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Abstract

Objective: To derive a predictive model to identify patients likely to be hospitalized during the following year due to

complications attributed to Type II diabetes.

Methods: A variety of supervised machine learning classification methods were tested and a new method that discovers

hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support

vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized).

The convergence of the new method was established and theoretical guarantees were proved on how the classifiers

it produces generalize to a test set not seen during training.

Results: The methods were tested on a large set of patients from the Boston Medical Center – the largest safety

net hospital in New England. It is found that our new joint clustering/classification method achieves an accuracy

of 89% (measured in terms of area under the ROC Curve) and yields informative clusters which can help

interpret the classification results, thus increasing the trust of physicians to the algorithmic output and

providing some guidance towards preventive measures. While it is possible to increase accuracy to 92% with other

methods, this comes with increased computational cost and lack of interpretability. The analysis shows that even

a modest probability of preventive actions being effective (more than 19%) suffices to generate significant hospital

care savings.

Conclusions: Predictive models are proposed that can help avert hospitalizations, improve health outcomes and

drastically reduce hospital expenditures. The scope for savings is significant as it has been estimated that in the USA

alone, about $5.8 billion are spent each year on diabetes-related hospitalizations that could be prevented.
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1 Background and significance

Diabetes is recognized as the world’s fastest growing chronic condition. One in 11 adults has diabetes worldwide
(415 million) and 12% of global health expenditures is spent on diabetes ($673 billion).1 In the USA alone, 29.1
million people or 9.3% of the population had diabetes in 2012.2 Given its impact, medical and health services
studies have been tracking the prevalence and trends in diabetes among adults.3–5 While diabetes affects primarily
the patients at many levels (physical, financial, etc.), it also poses an economic burden to states influencing
healthcare costs and GDP/productivity metrics.

The U.S. healthcare system is undoubtedly expensive, excellent at treating acute conditions but ineffective at
keeping patients out of the hospital.6,7 Hospital care accounts for 31% of U.S. healthcare spending,8 the latter
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totaling $3 trillion or 17% of GDP annually. A recent study, however, found that nearly $30.8 billion in hospital
costs in the year 2006 were potentially avoidable,9 with diabetes-related hospitalizations accounting for 19% ($5.8
billion) of this amount. Consequently, even a modest percentage reduction in unnecessary hospitalizations,
achieved by better controlling the disease in an outpatient setting, can result in sizeable savings. Prevention
requires prediction and this motivates the work in this paper.

Two key enablers to such research are: the growing availability of patient Electronic Health Records (EHR) and the
existence of sophisticated algorithms that can be learnt from the data. Surprisingly, not until recently have EHRs been
used in conjunction with advanced algorithms,10,11 even though they have been shown to lead to better care.12

Predictive methods, in particular, have been used for example in the context of heart-related problems,13–15

hemodialysis,16 diabetes in older adults,17–20 and multiple disease prediction.21 To the best of our knowledge,
predicting diabetes-related hospitalizations based on EHR history using machine learning algorithms is a novel
problem.

Diabetes mellitus is a set of metabolic diseases affecting the body’s ability to modulate blood sugar levels.
Type I affects younger patients and is caused by the inability of the pancreas to produce enough insulin. Type II
appears in older people when cells develop insensitivity to insulin. Gestational diabetes appears during pregnancy.
Type II diabetes is by far the most common and in this paper we focus on patients with this type.
Diabetes complications include nephropathy, neuropathy, retinopathy, vasculopathy (leading to heart
disease and stroke), and foot ulcers. Many of these complications can lead to hospitalization; however, it
is estimated that about 40% such hospitalizations do not list diabetes as a primary/secondary diagnosis.22

To remove potential biases in the EHR, we will use a statistical method to associate different hospitalization
types with diabetes.

2 Objective

We seek to predict hospitalizations associated with Type II diabetes within one year from the time the EHR of a
patient is examined. We will treat hospitalization prediction as a classification problem, distinguishing between
patients likely to be hospitalized or not. Intuitively, however, patients belong to different clusters depending on
their demographics and ailments that are likely to cause a future hospitalization. Common supervised learning
methods can certainly make classifications without considering these hidden clusters; yet, identifying the clusters
can potentially improve classification performance. More importantly, hidden cluster identification yields results
that are easier to interpret.

Patients in the same cluster, especially if the cluster is identified based on a low-dimensional subspace of
‘‘diagnostic’’ features, share key characteristics (including potentially race and ethnicity) and their cluster
membership offers an explanation as to why they have been flagged for a future hospitalization. In the medical
setting, interpretability has an essential role in persuading physicians to trust the learning outputs and rely on them
for their decision making. EHRs exhibit interesting special structure in that for each patient only a very low-
dimensional subset of features is important in predicting a future hospitalization. This subset is different for each
cluster and, typically, there is no universal set of irrelevant features that can be eliminated.13,23 This suggests that it
is useful to consider sparse classifiers for each cluster. Sparse models have gained popularity in the literature for
their interpretability and superior (out-of-sample) performance.24,25

The remainder of the paper is organized as follows. In Section 3, we discuss methods we apply to the
hospitalization prediction problem. We propose a novel method, an alternating optimization approach, which
jointly discovers the clusters in the class of hospitalized patients and optimizes the classifiers that separate each
cluster of hospitalized patients from the non-hospitalized patients. We establish the convergence of this joint
clustering/classification process and characterize its Vapnik-Chervonenkis (VC) dimension26 – a metric of
complexity of the classification function that can lead to generalization guarantees. In Section 4, we describe
the dataset used in our experiments and in Section 5 we present our experimental results. Conclusions are in
Section 6.

3 Methods

We formulate the hospitalization prediction problem as a binary supervised classification problem. For each
patient, we derive features from the EHR and we seek to differentiate between patients who will be
hospitalized in a fixed target year (positive class) and patients who will not be admitted to the hospital in the
target year (negative class). During the training of each classification model, both the features and the labels of the
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training set patients are known to the algorithm. We explore a variety of learning methods, such as support vector
machines (SVMs) with various kernels,27 random forests,28,29 and the more computationally expensive gradient
tree boosting.29,30 We also experiment with sparse (l1-regularized) versions of some algorithms; specifically, sparse
SVMs and sparse logistic regression.

3.1 Our alternating clustering and classification framework

To develop this new framework, we consider a classification problem that has multiple hidden clusters in the
positive class, while the negative class is assumed to be drawn from a single distribution. For different clusters in
the positive class, we assume that the discriminative dimensions, with respect to the negative class, are different and
sparse. We could think of these clusters as ‘‘local opponents’’ to the whole negative set (see Figure 1) and therefore,
the ‘‘local boundary’’ (classifier) could naturally be assumed to be different and lying in a lower-dimensional
subspace of the feature vector.

We propose a joint cluster detection and classification problem under the SVM framework. Let
ðxþi , y

þ
i Þ, i ¼ 1, . . . ,Nþ, denote the (Dþ 1Þ�dimensional positive samples, where xþi is the D�dimensional

feature vector of sample i and yþi ¼ 1 the class label. Similarly, ðx�j , y
�
j Þ, j ¼ 1, . . . ,N�, denote the negative

samples with y�i ¼ �1. Assuming L hidden clusters in the positive class, we wish to discover the L clusters
(denoted by a mapping function l ið Þ : 1, . . . ,Nþ

� �
! f1, . . . ,Lg) and L sparse linear SVM classifiers, one for
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The negative samples are not clustered but simply copied into each cluster. So their empirical costs are counted
L times as shown in equation (1). The relative weight of costs from negative samples compared to that of the

Figure 1. An example with two clusters in the positive class (red circles) separated by two different classifiers from the negative

class (blue squares).
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positive samples is controlled by �� and �þ. The constraint
PD

d¼1 �l
d

�� �� � Tl is an l1�relaxation of the sparsity
requirement for the local classifiers.

Problem (1) involves two sets of decision variables: bl,�l
0

� �
for the classifiers and l ðiÞ for cluster assignment. As we

have shown in Xu et al.,15 the problem is a mixed integer programming problem, but given l ið Þ it reduces to L
quadratic optimization problems. This motivates the alternating optimization approach we present next. Preliminary
work on such a method was reported in Xu et al.15 for the problem of predicting hospitalizations due to heart diseases.
The approach contains two major modules: (i) training a classifier for each cluster and (ii) re-clustering samples given
all the estimated classifiers using a subset of ‘‘diagnostic’’ features ›. Note that since only positive samples belong to
different clusters, only these samples need to be re-clustered. During the training phase, we alternate between (i)
training L sparse classifiers and (ii) re-clustering the positive samples given the classifiers – until convergence. The
algorithm for training and testing in the alternating clustering and classification (ACC) framework is shown in
Algorithms 1 to 3. Algorithm 1 describes the training process, while Algorithm 2 provides details on how we re-
cluster the positive samples given the classifiers learnt in (i). We note that training a sparse linear SVM classifier
amounts to solving a quadratic programming problem, which can be done efficiently (in polynomial time to the size of
the input, which is linear in the number of sample points in a cluster and the number of features D).

Algorithm 1. Alternating clustering and classification training.
Initialization:
For i ¼ 1, . . . ,Nþ, assign positive class sample i to cluster l ið Þ 2 f1, . . . ,Lg (e.g. randomly).
repeat
Classification Step:

Train a sparse linear SVM classifier for each cluster. Each classifier is the outcome of a quadratic
optimization (similar to equation (1) but specific to a single cluster) providing bl,�l

0

� �
and an optimal

objective value Ol.
Re-clustering Step:

Re-cluster the positive samples using Alg. 2 and update the assignments l ðiÞ.
until no l ðiÞ is changed or

P
l O

l does not decrease.

Algorithm 2. Re-clustering procedure given classifiers.
Input: positive samples xþi , classifiers bl,�l0

� �
, current clusters assigning i to cluster l ðiÞ.

For i 2 f1, . . . ,Nþg do
for all l 2 f1, . . . ,Lg do

calculate the projection ali ¼ x
0

i;C,b
l
C of positive sample i onto the classifier for cluster l in the feature subspace

corresponding to › � f1, . . . ,Dg.
end for
update the cluster assignment of sample i from l ðiÞ to l� ið Þ ¼ argmaxla

l
i, subject to

xþ
0

i bl
�ðiÞ þ �l�ðiÞ

0 � xþ
0

i bl ið Þ þ �l ðiÞ
0 . (2)

end for

Algorithm 3. Classifying a new sample.
Input: A new (test) sample x.
Assign x to cluster l� ¼ arg maxl x

0

Cb
l
C.

Classify x with the classifier bl
�

,�l�

0

� �
by sgnðx0bl

�

þ �l�

0 Þ.

Once training has been performed with Algorithm 1, we can classify a newly presented sample not seen during
training using Algorithm 3. Specifically, we compute the projections on each classifier and assign the new sample to
the cluster with the largest projection value. We use the classifier of this cluster to classify the samples in the
corresponding cluster. We note that tuning �þ and �� in ACC should be done globally, i.e. �þ and �� should be
fixed across all clusters to guarantee convergence.

Theorem I establishes the convergence of ACC, while Theorem II characterizes its Vapnik-Chervonenkis (VC)
dimension26 and provides theoretical generalization guarantees. Intuitively, if we adopt a more complex model to
fit a set of training samples, the model is more likely to be overfitting and has a lower chance to generalize well
to the test samples. The VC-dimension offers a theoretical way of quantifying the complexity of a model and leads
to a relationship between the training and the test error rate. Linear classifiers in the D dimensional space have
VC-dimension Dþ 1.26 The proofs of the two theorems are presented in Appendices A and B, respectively.
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Let H denote the family of clustering/classification functions produced by ACC, where D denotes the maximum
number of features used by a classifier. Let RNðhÞ (or simply RN) denote the training error rate of classifier h on N
training samples randomly drawn from an underlying distribution P. Let RðhÞ (or simply R) denote the expected
test error of h with respect to P.

Theorem I. For any ›, the ACC process converges.

Theorem II. The VC-dimension of the class H is bounded by VACC ¼ Lþ 1ð ÞL Dþ 1ð Þlogðe Lþ1ð ÞL
2 Þ. Then for any

� 2 ð0, 1Þ, with probability at least 1� �, R � RN þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
VACC log 2eN

VACC
þlog2�

N

q

Theorem I guarantees that for any choice of the subset › of ‘informative features’ used for the re-clustering of
the positive samples in Algorithm 2, the ACC process converges. We note that the joint problem (1) is non-convex,
which suggests that a globally optimal solution is hard to obtain. ACC is a local optimization method and it is only
guaranteed to converge to a local optimal solution. Strategies such as multi-start (i.e. starting from several initial
points, using ACC until convergence, and retaining the best local minimum found) can be adopted to find a
‘‘deep’’ local optimum. The joint problem (1) can also be formulated as a maximization of a log-likelihood
function (using the hinge-loss formulation of the SVM classifiers and raising it to an exponent), where the
cluster membership can be captured by latent indicator variables. In such a formulation, ACC can be seen as a
particular implementation of the EM algorithm,31 where the E-step corresponds to cluster assignment and the M-
step corresponds to obtaining classifiers for each cluster. It is possible to accelerate the speed of convergence by
reducing the amount of work in the E-step, which is linear in the number of training samples. One possible
approach has been used in Thiesson et al.32; specifically, rather than assigning all training samples to a cluster
in each iteration, select a subset of samples, assign them to cluster, and then perform the per cluster classification
steps. In our setting, N ¼ Nþ þN� is large (on the order of tens of thousands) but not extremely large and we did
not find it necessary to test such an approach.

Theorem II states that the out-of-sample error is close to the training error with high probability, which
provides a rigorous generalization guarantee of our method.

3.2 Performance evaluation

To measure accuracy, the dataset is split into a training and a test set. The classification models are then trained
using the features and the labels of the patients in the training set. In the testing phase, the models, given the
patient’s features, predict the corresponding label, which can be directly compared to the ground truth label. We
report two error metrics: the detection rate (also referred to as sensitivity), which measures how many patients out
of the truly hospitalized patients were predicted to be hospitalized, and the false alarm rate (equals one minus the
so called specificity), which measures how many patients out of the truly non-hospitalized were predicted to be
hospitalized.a Two other related metrics are the precision, defined as the ratio of the number of the truly
hospitalized over the number of the predicted to be hospitalized, and the recall, which is the same as the
detection rate or sensitivity. Many pairs of these error metrics can be generated by changing the decision
threshold in the classification models. We plot the detection rate versus the false alarm rate in the receiver
operating characteristic (ROC) curve and the precision versus the recall in the precision-recall curve (PRC).
Typically, one chooses a point on the ROC (or PRC) to operate on, depending on the application, i.e. how
high false alarm rate or low detection rate one can afford. The Area Under the ROC Curve (AUC) and the
Area Under the Precision-Recall Curve (AUC-PR) are summary statistics, taking values between 0 and 1, that
allow us to compare different ROC and PRC curves, respectively. The higher the AUC (AUC-PR) value of the
ROC (PRC) curve, the better. A completely random assignment of patients into the two classes (hospitalized and
non-hospitalized) has an AUC of 0.5 and an AUC-PR equal to the proportion of positive samples (precision is
constant despite of the changing recall in the PRC). It is worth noting that unlike the ROC curve, the PRC is not
guaranteed to be monotonic.33

While ROC curves could provide misleading interpretation of specificity when utilized in imbalanced
classification cases,34,35 (i.e., when one class has many more samples than the other), the PRC presents a more
accurate measurement of imbalanced classification performance because it also considers the fraction of true
positive samples among all positive predictions.34,35 In the diabetes-related hospitalization prediction problem
under consideration, this imbalance is present as there are many more non-hospitalized patients than hospitalized.
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Consequently, we present both ROC (AUC) and PRC (AUC-PR) curves to enable a comprehensive
understanding of the classification performance.

As we commented earlier, the interpretability of the results is critical in ensuring practical use. We will assess
interpretability in terms of highlighted important features that are the most helpful into making the classification
decision. In the ACC approach, the discovered clusters bear a lot of information as to why the hospitalization
occurred. To visualize this information, we listed the most distinguishable mean feature values over the patients in
each cluster, which correspond to key features shared by the patients in the cluster.

4 Materials: the diabetes dataset

The data used for the experiments come from Boston Medical Center (BMC). BMC is the largest safety-net
hospital in New England and with 13 affiliated Community Health Centers (CHCs) provides care for about
30% of Boston residents. The population of the study consists of patients with at least one diagnosis record of
diabetes mellitus (ICD9 code 250) between 1 January 2007 and 31 December 2012. For each patient in the above
set, we extract the medical history (demographics, visit history, problems, procedures and department
information) during the period 1 January 2001 to 31 December 2012. The data we process for these patients
come from the hospital EHR and billing systems, which record admissions or visits and the primary diagnosis/
reason. The diabetes-related medical history of the patients is described by various categories of medical factors
(that we identified using feedback from doctors), which, along with some examples corresponding to each, are
shown in Table 1. As expected, many of the diagnoses and procedures are direct complications due to diabetes.
Diabetes-related admissions are not trivially identifiable, and are revealed through the procedure described in the
next section. Overall, this dataset consists of 40,921 patients.

In more detail, with every patient visit to the hospital, at least one record with a medical factor and a time-
stamp containing the admittance date (and the discharge date) is created. In order to organize all the information
available in some uniform way for all patients, some pre-processing of the data is required. Details will be
discussed in a later section. We will refer to the summarized information of the medical factors over a specific
time interval as features. Each feature related to Diagnoses, Procedures CPT (Current Procedural Terminology),
and Procedures ICD9 (International Classification of Diseases, 9th edition) and visits to each Department is an
integer count of such records for a specific patient during the specific time interval. Zero indicates the absence of
any record.

4.1 Identifying the diabetes-related hospitalizations/admissions

Identifying the hospitalizations that could be attributed to diabetes is not a trivial task, because for financial
reasons (i.e. higher reimbursement), many diabetes-related hospitalizations are recorded in the system as other

Table 1. Medical factors.

Ontology Examples

Demographics Sex, age, race

Diagnoses For example, Diabetes mellitus with complications, Thyroid disorders, Hypertensive disease,

Pulmonary heart disease, Heart failure, Aneurysm, Skin infections, Abnormal glucose

tolerance test, Family history of diabetes mellitus

Procedures (CPT or ICD9) For example, Procedure on single vessel, Insertion of intraocular lens prosthesis at time of

cataract extraction, Venous catheterization, Hemodialysis, Transfusion of packed cells

Admissions For example, Diabetes (with and without) complications, Heart failure and shock, Deep Vein

Thrombophlebitis, Renal failure, Chest pain, Chronic obstructive pulmonary disease,

Nutritional & miscellaneous metabolic disorders, Bone Diseases & Arthropathies, Kidney &

urinary tract infections, Acute myocardial infarction, O.R. procedures for obesity,

Hypertension

Laboratory Test Values Hematology, Chemistry, Urinalysis, Coagulation tests

Vital Signs For example, Blood pressure, Pulse, Respiratory rate, Temperature, Body Mass Index (BMI)

Blood Glucose Regulation Agents Insulin, Anti-hypoglycemic, Oral hypoglycemic agents, etc.

Service by department Inpatient (admit), Inpatient (observe), Outpatient, Emergency Room
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types of admissions, e.g. heart-related. To that end, we conduct a complementary statistical study to determine
which types of admissions are diabetes-related. For simplicity, we adopt the classic p-value approach. There are
also alternative but more complex hypothesis testing methods, including the critical value test36 and methods
involving confidence intervals.37

We consider all patients with at least one admission record between 01 January 2007 and 31 December 2012.
From this set, patients with at least one diabetes mellitus record are assigned to the diabetic population, while the
rest are assigned to the non-diabetic population. We list the union of all the unique admission types for both
populations (732 unique types). The total number of admissions for the diabetic and non-diabetic populations is
N1 ¼ 47, 452 and N2 ¼ 116, 934, correspondingly. For each type of admission d, each admission event can be
represented as a binary random variable that takes the value 1, if the hospitalization occurs because of this type of
admission, or 0 otherwise. Thus, we can transform the two sets of admission records for the two populations into
0/1 sequences. By (statistically) comparing the proportions of d in the two populations, we can infer whether
admission d was caused mainly by diabetes or not.

At this point, we will elaborate on a statistical hypothesis test that involves sample differences of proportions.38

Suppose we generate two sets of admissions of size N1 and N2 drawn from the diabetic and the non-diabetic
patient populations, respectively. Consider a specific admission type d and suppose that it appears with probability
p1, out of all possible admission types, in the diabetic population. Similarly, a type d admission appears with
probability p2 in the non-diabetic population. Given now the two sets of admissions from diabetics and non-
diabetics of size N1 and N2, let P1 and P2 be the corresponding sample proportions of type d admissions. We want
to statistically compare P1 and P2 and assess whether a type d admission is more prevalent in the diabetics vs. the
non-diabetics. Consider as the null hypothesis the case where p1 ¼ p2, i.e. a type d admission is equally likely in the
two populations. Under the null hypothesis, the sampling distribution of differences in proportions is
approximately normally distributed, with its mean and standard deviation given by �P1�P2

¼ 0 and

�P1�P2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqð 1

N1
þ 1

N2
Þ

q
, where p ¼ N1P1þN2P2

N1þN2
is used as an estimate of the probability of a type d admission in

both populations and q ¼ 1� p. By using the standardized variable z ¼ P1�P2

�P1�P2

, we can assess if the results

observed in the samples differ markedly from the results expected under the null hypothesis. We do that using
the single sided p-value of the statistic z. The smaller the p-value is, the higher the confidence we have in the
alternative hypothesis or, equivalently, in the fact that the diabetic patients have higher chance of getting
admission records of type d than the non-diabetic ones (since we consider the difference P1 � P2). We list
admission types in increasing order of p-value and we set a threshold of p-value � 	 ¼ 1E� 4; admission types
with p-value less than 	 are considered to be attributed to diabetes.

4.2 Data pre-processing

The features are formed as combinations of different medical factors (instead of considering the factors as separate
features) that better describe what happened to the patients during their visits to the hospital. Specifically, we
formulate triplets that consist of a diagnosis, a procedure (or the information that no procedure was done) and the
service department. An example of a complex feature (a triplet) is the diagnosis of ischemic heart disease that led to
an adjunct vascular system procedure (procedure on a single vessel) while the patient was admitted to the inpatient
care. Clearly, since each category can take one of several discrete values, a huge number of combinations should be
considered. Naturally, not all possible combinations occur, which reduces significantly the total number of
potential features that describe each patient. Also for each patient, we extract information about the diabetes
type over their history (keeping only patients with Type II) and demographics including age, gender and race.

Next, we present several data organization and pre-processing steps we take. For each patient, a target year is
fixed and all past patient records are organized as follows.

. Setting the target time interval to a calendar year. Based on some preliminary experiments we conducted, we
observed that there is greater variability in the results when trying to predict hospitalizations in periods of time
shorter than a year (e.g. predicting hospitalization in the next one, three or six months). Thus, we have designed
our experiment to predict hospitalizations in the target time interval of a year starting on the 1 January and
ending on 31 December.b

. Selection of the target year. As a result of the nature of the data, the two classes are highly imbalanced. To
increase the number of hospitalized patient examples, if a patient had only one hospitalization throughout
2007–2012, the year of hospitalization will be set as the target year. If a patient had multiple hospitalizations,

Brisimi et al. 7



a target year between the first and the last hospitalizations will be randomly selected. The year 2012 is set as
the target year for patients with no hospitalization, so that there is as much available history for them as
possible.

. Removing patients with no record. Patients who have no records before the target year are removed, since there is
nothing on which a prediction can be based. The total number of patients left is 33,122, including the 26,478
patients with Type II diabetes under consideration. After this process, the proportion of hospitalized patients
with Type II diabetes in the dataset is 13.48% (3570 out of 26,478).

. Forming the complex features. We create a diagnoses-procedures-service department indicator triplet (complex
feature) to keep track of which diagnosis occurs with which procedure and service department. The procedures
that are not associated with any diabetes-related diagnosis are removed. Diagnoses in the dataset are listed in
the most detailed level of the ICD9 coding system. We group together procedures that belong to the same ICD/
CPT family, resulting in 31 categories (out of 2004 in total).

. Summarization of the complex features in the history of a patient. We form four time blocks for each medical
factor. Time blocks 1, 2, and 3 summarize the medical factors over one, two, and three years before the target
year, whereas the fourth time block averages all earlier records. Naturally not all combinations of diagnoses-
procedures-service department occur, and we only keep the triplets that occur; then adding the demographic
features produces a 9402-dimensional vector of features characterizing each patient.

. Reducing the number of complex features. We remove all the features that do not contain enough information
for a significant amount of the population (less than 1% of the patients), as they could not help us generalize.
This leaves 320 complex medical and three demographic features.

. Other detailed information. We also consider 245 more detailed medical features, including lab test values, vital
signs and blood glucose regulation agents (see Table 1). By calculating the average lab test values, average vital
signs or existence of regulation agents in the four time blocks, we obtain 245� 4¼ 980 additional features.
Removing features with standard deviation less than 1E� 4 reduces the number of features to 945. Together
with the features we described earlier, this results in 945þ 3þ320¼ 1268 features.

. Identifying the diabetes type. The ICD9 code for diabetes is assigned to category 250 (diabetes mellitus).
The fifth digit of the diagnosis code determines the type of diabetes and whether it is uncontrolled or not
stated as uncontrolled. Keeping only the 26,478 patients with Type II diabetes, we have two types of diabetes
diagnoses: Type II, not stated as uncontrolled (fifth digit 0), and Type II or unspecified type, uncontrolled (fifth
digit 2). Based on these types, we count how many records of each type each patient had in the four time blocks
before the target year, thus adding eight new features for each patient.

. Splitting the data into a training set and a test set randomly. As is common in supervised machine learning,
the population is randomly split into a training and a test set. Since from a statistical point of view all the
data points (patients’ features) are drawn from the same distribution, we do not differentiate between
patients whose records appear earlier in time than others with later time stamps. A retrospective/
prospective approach appears more often in the medical literature and is more relevant in a clinical trial
setting, rather than in our algorithmic approach. What matters in our setting is that for each patient
prediction we make (hospitalization/non-hospitalization in a target year), we only use that patient’s
information before the target year.

5 Experimental results and discussion

5.1 Performance evaluation

We evaluate classification performance out-of-sample, i.e. in a test set not seen during training. Figures 2 and 3
plot ROC and PRC curves for a variety of classification methods, respectively; Tables 2 and 3 list the
corresponding AUCs and AUC-PRs (average and standard deviation of AUC and AUC-PR over 10 runs with
different training and test sets). Parameter tuning was done for all methods using k-fold cross validation. For
ACC, the initial assignments of the positive samples to the clusters are obtained from k-means clustering, and
multi-start is implemented to find the best local optimum. The parameters used in equation (1) are set as follows.
The number of clusters L explicitly takes its values from {2, 3, 4} for all methods involving clustering; the soft-
margin parameter for the negative class �� takes its values from {100, 10, 1, 0.1}; and the soft-margin parameter
for the positive class �þ is set equal to L��. Some preliminary experiments led us to set the sparsity-controlling
parameter Tl ¼ 12 to save on computational cost. For ACC, we employ one more innovation to improve the
prediction results. Specifically, for each cluster, we solve several instances of the per-cluster sparse SVM as follows.
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Figure 2. Receiver operating characteristic curves for various classification methods.

Figure 3. Precision-recall curves for various classification methods.

Table 2. Average (avg) and standard deviation (std) of the area under ROC curve (AUC) of various methods we have experimented

with over 10 runs.

Method Average AUC Std AUC Method Average AUC Std AUC

ACC, L ¼ 1 0.8814 0.0025 Linear SVM 0.8531 0.0029

ACC, L ¼ 2 0.8861 0.0032 RBF SVM 0.8594 0.0037

ACC, L ¼ 3 0.8829 0.0039 sparse logistic regression 0.8613 0.0027

ACC, L ¼ 4 0.8812 0.0027 Random Forests 0.8882 0.0054

CT-SLSVM (L ¼ 2) 0.8522 0.0034 Gradient Tree Boosting (GBDT) 0.9190 0.0033

CT-LSVM (L ¼ 2) 0.8502 0.0072

ACC: Alternating clustering and classification.
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First, we solve the problem with all features and a fixed Tl: This has the effect of selecting a subset of the features.
Then, we solve a second instance of the problem using only the subset of the features selected. We keep iterating in
this fashion until a relatively small subset of features is being used.

For all methods 40% of the data are used for training and the rest for testing. The training data are normalized
to have zero mean and unit standard deviation and are balanced by down-sampling the negative population.
We also compare ACC with two other hierarchical approaches that first cluster the data using the k-means
clustering39 and then perform the classification task using linear SVM (we denote the method as CT-LSVM)
and sparse (l1-regularized) linear SVM (we denote the method as CT-SLSVM). Only the best results for CT-LSVM
(obtained under L ¼ 2) and CT-SLSVM (obtained under L ¼ 2) are presented.

Clustering with ACC can use a subset of ‘‘diagnostic’’ features (subset › in Algorithm 2), since these are the
features that better delineate across different types of diabetes complications. We base, however, the clustering in
our experiments on all features due to the fact that almost all triplet features are related to ‘‘diagnostic’’ features.
The results indicate that Gradient Tree Boosting (GBDT) outperforms all other methods in terms of AUC in
Table 2 and AUC-PR in Table 3. Random forest comes second in terms of AUC with ACC close behind, while
ACC comes second in terms of AUC-PR with random forest third. Both GBDT and random forests produce a
very complex classifier involving hundreds of decision trees. As such they lack interpretability, which, as we
argued, is a critical consideration.

ACC, on the other hand, is able to detect the hidden positive clusters and identify why a specific patient is
labeled as hospitalized. Among ACC variants, the best performance is obtained for L ¼ 2 clusters, with the
performance of the other variants using more clusters being close behind. The fact that ACC (L ¼ 2) is better
than ACC (L ¼ 1) illustrates that appropriate clustering can not only produce meaningful cluster interpretations,
but also improve classification performance compared to the base (SVM) classifier used in each cluster. It is
interesting that ACC performs quite well even though the resulting classifiers are relatively sparse and do not
use many features. This also makes them easy to implement. Notice that ACC utilizes sparse linear SVM as the
base classifier. According to Theorem II, sparsity (i.e. small D) leads to smaller generalization error. ACC also
proved to be efficient from a computational point of view, since in our implementation, it is faster than random
forests by a factor of 3, and faster than Gradient Tree Boosting (GBDT) by a factor of 5.3. Figure 4 shows how the
objective function decreases during ACC iterations.

In an attempt to interpret the ACC clusters, we list in Table 4 the mean value over each cluster of the features
used by the per-cluster classifiers. This is done for a single repetition of the experiment and L ¼ 2, yielding
interesting clusters and highlighting the interpretative power of ACC. We concentrate on the most
distinguishable features in the clusters. Specifically, for each feature we used Welch’s t-test to compute a two-
tailed p-value, where the null hypothesis was that the two cohorts (patients in cluster 1 and cluster 2) have equal
means. All the features listed in Table 4 have a p-value less than 1E-3, providing strong evidence against the null
hypothesis. ACC assigns 51.87% of hospitalized patients in the training set to cluster 2 and the remaining to
cluster 1. We observe that hospitalized patients in Cluster 1 are older, have more hypertension and heart failure
(measured in avg. number of diagnoses), take more drugs for heart diseases (measured in average number of drugs
taken), and have indicators of renal disease (higher serum creatinine values and higher blood urea nitrogen).
Hospitalized patients in Cluster 2 have diabetes with not as significant heart disease complications, indicated
as diabetes with no associated procedures, hospitalizations, and, in general, not stated as uncontrolled.
This is quite interesting and consistent with earlier work that identified the relationship between diabetes and

Table 3. Average and standard deviation of the area under precision-recall curve (AUC-PR) of various methods we have

experimented with over 10 runs.

Method

Avg

AUC-PR

Std

AUC-PR Method

Avg

AUC-PR

Std

AUC-PR

ACC, L ¼ 1 0.6200 0.0104 Linear SVM 0.5512 0.0129

ACC, L ¼ 2 0.6214 0.0106 RBF SVM 0.5758 0.0110

ACC, L ¼ 3 0.6085 0.0115 sparse logistic regression 0.5752 0.0091

ACC, L ¼ 4 0.6035 0.0109 Random Forests 0.6003 0.0159

CT-SLSVM (L ¼ 2) 0.5518 0.0124 Gradient Tree Boosting (GBDT) 0.7272 0.088

CT-LSVM (L ¼ 2) 0.5355 0.0175

ACC: Alternating clustering and classification.
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specific complications (heart disease in our case).18,40 It appears that the method is identifying a cluster of patients
with diabetes and heart disease and is using a different classifier for these patients compared to the remaining
patients.

We note that the p-values in Table 4 are reported without adjustment for multiple hypothesis testing, i.e. each
p-value corresponds to the probability that the cluster means of each variable in isolation are as reported under the
null hypothesis. In order to control the false discovery rate of the multiple hypothesis test, we applied the
Benjamini–Yekutieli procedure to adjust the p-values.41,42 All of the adjusted p-values are below 1E-6 except
for two variables: ‘‘Hypertensive Diseases (diagnoses)’’ and ‘‘Diabetes Mellitus No Procedure Emergency
Room’’, which have adjusted p-values equal to 1.77E-03 and 2.30E-06, respectively. These can be seen as
sufficiently small to provide strong evidence for rejecting the null hypothesis.

Figure 4. Objective function value as a function of alternating clustering and classification iterations.

Table 4. Average feature values in the clusters produced by ACC (L ¼ 2).

Variables

Mean in

Cluster 1

Mean in

Cluster 2 p-value Variables

Mean in

Cluster 1

Mean in

Cluster 2 p-value

Age 72.98 66.11 1.04E-18 Creatinine, serum 1.27 0.96 7.85E-11

Hypertensive diseases

(diagnoses)

1.52 1.16 5.44E-04 Glucose, point of care 148.65 162.23 7.33E-38

Heart failure (diagnoses) 0.31 0.09 5.69E-09 Platelet count 226.40 263.63 1.67E-44

Diabetes mellitus, no procedure

emergency room

0.13 0.23 6.57E-07 Review/Order Lab tests 0.43 0.25 2.70E-19

Diabetes mellitus, no procedure

in patient (Observe)

0.94 1.48 2.92E-10 Review/Order Radiology 0.23 0.14 3.87E-08

Diabetes Type II, not stated as

uncontrolled

1.86 3.70 1.73E-25 Review/Order other tests 0.22 0.10 2.34E-17

Cardiology-related medicine 0.75 0.18 3.12E-16 Urea nitrogen, blood 21.77 16.80 3.42E-26

ACC: alternating clustering and classification.
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5.2 Cost–benefit analysis

We next assess the potential financial benefits of using a predictive model like the one we developed. We take year
2012 as an example; our dataset has NH ¼ 619 hospitalized and NNH ¼ 22,616 non-hospitalized patients that year.
According to Clancy et al.,43 the average cost per hospitalization due to diabetes with complications is $9,500.
Thus, assuming no spending on the non-hospitalized patients and a single hospitalization for the hospitalized, the
expected cost per patient if no prevention measures are implemented is

9500NH

NH þNNH
¼ $253 ð3Þ

Suppose now we elect to utilize the predictive model and operate at a point on the ROC curve corresponding
to a roughly PD ¼ 81% detection rate and a PFA ¼ 20% false alarm rate (see Figure 2). We bring
each patient predicted to be hospitalized to the clinic, at a cost of $220 for a visit according to Clancy et al.,43

and prescribe an one-year supply of drugs at an average cost of $100. Additional recommendations involving
lifestyle changes and social support may also be offered. Accounting for only the cost of the visit and the drugs,
the cost of preventive measures is $320 per patient. Notice that this overestimates the cost because for some
patients predicted to be hospitalized, the physician may decide that additional drugs are not needed. For patients
the predictive model misses, there is no action and they would receive their normal care. Let PS be the probability
that prevention is effective and averts the hospitalization. It follows that the cost per patient becomes

9500NH 1� PDð Þ þ 320NNHPFA þ 320NHPDPS þ ð9500þ 320ÞNHPD 1� PSð Þ

NH þNNH
ð4Þ

A simple calculation implies that the above quantity is less than $253 for PS 4 0:34: Taking PS ¼ 0:5 leads to an
expected cost per patient equal to $219, resulting in savings of $34 per patient. If such a model was used for each
patient with diabetes in the U.S. during 2002 (29.1 million), the overall savings amount to about $1 billion for the
year! This is about 17% of the overall amount spent on preventable diabetes-related hospitalizations each year.

5.3 Limitations of our study

While the results we have presented seem very promising and we have provided theoretical guarantees about the
generalization ability of our proposed methodology, our study naturally suffers from data limitations. This is because
we focus on patients from a specific hospital, coming mainly from lower socioeconomic classes. Our data come
exclusively from the BMC system and we do not have access to any data corresponding to visits or treatment outside
BMC. Specifically, patients ourmethods find to be at a high risk of hospitalization based on the available data, may have
received treatment elsewhere which reduced their hospitalization risk, eventually avoiding a hospitalization wemay have
predicted. Moreover, patients who we predict will not be hospitalized may have been seen outside BMC and data
captured for them may explain a future hospitalization. In both cases, in the absence of data about a patient, the
predictive model is powerless. We conjecture, however, that the effect of such lack of data does not substantially alter
the metrics on the predictive power of our methods. The main reason is that BMC patients are typically seen within the
system because they lack the financial resources to receive care elsewhere. In any case, if additional data (e.g. from
insurance claims) become available, they can be readily used by our methods to improve the predictions.

6 Conclusions

Diabetes is the fastest growing chronic condition causing a number of preventable hospitalizations.
Diabetes is also associated with serious complications, such as heart disease and stroke, retinopathy,
kidney failure, and lower-limb amputation. Early detection and treatment can slow down the progression
of the disease and result in better health outcomes and huge savings. We considered the problem of predicting
diabetes-related hospitalizations using information in the Electronic Health Records of the patients.
We introduced a statistical procedure to identify the diabetes-related admissions and we experimented with
a number of machine learning methods that predict hospitalizations in a target year for diabetic patients.
With a 20% false alarm rate, we can correctly predict about 81% of the hospitalized patients while providing
insight as to why each prediction is made. To that end, we developed a novel clustering and classification
framework (ACC) that jointly discriminates between hospitalized and non-hospitalized patients and
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discovers clusters of patients with key factors, different in each cluster, that lead to hospitalization. The
identification of the clusters has the significant advantage of interpretability, which is crucial in the medical
domain. We proved convergence of the new algorithm and established theoretical generalization guarantees.
The proposed algorithm has wider applicability and the potential to be applied to other medical case studies,
helping, for example, discover cohorts of patients with similar underlying issues and devising cohort-specific
predictive models.
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Appendix 1. Proof of Theorem I

Theorem I. For any ›, the ACC process converges.

Proof. At each alternating cycle, for each cluster l we train a Sparse Linear SVM (SPLSVM) with positive samples
of that cluster combined with all negative samples. This produces an optimal value Ol and the corresponding
classifier bl,�l

0

� �
. Specifically, the formulation is

Ol ¼ minbl, �l
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We use the sum of the optimal objective function values in equation (5) across different clusters to prove
convergence. We have

Z ¼
XL
l¼1

Ol ¼
XL
l¼1

1

2
bl

�� ��2þ��
XN�

j¼1

�lj Þ þ �þ
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where l ðiÞ maps sample i to cluster l ðiÞ,
PL

l¼1 N
þ
l ¼ Nþ, and bl,�l

0, �
l
j, and �l ðiÞi are optimal solutions of (5) for each

l. Now, let us consider the change of Z at each iteration of the ACC procedure.
First, we consider the re-clustering step given SLSVMs. During the re-clustering step, the classifier and slack

variables for negative samples are not modified. Only the �l ðiÞi get modified since the assignment functions l ðiÞ
change. When we switch positive sample i from cluster l ðiÞ to l�ðiÞ, we can simply assign value �l ðiÞi to �l

�ðiÞ
i .

Therefore, the value of Z does not change during the re-clustering phase and takes the form

Z ¼
XL
l¼1

1

2
bl

�� ��2þ�þ
X
i:l ið Þ¼lf g
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XN�
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�lj
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A

Next, given new cluster assignments, we re-train the local classifiers by resolving problem (5) for each cluster l.
Notice that re-clustering was done subject to the constraint in equation (2) (see Algorithm 1). Since yþi ¼ 1, we
have

�l ðiÞi � 1� yþi �
l ðiÞ
0 �

XD
d¼1

yþi �
l ðiÞ
d xþi,d � 1� yþi �

l�ðiÞ
0 �

XD
d¼1

yþi �
l�ðiÞ
d xþi,d
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The first inequality is due to �l ðiÞi being feasible for equation (5). The second inequality is due to yþi ¼ 1 and
equation (2) in Algorithm (1). Thus, by assigning �l ðiÞi to �l

�ðiÞ
i , it follows that the �l

�ðiÞ
i remain feasible for problem

(5). Given that the remaining decision variables do not change, ðbl,�l
0, �

l
j, �

l ið Þ
i , 8i ¼ 1, . . . ,Nþ

l , 8j ¼ 1, . . . ,N�Þ

forms a feasible solution of problem (5). This solution has a cost equal to Ol. Re-optimizing can produce an
optimal value that is no worse. It follows that in every iteration of ACC, Z is monotonically non-increasing. Given
that Z is bounded below by zero, we establish the convergence of ACC.

Appendix 2. Proof of Theorem II

Theorem II. The VC-dimension of the class H is bounded by Lþ 1ð ÞL Dþ 1ð Þlog e Lþ1ð ÞL
2

	 

. Then for any � 2 ð0, 1Þ,

with probability at least 1� � , R � RN þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
VACC log 2eN

VACC
þlog2�

N

q
.

Proof. The proof is based on Lemma 2 of Sontag.44 Given an assignment of positive sample i to cluster l ðiÞ define
L clustering functions

gl ið Þ ¼
1, if l ið Þ ¼ l,

0, otherwise

�

Hence, sample i is assigned to cluster argmaxlglðiÞ. This can be viewed as the output of L� 1ð ÞL=2 comparisons
between pairs of gl1 and gl2 , where 1 � l1 � l2 � L. This pairwise comparison could be further transformed into a
Boolean function (i.e. sgnðgl1 � gl2 Þ)). Together with the L classifiers (one for each cluster), we have a total of
Lþ 1ð ÞL=2 Boolean functions. Among all these Boolean functions, the maximum VC-dimension is Dþ 1, due to
D› � D. Therefore, by Lemma 2 of Bousquet and Boucheron,45 the VC-dimension of the function family H is

bounded by 2 Lþ1ð ÞL
2

	 

Dþ 1ð Þlogðe Lþ1ð ÞL

2 Þ or equivalently Lþ 1ð ÞL Dþ 1ð Þlogðe Lþ1ð ÞL
2 Þ. The generalization

guarantees follow from Vapnik.26
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