for « near zero, the derivatives of the two expectations with
respect to o are quite different, so Eq. (12) of Condition 1 does not hold for Q).

5.1.4 A BIVARIATE OVER-DISPERSED DISTRIBUTION

In the previous two examples the mean field approximation in Q did not matter, since the examples were
one-dimensional. The only reason that the variational approximation was different from the exact pg (6)
was the normal assumption in Q,,,y. Indeed, the tables in Fig. 2 and Fig. 4 show that the MFVB variance
estimate is also reasonably close to the exact variance. In order to demonstrate why the LRVB variance can be
better than both the Laplace approximation and the MFVB approximation, we turn to a bivariate, correlated,
over-dispersed pg (#). For this we use K, = 3 correlated normal distributions, shown in the left panel of
Fig. 5. The right panel of Fig. 5 shows the marginal distribution of 6, in which the over-dispersion can be
seen clearly. As Fig. 5 shows, unlike in the previous two examples, the mean field approximation causes
qo (#) to dramatically underestimate the marginal variance of #;. Consequently, the MFVB means will also
be under-responsive to the skew introduced by tilting with «v. Though the Laplace approximation has a larger
marginal variance, it remains unable to take skewness into account. Consequently, as seen in Fig. 6, the
LRVB variance, while not exactly equal to the correct variance, is still an improvement over the Laplace
covariance, and a marked improvement on the badly under-estimated MFVB variance.
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Posterior means vs amount of tilting
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Figure 6: Effect of tilting on a bivariate over-dispersed distribution.

One might say, in this case, that Condition 1 does not hold for either Q,, ¢ or Qr,, or, if it does, it is
with a liberal interpretation of the “approximately equals” sign. However, the expressiveness of Q,, ¢ allows
LRVB to improve on the Laplace approximation, and the linear response allows it to improve over the MFVB
approximation, and so LRVB gives the best of both worlds.

Thinking about problems in terms of these three simple models can provide intuition about when and
whether Condition 1 might be expected to hold in a sense that is practically useful.

5.2 Automatic Differentiation Variational Inference (ADVI)

In this section we apply our methods to automatic differentiation variational inference (ADVI) (Kucukelbir
etal., 2017). ADVIis a “black-box” variational approximation and optimization procedure that requires only
that the user provide the log posterior, log po (#), up to a constant that does not depend on . To achieve this
generality, ADVI employs:

e A factorizing normal variational approximation,’
e An unconstraining parameterization,

e The “re-parameterization trick,” and

e Stochastic gradient descent.

ADVI uses a family employing the factorizing normal approximation

K
Qua = (0) :q(0) = [TV (Oklpn, exp (2¢1))

k=1

That is, Qg4 is a fully factorizing normal family with means p, and log standard deviations (j. Because we
are including exponential family assumptions in the definition of MFVB (as described in Section 3.1), Q.4
is an instance of a mean-field family Q,,, ;. In the notation of Eq. (7),

n= (M1>"'>MK7C1a'~-aCK)Ta (22)

2. Kucukelbir et al. (2017) describe a non-factorizing version of ADVI, which is called “fullrank” ADVI in Stan. The factorizing
version that we describe here is called “meanfield” ADVI in Stan. On the examples we describe, in the current Stan implementation,
we found that fullrank ADVI provided much worse approximations to the MCMC posterior means than the meanfield version, and
so we do not consider it further.
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Q, = R2K X is the Lebesgue measure, and the objective function Eq. (8) is

K
KL (a0 lpo 6)) =~ [ A Gulie,exp (260) og o ()X (d6) — Y G
k=1

where we have used the form of the univariate normal entropy up to a constant.

The unconstraining parameterization is required because the use of a normal variational approximation
dictates that the base measure on the parameters # € R’ be supported on all of R, Although many param-
eters of interest, such as covariance matrices, are not supported on R, there typically exist differentiable
maps from an unconstrained parameterization supported on R¥ to the parameter of interest. Software pack-
ages such as Stan automatically provide such transforms for a broad set of parameter types. In our notation,
we will take these constraining maps to be the function of interest, g (), and take 6 to be unconstrained. Note
that, under this convention, the prior p (6|«) must be a density in the unconstrained space. In practice (e.g.,
in the Stan software package), one usually specifies the prior density in the constrained space and converts
it to a density p (f|a) in the unconstrained space using the determinant of the Jacobian of the constraining
transform g (-).

The re-parameterization trick allows easy approximation of derivatives of the (generally intractable) ob-
jective KL (g (6;m) ||po (0)). By defining z;, using the change of variable

2k = (O — i)/ exp (k) , (23)

KL(q(6;n)|lpo (0)) can be re-written as an expectation with respect to a standard normal distribution. We
write § = exp ({) o z + u by using the component-wise Hadamard product o. Then

K

KL(q(0;m)]|lpo () = —E. [logpo (exp (¢) o z + )] — Z ¢, + Constant.
k=1

The expectation is still typically intractable, but it can be approximated using Monte Carlo and draws from
a K -dimensional standard normal distribution. For a fixed number M of draws z1, ..., zp); from a standard
K -dimensional normal, we can define the approximate KL divergence

M K
— 1
KL(n):= ~ mZ:1 log po (exp () © zm + 1) — ’; ¢k + Constant. (24)
For any fixed M,
B | KL ()| = 2-KL{a (0:)lIpo (9)
877 n - 8’17 qvin)lPo ;

so gradients of KL (n) are unbiased for gradients of the exact KL divergence. Furthermore, for fixed draws
21, ..y 20, I L (1) can be easily differentiated (using, again, the re-parameterization trick). Standard ADVI

uses this fact to optimize K L (¢ (6;7) ||po (0)) using the unbiased gradient draws a%l/{z (n) and a stochastic
gradient optimization method, where the stochasticity comes from draws of the standard normal random
variable z. Note that stochastic gradient methods typically use a new draw of z at every gradient step.

5.2.1 LINEAR RESPONSE FOR ADVI (LR-ADVI)

Since ADVI uses a factorizing normal approximation, the intuition from Section 5.1 may be expected to
apply. In particular, we might expect that the ADVI means /i might be a good approximation to E, [6],

that the ADVI variances exp (26 ) would be under-estimates of the posterior variance Cov,, (6), so that

using CovéoR (0) could improve the approximations to the posterior variance. We refer to LRVB covariances
calculated using an ADVI approximation as LR-ADVL

19



GIORDANO, BRODERICK, AND JORDAN

To apply linear response to an ADVI approximation, we need to be able to approximate the Hessian of
KL (q(9;n)]||lpo (#)) and to be assured that we have found an optimal 7. But, by using a stochastic gradient
method, ADVI avoids ever actually calculating the expectation in K'L (¢ (6; 1) ||po (6)). Furthermore even if
a stochastic gradient method finds an point that is close to the optimal value of K'L (q (6;7) ||po (9)) it may
not be close to an optimum of KL (n) for a particular finite M. Indeed, we found that, even for very large
M, the optimum found by ADVTI’s stochastic gradient method is typically not close enough to an optimum
of the approximate KL (n) for sensitivity calculations to be useful. Sensitivity calculations are based on
differentiating the fixed point equation given by the gradient being zero (see the proof in Appendix D), and
do not apply at points for which the gradient is not zero either in theory nor in practice.

Consequently, in order to calculate the local sensitivity, we simply eschew the stochastic gradient method
and directly optimize KL (n) for a particular choice of M. (We will discuss shortly how to choose M.) We
can then use K L (n) in Eq. (10) rather than the exact KL divergence. Directly optimizing KL (n) both frees
us to use second-order optimization methods, which we found to converge more quickly to a high-quality
optimum than first-order methods, and guarantees that we are evaluating the Hessian H,,, at an optimum of
the objective function used to calculate Eq. (10).

As M approaches infinity, we expect the optimum of KL (n) to approach the optimum of K'L (q (6;7) ||po (9))
by the standard frequentist theory of estimating equations (Keener, 2010, Chapter 9). In practice we must
fix a particular finite M, with larger M providing better approximations of the true KL divergence but at
increased computational cost. We can inform this tradeoff between accuracy and computation by considering
the frequentist variability of n§ when randomly sampling M draws of the random variable z used to approx-
imate the intractable integral in KL (n). Denoting this frequentist variability by Cov, (1), standard results
(Keener, 2010, Chapter 9) give that

. - 9 ==
Cov, (n5) = HnnlCovz (877KL (n)

) H, . (25)
o

A sufficiently large M will be one for which Cov, (7)) is adequately small. One notion of “adequately small”
might be that the ADVI means found with KL (n) are within some fraction of a posterior standard deviation
of the optimum of K'L (q(0;7) ||po (f)). Having chosen a particular M, we can calculate the frequentist
variability of p* using CoquOR (g (0)) and estimate the posterior standard deviation using Eq. (14). If we find
that each p* is probably within 0.5 standard deviations of the optimum of K L (¢ (6; ) ||po (6)), we can keep
the results; otherwise, we increase M and try again. In the examples we consider here, we found that the
relatively modest M = 10 satisfies this condition and provides sufficiently accurate results.

Finally, we note a minor departure from Eq. (14) when calculating CovéOR (g(0)) from H,,. Recall
that, in this case, we are taking g (-) to be ADVI’s constraining transform, and that Eq. (14) requires the
Jacobian, g, of this transform. At the time of writing, the design of the Stan software package did not readily
support automatic calculation of g,, though it did support rapid evaluation of ¢ (¢) at particular values of 6.
Consequently, we used linear response to estimate CovgoR (6), drew a large number N, of Monte Carlo draws
from 0,, ~ N (u, CoquOR (9)) forn = 1,..., Ng, and then used these draws to form a Monte Carlo estimate
of the sample covariance of g (f). Noting that E, [6] = u, and recalling the definition of 7 for ADVI in
Eq. (22), by Eq. (14) we have

O, [0].. O, [T [ Ix 0\ / Ix O
LR _ do 1 do _ K 1 K
Covi () = e == 20 < (0 0 EGH ()

which is the upper-left quarter of the matrix H;nl In addition to obviating the need for g, this approach also
allowed us to take into account possible nonlinearities in g (-) at little additional computational cost.

5.2.2 RESULTS

We present results from four models taken from the Stan example set, namely the models election88
(“Election model”), sesame_street1 (“Sesame Street model”), radon_vary_intercept_floor (“Radon
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Figure 7: Election model

model”), and cjs_cov_randeff (“Ecology model”). We experimented with many models from the Stan
examples and selected these four as representative of the type of model where LR-ADVI can be expected
to provide a benefit—specifically, they are models of a moderate size. For very small models, MCMC runs
quickly enough in Stan that fast approximations are not necessary, and for very large models (with thousands
of parameters) the relative advantages of LR-ADVI and the Laplace approximation diminish due to the need
to calculate H,,, or Hy,;, using automatic differentiation.> The size of the data and size of the parameter
space for our four chosen models are shown in Fig. 11. We also eliminated from consideration models where
Stan’s MCMC algorithm reported divergent transitions or where Stan’s ADVI algorithm returned wildly in-
accurate posterior mean estimates.

For brevity, we do not attempt to describe the models or data in any detail here; rather, we point to the
relevant literature in their respective sections. The data and Stan implementations themselves can be found
on the Stan website (Stan Team, 2017) as well as in Appendix F.

To assess the accuracy of each model, we report means and standard deviations for each of Stan’s model
parameters as calculated by Stan’s MCMC and ADVI algorithms and a Laplace approximation, and we report
the standard deviations as calculated by CovéﬂR (g9 (0)). Recall that, in our notation, g (-) is the (generally
nonlinear) map from the unconstrained latent ADVI parameters to the constrained space of the parameters
of interest. The performance of ADVI and Laplace vary, and only LR-ADVI provides a consistently good
approximation to the MCMC standard deviations. LR-ADVI was somewhat slower than a Laplace approxi-
mation or ADVI alone, but it was typically about five times faster than MCMC; see Section 5.2.7 for detailed
timing results.

5.2.3 ELECTION MODEL ACCURACY

We begin with election88, which models binary responses in a 1988 poll using a Bernoulli hierarchical
model with normally distributed random effects for state, ethnicity, and gender and a logit link. The model
and data are described in detail in Gelman and Hill (2006, Chapter 14). Fig. 7 shows that both the Laplace

3. We calculated H,),, using a custom branch of Stan’s automatic differentiation software (Carpenter et al., 2015) that exposes Hessians
and Hessian-vector products in the Rstan modelfit class. When this custom branch is merged with the main branch of Stan, it
will be possible to implement LR-ADVI for generic Stan models.
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Figure 8: Sesame Street model

approximation and ADVI do a reasonable job of matching to MCMC, though LR-ADVI is slightly more
accurate for standard deviations.

5.2.4 SESAME STREET MODEL ACCURACY

Next, we show results for sesame_streetl, an analysis of a randomized controlled trial designed to
estimate the causal effect of watching the television show Sesame Street on a letter-recognition test. To
control for different conditions in the trials, a hierarchical model is used with correlated multivariate outcomes
and unknown covariance structure. The model and data are described in detail in Gelman and Hill (2006,
Chapter 23).

As can be seen in Fig. 8, the MAP under-estimates the variability of the random effects ag, and, in turn,
under-estimates the variance parameter sigma_a. Because the MAP estimate of sigma_a is close to zero,
the log posterior has a very high curvature with respect to the parameter ag at the MAP, and the Hessian
used for the Laplace approximation is numerically singular. ADVI, which integrates out the uncertainty
in the random effects, provides reasonably good estimates of the posterior means but underestimates the
posterior standard deviations due to the mean-field assumption. Only LR-ADVI provides accurate estimates
of posterior uncertainty.

5.2.5 RADON MODEL ACCURACY

We now turn to radon_vary_intercept_floor, a hierarchical model of radon levels in Minnesota
homes described in Gelman and Hill (2006, Chapters 16 and 21). This model is relatively simple, with
univariate normal observations and unknown variances. Nevertheless, the Laplace approximation again pro-
duces a numerically singular covariance matrix. The ADVI means are reasonably accurate, but the standard
deviations are not. Only LR-ADVI produces an accurate approximation to the MCMC posterior standard
deviations.

5.2.6 ECOLOGY MODEL ACCURACY
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Figure 10: Ecology model

Finally, we consider a more complicated mark-recapture model from ecology known as the Cormack-Jolly-
Seber (CJS) model. This model is described in detail in Kéry and Schaub (2011, Chapter 7), and discussion
of the Stan implementation can be found in Stan Team (2015, Section 15.3).

The Laplace approximation is again degenerate, and the ADVI standard deviations again deviate consid-
erably from MCMC. In this case, the ADVI means are also somewhat inaccurate, and some of the LR-ADVI
standard deviations are mis-estimated in turn. However, LR-ADVI remains by far the most accurate method
for approximating the MCMC standard errors.
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Figure 11: Comparision of timing in ADVI experiments

5.2.7 TIMING RESULTS

Detailed timing results for the ADVI experiments are shown in Fig. 11. Both the Laplace approximation and
ADVI alone are faster tlgﬂ LR-ADVI, which in turn is about five times faster than MCMC. We achieved the
best results optimizing K L () by using the conjugate gradient Newton’s trust region method (t rust-ncg
of scipy.optimize), but the optimization procedure still accounted for an appreciable proportion of the
time needed for LR-ADVI.

5.3 Criteo Dataset

We now apply our methods to a real-world data set using a logistic regression with random effects, which is
an example of a generalized linear mixed model (GLMM) (Agresti and Kateri, 2011, Chapter 13). This data
and model have several advantages as an illustration of our methods: the data set is large, the model contains
a large number of imprecisely-estimated latent variables (the unknown random effects), the model exhibits
the sparsity of H,, that is typical in many MFVB applications, and the results exhibit the same shortcomings
of the Laplace approximation seen above. For this model, we will evaluate both posterior covariances and
prior sensitivities.

5.3.1 DATA AND MODEL

We investigated a custom subsample of the 2014 Criteo Labs conversion logs data set (Criteo Labs, 2014),
which contains an obfuscated sample of advertising data collected by Criteo over a period of two months.
Each row of the data set corresponds to a single user click on an online advertisement. For each click, the
data set records a binary outcome variable representing whether or not the user subsequently “converted”
(i.e., performed a desired task, such as purchasing a product or signing up for a mailing list). Each row
contains two timestamps (which we ignore), eight numerical covariates, and nine factor-valued covariates.
Of the eight numerical covariates, three contain 30% or more missing data, so we discarded them. We then
applied a per-covariate normalizing transform to the distinct values of those remaining. Among the factor-
valued covariates, we retained only the one with the largest number of unique values and discarded the others.
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These data-cleaning decisions were made for convenience. The goal of the present paper is to demonstrate
our inference methods, not to draw conclusions about online advertising.

Although the meaning of the covariates has been obfuscated, for the purpose of discussion we will imag-
ine that the single retained factor-valued covariate represents the identity of the advertiser, and the numeric
covariates represent salient features of the user and/or the advertiser (e.g., how often the user has clicked
or converted in the past, a machine learning rating for the advertisement quality, etc.). As such, it makes
sense to model the probability of each row’s binary outcome (whether or not the user converted) as a function
of the five numeric covariates and the advertiser identity using a logistic GLMM. Specifically, we observe
binary conversion outcomes, ¥;;, for click ¢ on advertiser ¢, with probabilities given by observed numerical
explanatory variables, x;;, each of which are vectors of length K, = 5. Additionally, the outcomes within
a given value of ¢ are correlated through an unobserved random effect, u;, which represents the “quality” of
advertiser ¢, where the value of ¢ for each observation is given by the factor-valued covariate. The random
effects u; are assumed to follow a normal distribution with unknown mean and variance. Formally,

Yit|lpit ~ Bernoulli(py), fort =1,...,Tandi=1,..., N
e/)'it
Dit = m Where Pit ‘— .’L'Z;B + Ut

wlpr o~ N ().

Consequently, the unknown parameters are 6 = (37, 1, 7, u1, ..., ur)T. We use the following priors:

N'MO?TM ~ N(NJOva_l)
T|ar, B ~ Gamma (a,, ;)

Bo 8 Y8 B
5|5077ﬁ7’7ﬁ ~ N 5 o7 ol
Bo Y8 VB T8

Note that we initially take y3 = 0O so that the prior information matrix on /3 is diagonal. Nevertheless, by
retaining g as a hyperparameter we will be able to assess the sensitivity to the assumption of a diagonal
prior in Section 5.3.6. The remaining prior values are given in Appendix H. It is reasonable to expect that
a modeler would be interested both in the effect of the numerical covariates and in the quality of individual
advertisers themselves, so we take the parameter of interest to be g (6) = (87, u1, ..., ur)".

To produce a data set small enough to be amenable to MCMC but large and sparse enough to demonstrate
our methods, we subsampled the data still further. We randomly chose 5000 distinct advertisers to analyze,
and then subsampled each selected advertiser to contain no more than 20 rows each. The resulting data set
had N = 61895 total rows. If we had more observations per advertiser, the “random effects” u; would have
been estimated quite precisely, and the nonlinear nature of the problem would not have been important; these
changes would thus have obscured the benefits of using MFVB versus the Laplace approximation. In typical
internet data sets a large amount of data comes from advertisers with few observations each, so our subsample
is representative of practically interesting problems.

5.3.2 INFERENCE AND TIMING

We estimated the expectation and covariance of ¢ (6) using four techniques: MCMC, the Laplace approxi-
mation, MFVB, and linear response (LRVB) methods. For MCMC, we used Stan (Stan Team, 2015), and to
calculate the MFVB, Laplace, and LRVB estimates we used our own Python code using numpy, scipy, and
autograd (Jones et al., 2001; Maclaurin et al., 2015). As described in Section 5.3.3, the MAP estimator
did not estimate E,,; [g (§)] very well, so we do not report standard deviations or sensitivity measures for the
Laplace approximations. The summary of the computation time for all these methods is shown in Table 1,
with details below.
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Method Seconds
MAP (optimum only) 12
VB (optimum only) 57
VB (including sensitivity for /3) 104
VB (including sensitivity for 8 and ) 553
MCMC (Stan) 21066

Table 1: Timing results

For the MCMC estimates, we used Stan to draw 5000 MCMC draws (not including warm-up), which
took 351 minutes. We estimated all the prior sensitivities of Section 5.3.6 using the Monte Carlo version of
the covariance in Eq. (5).

For the MFVB approximation, we use the following mean field exponential family approximations:

q (1) = Gamma (7;7;)
q (1) =N (13m)
K, T
q(0)=q(r)q () [T aBe) [ qu)-
k=1 t=1

With these choices, evaluating the variational objective requires the following intractable univariate varia-
tional expectation:

epit
Eq(o:m) [log (1 —pit)] = Eqeoi) [log <1 B Hepftﬂ '

We used the re-parameterization trick and four points of Gauss-Hermite quadrature to estimate this integral
for each observation. See Appendix H for more details.

We optimized the variational objective using the conjugate gradient Newton’s trust region method, t rust-ncg,
of scipy.optimize. One advantage of trust-ncg is that it performs second-order optimization but
requires only Hessian-vector products, which can be computed quickly by aut ograd without constructing
the full Hessian. The MFVB fit took 57 seconds, roughly 370 times faster than MCMC with Stan.

With variational parameters for each random effect u;, H,,, is a 10014 x 10014 dimensional matrix.
Consequently, evaluating H,,,, directly as a dense matrix using aut ograd would have been prohibitively
time-consuming. Fortunately, our model can be decomposed into global and local parameters, and the Hes-
sian term H,,, in Theorem 2 is extremely sparse. In the notation of Section 4.5, take 8400 = (57, 1, T,

T

take 600, = u, and stack the variational parameters as n = (n;l0b7 Moc, 1y -+ moc’T) . The cross terms in
H,,,, between the local variables vanish:

O’KL(q(0;1)lpa (9))
8”7100,1&1 anloc,tQ

= 0 for all t; # to.

Equivalently, note that the full likelihood in Appendix H, Eq. (31), has no cross terms between u;, and u,
for t; # t2. As the dimension T of the data grows, so does the length of 1. However, the dimension of 74,5
remains constant, and H,,,, remains easy to invert. We show an example of the sparsity pattern of the first few
rows and columns of H,,,, in Fig. 12.

Taking advantage of this sparsity pattern, we used aut ograd to calculate the Hessian of the KL diver-
gence one group at a time and assembled the results in a sparse matrix using the scipy.sparse Python

26



COVARIANCES, ROBUSTNESS, AND VARIATIONAL BAYES

50 -

100 ~

Row

T T T T
50 100 150 200

Column

Figure 12: Sparsity pattern of top-left sub-matrix of H,,, for the logit GLMM model. The axis numbers
represent indices within 7, and black indicates non-zero entries of H,,,.

package. Even so, calculating the entire sparse Hessian took 323 seconds, and solving the system H;nl gl
using scipy.sparse.linalg.spsolve took an additional 173 seconds. These results show that the
evaluation and inversion of H,,, was several times more costly than optimizing the variational objective itself.
(Of course, the whole procedure remains much faster than running MCMC with Stan.)

We note, however, that instead of the direct approach to calculating Hgnl g, one can use the conjugate
gradient algorithm of sp.sparse.linalg.cg (Wright and Nocedal, 1999, Chapter 5) together with the
fast Hessian-vector products of autograd to query one column at a time of H;nl g1 On a typical column
of H,,77,1 g in our experiment, calculating the conjugate gradient took only 9.4 seconds (corresponding to 81
Hessian-vector products in the conjugate gradient algorithm). Thus, for example, one could calculate the
columns of H;nl g, corresponding to the expectations of the global variables 8 in only 9.4 x K, = 46.9
seconds, which is much less time than it would take to compute the entire H;nl g, for both 3 and every
random effect in u.

For the Laplace approximation, we calculated the MAP estimator and Hy,,, using Python code similar to
that used for the MFVB estimates. We observe that the MFVB approximation to posterior means would be
expected to improve on the MAP estimator only in cases when there is both substantial uncertainty in some
parameters and when this uncertainty, through nonlinear dependence between parameters, affects the values
of posterior means. These circumstances obtain in the logistic GLMM model with sparse per-advertiser data
since the random effects u; will be quite uncertain and the other posterior means depend on them through the
nonlinear logistic function.

5.3.3 POSTERIOR APPROXIMATION RESULTS

In this section, we assess the accuracy of the MFVB, Laplace, and LRVB methods as approximations to
E,, [9 (8)] and Cov,, (g (0)). We take the MCMC estimates as ground truth. Although, as discussed in
Section 5.3, we are principally interested in the parameters g (6) = (87,u1,...,ur)T, we will report the
results for all parameters for completeness. For readability, the tables and graphs show results for a random
selection of the components of the random effects u.

5.3.4 POSTERIOR MEANS

We begin by comparing the posterior means in Table 2, Fig. 13, and Fig. 14. We first note that, despite
the long running time for MCMC, the $; and p parameters did not mix well in the MCMC sample, as is
reflected in the MCMC standard error and effective number of draws columns of Table 2. The z;; data
corresponding to /31 contained fewer distinct values than the other columns of x, which perhaps led to some
co-linearity between (31 and p in the posterior. This co-linearity could have caused both poor MCMC mixing
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Parameter MCMC MFVB MAP MCMC std. err.  Eff. # of MCMC draws

51 1.454 1.447 1.899 0.02067 33
B2 0.031 0.033 0.198 0.00025 5000
Bs 0.110  0.110 0.103 0.00028 5000
B4 -0.172  -0.173 -0.173 0.00016 5000
Bs 0.273 0.273 0.280 0.00042 5000
I 2.041 2.041 3.701 0.04208 28
T 0.892  0.823 827.724 0.00051 1232
U1431 1.752 1.757 3.700 0.00937 5000
U4150 1.217 1.240 3.699 0.01022 5000
U4575 2427 2413 3.702 0.00936 5000
U4685 3.650  3.633 3.706 0.00862 5000

Table 2: Results for the estimation of the posterior means
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Figure 13: Comparison of MCMC and MFVB means

and, perhaps, excessive measured prior sensitivity, as discussed below in Section 5.3.6. Although we will
report the results for both 31 and p without further comment, the reader should bear in mind that the MCMC
“ground truth” for these two parameters is somewhat suspect.

The results in Table 2 and Fig. 13 show that MFVB does an excellent job of approximating the posterior
means in this particular case, even for the random effects v and the related parameters x4 and 7. In contrast,
the MAP estimator does reasonably well only for certain components of 5 and does extremely poorly for
the random effects parameters. As can be seen in Fig. 14, the MAP estimate dramatically overestimates the
information 7 of the random effect distribution (that is, it underestimates the variance). As a consequence, it
estimates all the random effects to have essentially the same value, leading to mis-estimation of some location
parameters, including both x and some components of 5. Since the MAP estimator performed so poorly at
estimating the random effect means, we will not consider it any further.

5.3.5 POSTERIOR COVARIANCES

We now assess the accuracy of our estimates of Covy, (g (#)). The results for the marginal standard devia-
tions are shown in Table 3 and Fig. 15. We refer to the standard deviations of Cov, (g (¢)) as the “uncor-
rected MFVB” estimate, and of CovgoR (g9 (0)) as the “LRVB” estimate. The uncorrected MFVB variance
estimates of 3 are particularly inaccurate, but the LRVB variances match the exact posterior closely.

In Fig. 16, we compare the off-diagonal elements of CoquoR (g (8)) and Covp, (g (6)). These covariances
are zero, by definition, in the uncorrected MFVB estimates Covg, (g (#)). The left panel of Fig. 16 shows the
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Figure 14: Comparison of MCMC and Laplace means

Parameter MCMC LRVB Uncorrected MFVB

51 0.118 0.103 0.005
Ba 0.018 0.018 0.004
B3 0.020  0.020 0.004
Ba 0.012  0.012 0.004
Bs 0.029  0.030 0.004
I 0.223  0.192 0.016
T 0.018 0.033 0.016
U1431 0.663  0.649 0.605
U4150 0.723 0.707 0.662
U4575 0.662  0.649 0.615
U4685 0.610 0.607 0.579

Table 3: Standard deviation results

estimated covariances between the global parameters and all other parameters, including the random effects,
and the right panel shows only the covariances amongst the random effects. The LRVB covariances are quite
accurate, particularly when we recall that the MCMC draws of i may be inaccurate due to poor mixing.

5.3.6 PARAMETRIC SENSITIVITY RESULTS

Finally, we compare the MFVB prior sensitivity measures of Section 4.4 to the covariance-based MCMC
sensitivity measures of Section 2.1. Since sensitivity is of practical interest only when it is of comparable or-
der to the posterior uncertainty, we report sensitivities normalized by the appropriate standard deviation. That

is, we report Sao/\/diag (CZ)VPO (g(9) ) and S /\/dlag COVLR (9(0))), etc., where diag (-) denotes the

diagonal vector of a matrix, and the division is element-wise. Note that we use the sensitivity-based variance
estimates CovL R not the uncorrected MFVB estimates Covyg,, to normalize the variational sensitivities. We
refer to a sens1t1v1ty divided by a standard deviation as a “normalized” sensitivity.

The comparison between the MCMC and MFVB sensitivity measures is shown in Fig. 17. The MFVB and
MCMC sensitivities correspond very closely, though the MFVB means appear to be slightly more sensitive to
the prior parameters than the MCMC means. This close correspondence should not be surprising. As shown
in Section 5.3.3, the MFVB and MCMC posterior means match quite closely. If we assume, reasonably, that
they continue to match to first order in a neighborhood of our original prior parameters, then Condition 1 will
hold and we would expect S, ~ SZ o
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Figure 16: Comparison of MCMC and LRVB off-diagonal covariances

Table 4 shows the detailed MFVB normalized sensitivity results. Each entry is the sensitivity of the
MFVB mean of the row’s parameter to the column’s prior parameter. One can see that several parameters
are quite sensitive to the information parameter prior 7,,. In particular, E,, [¢] and E,,_ [3:] are expected to
change approximately —0.39 and —0.35 standard deviations, respectively, for every unit change in 7,. This
size of change could be practically significant (assuming that such a change in 7,, is subjectively plausible).
To investigate this sensitivity further, we re-fit the MFVB model at a range of values of the prior parameter
Ty, assessing the accuracy of the linear approximation to the sensitivity. The results are shown in Fig. 18.
Even for very large changes in 7,,—resulting in changes to E,, [u] and E,,, [51] far in excess of two standard
deviations—the linear approximation holds up reasonably well. Fig. 18 also shows a (randomly selected)
random effect to be quite sensitive, though not to a practically important degree relative to its posterior
standard deviation. The insensitivity of E,,  [32] is also confirmed. Of course, the accuracy of the linear
approximation cannot be guaranteed to hold as well in general as it does in this particular case, and the quick
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Po 75 8 Ko Ty a; BT
7 0.0094 -0.1333 -0.0510 0.0019 -0.3920 0.0058 -0.0048
T 0.0009 -0.0086 -0.0142 0.0003 -0.0575 0.0398 -0.0328
B 0.0089 -0.1464 -0.0095 0.0017 -0.3503 0.0022 -0.0018
Ba 0.0012 -0.0143 -0.0113  0.0003 -0.0516 0.0062 -0.0051
Bs  -0.0035 00627 -0.0081 -0.0006 0.1218 -0.0003  0.0002
By 0.0018 -0.0037 -0.0540 0.0004 -0.0835 0.0002 -0.0002
Bs 0.0002  0.0308 -0.0695 0.0002 -0.0383 0.0011 -0.0009

u1431  0.0028 -0.0397 -0.0159  0.0006 -0.1169 0.0018 -0.0015
uq150  0.0026 -0.0368 -0.0146  0.0005 -0.1083  0.0022 -0.0018
ugs7s  0.0028  -0.0406 -0.0138  0.0006 -0.1153  0.0011 -0.0009
ugegs  0.0028 -0.0409 -0.0142  0.0006 -0.1163  0.0003 -0.0002

Table 4: MFVB normalized prior sensitivity results
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Figure 17: Comparison of MCMC and MFVB normalized parametric sensitivity results

and reliable evaluation of the linearity assumption without re-fitting the model remains interesting future
work.

Since we started the MFVB optimization close to the new, perturbed optimum, each new MFVB fit took
only 27.2 seconds on average. Re-estimating the MCMC posterior so many times would have been extremely
time-consuming. (Note that importance sampling would be useless for prior parameter changes that moved
the posterior so far from the original draws.) The considerable sensitivity of this model to a particular prior
parameter, which is perhaps surprising on such a large data set, illustrates the value of having fast, general
tools for discovering and evaluating prior sensitivity. Our framework provides just such a set of tools.

6. Conclusion

By calculating the sensitivity of MFVB posterior means to model perturbations, we are able to provide two
important practical tools for MFVB posterior approximations: improved variance estimates and measures of
prior robustness. When MFVB models are implemented in software that supports automatic differentiation,
our methods are fast, scalable, and require little additional coding beyond the MFVB objective itself. In our
experiments, we were able to calculate accurate posterior means, covariances, and prior sensitivity measures
orders of magnitude more quickly than MCMC.
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Figure 18: MFVB sensitivity as measured both by linear approximation (blue) and re-fitting (red)
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Appendices

Appendix A. Proof of Theorem 1

In this section we prove Theorem 1.
Proof Under Assumption 1, we can exchange differentiation and integration in &% S po(0)exp (p(0,)) g (0) X (db)
and &% S po (0)exp (p (0, ) A (df) by Fleming (1965, Chapter 5-11, Theorem 18), which ultimately de-
pends on the Lebesgue dominated convergence theorem. By Assumption 1, E,_ [g (8)] is well-defined for
a € Agp and

Opo (6) e)g;(p (6, a)) = po (A) exp (p (9,@))%6;205) A-almost everywhere.
Armed with these facts, we can directly compute
dEp, [9(O)]| _ d [g(0) ()exp(( @)) A (d9)‘
dat |, dat fpo )exp (p (0, ) A (dB)
e J9Om O e (p6.0) A, [(9)]%fpo )exp (p (6,0)) A (d6)]
T T @) exp (p(800)) A(d6) i Jpo @) exp (p (9, 0)) A (d0)
[ 9(0)po (0) exp (p(8,a)) 2252 X (df) p (0, )
T Tn@ene@anaa O | T ]
B Ip (0, )
= Covy, <g P B ao) .

Appendix B. Comparison With MCMC Importance Sampling

In this section, we show that using importance sampling with MCMC samples to calculate the local sensitivity
in Eq. (1) is precisely equivalent to using the same MCMC samples to estimate the covariance in Eq. (4)
directly. For this section, will suppose that Assumption 1 holds. Further suppose, without loss of generality,
we have samples 6; drawn IID from pg (6):

O Zflvdpo (0), forn=1,...,N;

Typically we cannot compute the dependence of the normalizing constant [ p (6") exp (p (6, ) X (df") on
a, so we use the following importance sampling estimate for E,, [g ()] (Owen, 2013, Chapter 9):

Wp = €Xp (p (07“ Oé) -p (e’m Oéo))

Wy 1=
n N,
Zn’.—l Wn!
N
Ep, [9(0)] = ) g (0n)
n=1
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Note that w,, \ao = Ni, so the importance sampling estimate recovers the ordinary sample mean at cg. The
derivatives of the weights are given by

Owy, 9p (O, @)

da Wn Jda
0w, G w, YN S
= &N, 2
aa Z’ﬂ'&:l Wnp! (vav/s:l wn/>
_ W, Ip (On, ) W, e W, 0p (0, @)
Z::/’;l Wy 9o Z::[’S:l W' pr=1 ngzl Wn Oax
N
_ - Op(On, @) ~ - Op(Onr, )
= n—p Wy, n,zﬂ Wt = =
It follows that
N N, N
0 <= . S [ . 0p(0,,« . N~ 0p (O,
o] - (5o Fo o)
n=1 @o n=1 n'=1 a0
N N N
1 <= 9p(On, ) 1 <= 0p(On, ) 1 &
= > Y g, - 06|
Ns nzz:l da ap ( ) Ny n=1 da ap Ns 112::19( )

which is precisely the sample version of the covariance in Theorem 1.

Appendix C. Our Use of the Terms ‘“Sensitivity”’ and ‘“Robustness”

In this section we clarify our usage of the terms “robustness” and “sensitivity.” The quantity ST (a — ap)
measures the sensitivity of E,,  [g (8)] to perturbations in the direction Acv. Intuitively, as sensitivity increases,
robustness decreases, and, in this sense, sensitivity and robustness are opposites of one another. However,
we emphasize that sensitivity is a clearly defined, measurable quantity and that robustness is a subjective
judgment informed by sensitivity, but also by many other less objective considerations.

Suppose we have calculated S,, from Eq. (1) and found that it has a particular value. To determine
whether our model is robust, we must additionally decide

1. How large of a change in the prior, ||oc — ], is plausible, and

2. How large of a change in E,,, [g (6)] is important.

The set of plausible prior values necessarily remains a subjective decision.* Whether or not a particular

change in E,_ [g(6)] is important depends on the ultimate use of the posterior mean. For example, the
posterior standard deviation can be a guide: if the prior sensitivity is swamped by the posterior uncertainty
then it can be neglected when reporting our subjective uncertainty about g (), and the model is robust.
Similarly, even if the prior sensitivity is much larger than the posterior standard deviation but small enough
that it would not affect any actionable decision made on the basis of the value of E,, [g ()], then the model
is robust. Intermediate values remain a matter of judgment. An illustration of the relationship between
sensitivity and robustness is shown in Fig. 19.

Finally, we note that if .4 is small enough that E,, [¢ (6)] is roughly linear in « for o« € A, then calculating
Eq. (1) for all o € A and finding the worst case can be thought of as a first-order approximation to a global
robustness estimate. Depending on the problem at hand, this linearity assumption may not be plausible except

4. This decision can be cast in a formal decision theoretic framework based on a partial ordering of subjective beliefs (Insua and
Criado, 2000).
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Epgf [g (0)} Not robust

in posterior
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Acceptable variation ’
expectation
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Plausible variation
in prior parameters

Figure 19: The relationship between robustness and sensitivity

for very small A. This weakness is inherent to the local robustness approach. Nevertheless, even when
the perturbations are valid only for a small A, these easily-calculable measures may still provide valuable
intuition about the potential modes of failure for a model.

If g (0) is a scalar, it is natural to attempt to summarize the high-dimensional vector S, in a single easily
reported number such as

SiP = sup ST (a—ao)l.
a:lla—apl|<1

For example, the calculation of S;‘;Té” is the principal ambition of Basu et al. (1996). The use of such sum-
maries is also particularly common in work that considers function-valued perturbations (e.g., Gustafson,
1996b; Roos et al., 2015). (Function-valued perturbations can be connected to the finite-dimensional per-
turbations of the present work through the notion of the Gateaux derivative (Huber, 2011, Chapter 2.5), the
elaboration of which we leave to future work.) Although the summary S7"'” has obvious merits, in the present
work we emphasize the calculation only of S, in the belief that its interpretation is likely to vary from ap-
plication to application and require some critical thought and subjective judgment. For example, the unit
ball || — ]| < 1 (as in Basu et al. (1996)) may not make sense as a subjective description of the range of
plausible variability of p (f|«). Consider, e.g.: why should the off-diagonal term of a Wishart prior plausibly
vary as widely as the mean of some other parameter, when the two might not even have the same units? This
problem is easily remedied by choosing an appropriate scaling of the parameters and thereby making the unit
ball an appropriate range for the problem at hand, but the right scaling will vary from problem to problem
and necessarily be a somewhat subjective choice, so we refrain from taking a stand on this decision. As
another example, the worst-case function-valued perturbations of Gustafson (1996a,b) require a choice of a
metric ball in function space whose meaning may not be intuitively obvious, may provide worst-case pertur-
bations that depend on the data to a subjectively implausible degree, and may exhibit interesting but perhaps
counter-intuitive asymptotic behavior for different norms and perturbation dimensions. Consequently, we
do not attempt to prescribe a particular one-size-fits-all summary measure. The local sensitivity S,, is a
well-defined mathematical quantity. Its relationship to robustness must remain a matter of judgment.

Appendix D. Proof of Theorem 2

In this section we prove Theorem 2.
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Proof For notational convenience, we will define

KL(n,a) = KL(q(0;n)|lpa(0))-

By Assumption 3, * («) is both optimal and interior for all « € Ag, and by Assumption 2, KL (1, ) is
continuously differentiable in n. Therefore, the first-order conditions of the optimization problem in Eq. (8)
give:

OKL
% = Oforall « € A. (26)
n n=n*(a)
% is positive definite by the strict optimality of * in Assumption 3, and % is continuous
@Q

by Assumption 2. It follows that n* (@) is a continuously differentiable function of « by application of the
implicit function theorem to the first-order condition in Eq. (26) (Fleming, 1965, Chapter 4.6). So we can use
the chain rule to take the total derivative of Eq. (26) with respect to a.

d [ OKL
d(ﬁ(ma) > = Oforalla € Ag =
@ n n=n*(a)
’KL dn* ’KL
KL, a) () 9 (n,2) = Oforall & € Ay.
ononT nen*(a) daT ondaT n=n*(a)
The strict optimality of K'L (1, «) at n* («) in Assumption 3 requires that % . be invertible.
n=n*(a

So we can evaluate at & = « and solve to find that

di (@) _ (PKL(@na)\ ' 9*KL(y,0)
daT™ |, ononT ondaT

n=ng,ax=ag

E,, [g(0)] is a continuously differentiable function of n* () by Assumption 4. So by the chain rule and
Assumption 2, we have that

dEq(0.0) l9 (60)] OB y0sn) [9 (0)] diy* (o)

daT oo an daT n=ni a=ao
Finally, we observe that
KL(n,a) = Eqg; [logq(8;m) —logp(0) — p (6, )] + Constant =
PKL (n, @) _ 82Eq(0;n) [p(0,a)]
dndat n=n&,a=ag Ondat n=1g,a=00

Here, the term C'onstant contains quantities that do not depend on 7. Plugging in gives the desired result. l

Appendix E. Exactness of Multivariate Normal Posterior Means

In this section, we show that the MFVB estimate of the posterior means of a multivariate normal with known
covariance is exact and that, as an immediate consequence, the linear response covariance recovers the exact
posterior covariance, i.e., CoquOR (0) = Covy, (8).

Suppose we are using MFVB to approximate a non-degenerate multivariate normal posterior, i.e.,

po (0) = N(9§ s, %)
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for full-rank 3. This posterior arises, for instance, given a multivariate normal likelihood p (z|p) = I],,_;. v N (2,0, 322)
with known covariance 3, and a conjugate multivariate normal prior on the unknown mean parameter
6 € RE. Additionally, even when the likelihood is non-normal or the prior is not conjugate, the posterior
may be closely approximated by a multivariate normal distribution when a Bayesian central limit theorem
can be applied (Le Cam and Yang, 2012, Chapter 8).
We will consider an MFVB approximation to pg (). Specifically, let the elements of the vector 6 be given
by scalars 0 for k = 1, ..., K, and take the MFVB normal approximation with means my, and variances vy:

Q= {q(e) q(0) = HN(%;W’W)}-
k=1

In the notation of Eq. (9), we have n = (my,v;)" with Q, = {n:v, >0,Vk =1,..., K}. The optimal
variational parameters are given by nf = (mj,v;)".

Lemma 1 Let po (0) = N (0; u, X) for full-rank X and let Q = {q ) : q(0) = [Ir_y N (Ok; mu, vk)} be

the mean field approximating family. Then there exists an n* = (m*,v*) that solves

n* = argmin KL (q(0;n)||pa (7))
n:q(0;m)€Q

withm* = p.

Proof Let diag (v) denote the K x K matrix with the vector v on the diagonal and zero elsewhere. Using
the fact that the entropy of a univariate normal distribution with variance v is % log v plus a constant, the
variational objective in Eq. (8) is given by

1 _ 1
KL(q0;n)|[pa (0)) = Eq(o;m) 3 O—p)T2"t - ,u)} —5 Zlogvk + Constant
k

1 1

= jtrace (S Eq(gyy) [007]) — nTE ™ Eggoun) [0] — > log v + Constant
k

1 1

= §trace (2_1 (mmT + diag (v))) — pTE tm — 3 Zlogvk + Constant
i
= itrace (=" 'diag (v)) + §mTE m—puTE 'm— 3 ; log vi, + Constant.
(27

The first-order condition for the optimal m* is then

OK L (q(0;m) |Ipo ()

=0=
om m=m*,v=v*
ST -2 lu=0=
m* = p.
The optimal variances follow similarly:
OKL (q(0; 0
<q<,n>|po<)>‘ .
81}"7 m=m*,v=v*
1 11
(=Y, —-==0=
2 ( )kk 2 vz
N 1
vk, = 1
(Z7)
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Since vy, > 0, we have n* € Q,).
Lemma 1 can be also be derived via the variational coordinate ascent updates (Bishop (2006, Section
10.1.2) and Giordano et al. (2015, Appendix B)). |

Next, we show that Lemma 1 holds for all perturbations of the form p (6, ) = a6 with g = 0 and that
Assumptions 1-4 are satisfied for all finite a.

Lemma 2 Under the conditions of Lemma 1, let p,, (6) be defined from Eq. (2) with p (0,a) = o760 and
ag = 0. Take g (0) = 0. Then, for all finite v, Assumptions 1-4 are satisfied, and Condition 1 is satisfied
with equality.

Proof Up to a constant that does not depend on 6, the log density of p,, (6) is

1
logpa (0) = —3 0 — ) TE"1 (0 — p) + aTf + Constant
1 1
—§9T2719 — iuTEflu + (;LTE*1 + aT) 0 + Constant.

Since @ is a natural sufficient statistic of the multivariate normal distribution and the corresponding natural
parameter of p,, (), =~ i + a, is interior when X is full-rank, p,, (6) is multivariate normal for any finite
a. Assumption 1 follows immediately.

By inspection of Eq. (27), Assumption 2 is satisfied. Because 2,, is an open set and X is positive defi-
nite, Assumption 3 is satisfied. Since Eq(g.,) [g (€)] = m, Assumption 4 is satisfied. Finally, by Lemma 1,
E,, [0] =E,, [6], so Condition 1 is satisfied with equality. [ |

It now follows immediately from Definition 6 that the linear response variational covariance exactly repro-
duces the exact posterior covariance for the multivariate normal distribution.

Corollary 4 Under the conditions of Lemma 2, CoquDR (0) = Covy, ().

Appendix F. ADVI Model Details

This section reports the Stan code for the models used in Section 5.2. For details on how to interpret the
models as well as the unconstraining transforms, see the Stan manual (Stan Team, 2015). For the associated
data, see the Stan example models wiki (Stan Team, 2017).

F.1 Election Model (election88.stan)

Listing 1: election88.stan
1 data {
2 int<lower=0> N;
3 int<lower=0> n_state;
4 vector<lower=0,upper=1>[N] black;
5 vector<lower=0,upper=1>[N] female;
6 int<lower=1l, upper=n_state> state[N];
7 int<lower=0,upper=1> y[N];
s}
9 parameters {
10 vector[n_state] a;
1" vector[2] b;
12 real<lower=0,upper=100> sigma_a;
13 real mu_a;
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s transformed parameters {

16

17

18

19

20

}

vector [N] y_hat;

for (i in 1:N)
y_hat[i] <= b[l] x black[i] + b[2]

21 model {
2 mu_a ~ normal (0, 1);
23 a ~ normal (mu_a, sigma_a);

24

25

26

}

b ~ normal (0, 100);
y 7 bernoulli_logit (y_hat);

F.2 Sesame Street Model (sesame_streetl)

* female[i]

Listing 2: sesame_streetl.stan

1 data {

2

3

4

5

6

7

}

int<lower=0> J;

int<lower=0> Nj;

int<lower=1l, upper=J> siteset[N];
vector[2] ytI[N];

vector [N] z;

s parameters {

21

22

23

24

25

26

27

28

29

30

31

33

34

35

}

vector[2] agl[Jd];

real b;

real d;

real<lower=-1,upper=1> rho_ag;
real<lower=-1,upper=1> rho_yt;
vector[2] mu_ag;

real<lower=0, upper=100> sigma_a;
real<lower=0, upper=100> sigma_g;
real<lower=0,upper=100> sigma_t;
real<lower=0,upper=100> sigma_y;

model {
vector [J] aj;
vector[J] g;
matrix[2,2] Sigma_ag;
matrix[2,2] Sigma_yt;
vector[2] yt_hat[N];

//data level

Sigma_yt[l,1] <- pow(sigma_y,2);

]
Sigma_yt[2,2] <- pow(sigma_t,2);
Sigma_yt[1,2] <- rho_yt*sigma_yx*sigma_t;
Sigma_yt[2,1] <- Sigma_yt[l,2];

// group level
Sigma_agl[l,1] <- pow(sigma_a,?2);
Sigma_ag[2,2] <- pow(sigma_g,?2);
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Sigma_agl[l,2] <- rho_ag*sigma_axsigma_g;
Sigma_agl2,1] <- Sigma_agll,2];

for (j in 1:J) {

alj]l <- aglj,1

1;

gljl <= aglj,2];

for (i in 1:N) {

yt_hat[i,2] <- gl[siteset[i]] + d *x z[i];
yt_hat[i,1] <- al[siteset[i]] + b » ytl[i,2];

//data level

sigma_y ~ uniform (
sigma_t 7 uniform (
rho_yt 7 uniform(-1
d ~ normal (0, 31.6
b © normal (0, 31.6

//group level

sigma_a ~ uniform (0, 100);
(0

sigma_g ~ uniform

rho_ag ~ uniform(-1, 1);
mu_ag ~ normal (0, 31.6);

for (j in 1:J)

ag[j] =~ multi_normal (mu_ag, Sigma_ag);

//data model
for (i in 1:N)

yt[i] 7 multi_normal (yt_hat[i], Sigma_yt);

}

F.3 Radon Model (radon_vary _intercept_floor)

data {
int<lower=0> J;
int<lower=0> N;

Listing 3: radon_vary_intercept_floor.stan

int<lower=1l, upper=J> county|[N];

vector [N] uj;
vector [N] x;
vector [N] vy;

}

parameters {
vector [J] aj;
vector[2] b;
real mu_a;

real<lower=0, upper=100> sigma_a;
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real<lower=0, upper=100> sigma_y;

}

transformed parameters {

vector [N] y_hat;

for (i in 1:N)

y_hat[i] <- alcounty[i]]

}

model {
mu_a ~ normal (O,
a ~ normal (mu_a,

1
S

b 7 normal (0, 1);

y ~ normal (y_hat
}

4

)i

igma_a);

sigma_y);

F.4 Ecology Model (cjs_cov_randeff)

Listing 4: cjs_cov_randeff.stan
// This models is derived from section 12.3 of "Stan Modeling Language

+ uli]

// User’s Guide and Reference Manual"

functions {

int first_capture(int[] y_i) {
for (k in l:size(y_1i))

if (y_iflk])
return k;
return O0;

int last_capture(int[] y_1i) {
for (k_rev in 0: (size(y_1i) -
// Compoud declaration was enabled in Stan 2.13

1))

int k = size(y_1i) - k_rev;

// int k;

// k = size(y_1) - k_rev;
if (y_iflk])

return k;

}

return 0;

matrix prob_uncaptured(int nind,
matrix p,

matrix[nind, n_occasions] chi;

for (i in l:nind) {
chi[i, n_occasions] = 1.0;
for (t in 1:(n_occasions -
declaration was enabled in Stan 2.13

// Compoud

int t_curr =

int t_next

n_occasions
t_curr + 1;

1))
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/ %
int t_curr;
int t_next;

t_curr = n_occasions - t;
t_next = t_curr + 1;
*/
chi[i, t_curr] = (1 - phi[i, t_curr])
+ phi[i, t_curr] » (1 - pl[i, t_next - 11)
i, t_next];
}
}
return chi;
}
}
data {
int<lower=0> nind; // Number of individuals
int<lower=2> n_occasions; // Number of capture occasions
int<lower=0,upper=1> y[nind, n_occasions]; // Capture-history
vector [n_occasions - 1] Xx; // Covariate

}

transformed data {
int n_occ_minus_1 = n_occasions - 1;
// int n_occ_minus_1;
int<lower=0,upper=n_occasions> first[nind];
int<lower=0,upper=n_occasions> last[nind];
vector<lower=0, upper=nind>[n_occasions] n_captured;

// n_occ_minus_1l = n_occasions - 1;
for (i in 1:nind)
first[i] = first_capture(yli]);
for (i in 1l:nind)
last[i] = last_capture(y[i]);
n_captured = rep_vector (0, n_occasions);
for (¢t in l:n_occasions)
for (i in 1l:nind)
if (y[i, t])
n_captured[t] = n_captured[t] + 1;

parameters {

real beta; // Slope parameter
real<lower=0, upper=1> mean_phi; // Mean survival
real<lower=0,upper=1> mean_p; // Mean recapture

vector[n_occ_minus_1] epsilon;
real<lower=0,upper=10> sigma;

// In case a weakly informative prior is used
// real<lower=0> sigma;

42

* chil



84

=3
G

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

126

127

128

129

130

132

133

134

COVARIANCES, ROBUSTNESS, AND VARIATIONAL BAYES

transformed parameters {

matrix<lower=0,upper=1>[nind,
matrix<lower=0, upper=1>[nind,
matrix<lower=0,upper=1>[nind,

n_occ_minus_1] phi;
n_occ_minus_1] p;
n_occasions] chi;

// Compoud declaration was enabled in Stan 2.13
real mu = logit (mean_phi);

// real mu;

// mu = logit (mean_phi)
// Constraints
for (i in 1l:nind) {
for (t in 1: (first[i]
phif[i, t] = 0;
pli, t] = 0;
}

14

- 1)) |

for (t in first[i]:n_occ_minus_1)
phi[i, t] = inv_logit(mu + beta * x[t] + epsilon[t]);

pli, t] = mean_p;

chi = prob_uncaptured (nind,

model {
// Priors

{

n_occasions, p, phi);

// Uniform priors are implicitly defined.
// mean_phi ~ uniform(0, 1);

// mean_p ~ uniform(0,

1);

// sigma ~ uniform(0, 10);
// In case a weakly informative prior is used

// sigma ~ normal (5, 2.5);
beta ~ normal (0, 100);
epsilon 7 normal (0, sigma);
for (i in l:nind) {
if (firstf[i] > 0) |
for (t in (first[i] + 1) :last[i])
1 7 bernoulli(phi[i, t - 11);
y[i, t] 7 bernoulli(p[i, t - 11);

1 7 bernoulli(chili,

generated quantities {
real<lower=0> sigma2;

vector<lower=0,upper=1>[n_occ_minus_1]

last[i11);
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sigma2 = square (sigma) ;
// inv_logit was vectorized in Stan 2.13
phi_est = inv_logit (mu + beta x x + epsilon); // Yearly survival
/ *
for (t in 1l:n_occ_minus_1)
phi_est[t] = inv_logit(mu + beta » x[t] + epsilon[t]);
*/

}

Appendix G. LK]J Priors for Covariance Matrices in Mean Field Variational
Inference

In this section we briefly derive closed-form expressions for using an LKJ prior with a Wishart variational
approximation.

Proposition 3 Ler X be a K X K positive definite covariance matrix. Define the K x K matrix M such that

Mij:{ Zij fi=7

0 otherwise.
Define the correlation matrix R as
R=M"'sM".
Define the LKJ prior on R with concentration parameter & (Lewandowski et al., 2009):
prs (R[E) o |R|£_1 .

Let q (E|V*1, 1/) be an inverse Wishart distribution with matrix parameter V™~ and v degrees of freedom.
Then

v—K+1

K
E, [log [RJ] = log [V~ = v (5 ) = D log (V7)) + Kv < >
k=1

E, [logpLks (R[)] = (£ — 1) E, [log |R|] + Constant,

) + Constant

where Constant does not depend on 'V or v. Here, Vi is the multivariate digamma function.

Proof First note that

log | 2| = 2log |M]| + log |R|

K
= 22 log v/ Xk + log |R|
k=1
K
= Zlog 3k +log |R| =
k=1

K
log |R| =log |X| — Zlog Shk- (28)
k=1

By Eq. B.81 in (Bishop, 2006), a property of the inverse Wishart distribution is the following relation.

E, [log 3] = log [V '] = vxc (5 ) — K log 2 (29)
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where ¥ is the multivariate digamma function. By the marginalization property of the inverse Wishart
distribution,

Yk ~ InverseWishart ((V_l)kk ,v— K+ 1) =
_ v—K+1
Eq [log Zer) =log (V7)) — ¢ (2) —log2. (30)
Plugging Eq. (29) and Eq. (30) into Eq. (28) gives the desired result. |

Appendix H. Logistic GLMM Model Details

In this section we include extra details about the model and analysis of Section 5. We will continue to use
the notation defined therein. We use Constant to denote any constants that do not depend on the prior
parameters, parameters, or data. The log likelihood is

log p (yit|lue, B) = yielog (1 pi; > +log (1 — pit)
— Pit
= yup+log (1 — pi) + Constant
1 & 1
2
logp (ulp,7) = *572 (ue —p)” = 5TlogT
1 & 1
= -5 Z (uf — pug + u2) — §T10g7’ + Constant
t=1
1 _
logp(,uvTv B) = _50'“2 (,U2 +2MMO) +
(1—a;)7+ B logT +
1
) (trace (EglﬁBT) + 2trace (EglﬂoﬂT» . 3D
The prior parameters were taken to be
1o = 0.000
0,%=10.010
Bo = 0.000
05”2 =0.100
a,; = 3.000
B, = 3.000.

Under the variational approximation, p;; is normally distributed given z;;, with

pit = THB+u
Eq [pie] = xg;Eq (8] + Eq [u]
Var, (Pit) = IE:q [5sztx£6] - Eq [ﬂ]T xitxg;Eq [5] + Var, (Ut)

= E, [tr (ﬂTxnx;";ﬂ)} —tr (Eq [B]T xitxgEq [ﬂ]) + Varg (u)

S (ztgﬂ; (Eq [887] - E, [8]E, [5]T)) + Var, (ur).
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We can thus use np;¢ = 4 points of Gauss-Hermite quadrature to numerically estimate |, [log (1 - )} :

1+er
Pit,s 1= 4/ Varg (pit)zs + Eq [pit)
ePit nMc ePit.s
E, |1 1-— ~ 1
q{0g< 1+6pu>} nMCZ 0g< 1+epzts>

s=1

We found that increasing the number of points used for the quadrature did not measurably change any of
the results. The integration points and weights were calculated using the numpy . polynomial.hermite
module in Python (Jones et al., 2001).
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