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Abstract—We consider the process of bidding by electricity
suppliers in a day-ahead market context, where each supplier
bids a linear non-decreasing function of her generating capacity
with the goal of maximizing her individual profit given other
competing suppliers’ bids. Based on the submitted bids, the
market operator schedules suppliers to meet demand during each
hour and determines hourly market clearing prices. Eventually,
this game-theoretic process reaches a Nash equilibrium when
no supplier is motivated to modify her bid. However, solving
the individual profit maximization problem requires information
of rivals’ bids, which are typically not available. To address this
issue, we develop an inverse optimization approach for estimating
rivals’ production cost functions given historical market clearing
prices and production levels. We then use these functions to bid
strategically and compute Nash equilibrium bids. We present
numerical experiments illustrating our methodology, showing
good agreement between bids based on the estimated production
cost functions with the bids based on the true cost functions.
We discuss an extension of our approach that takes into account
network congestion resulting in location-dependent prices.

Index Terms—Day-ahead market, Equilibrium bids, Learning,
Inverse equilibrium, Inverse optimization.

I. INTRODUCTION

N the past several decades that followed the seminal

work on spot market pricing [1], the electricity industry
has evolved from vertical integrated regulated monopolies to
competitive supply and demand market participants with equal
access to a regulated transmission and distribution network.
Nevertheless, due to special features of the power industry,
including a limited number of producers (electricity suppliers),
large capital investments that introduce barriers to entry, and
congestion caused by occasionally binding transmission con-
straints, the electricity market is characterized by oligopolistic
conditions [2]. Under perfect competition, suppliers would bid
their marginal costs, a necessary condition for social welfare
and efficiency maximization. In an imperfect oligopolistic
energy market setting, however, suppliers can exploit market
manipulation opportunities to increase their profits by bidding
above their marginal cost.

The investigation of such behavior, referred to as strategic
bidding, is of dual interest. First, to market participants (mainly

* Research partially supported by the NSF under grants DMS-1664644,
CNS-1645681, CCF-1527292, AitF-9500307423, and 1IS-1237022, by the
ARO under grant W911NF-12-1-0390, by the ONR under grant N00014-
16-1-2832, and by the Sloan Foundation under grant G-2017-9723.

t Division of Systems Engineering, Boston University, Boston, MA 02215,
e-mail: {rchenl5, mcaraman, panosa}@bu.edu.

1 Department of Electrical and Computer Eng., Division of Systems Eng.,
and Dept. of Biomedical Eng., Boston University, 8 St. Mary’s St., Boston,
MA 02215, e-mail: yannisp@bu.edu, http:/sites.bu.edu/paschalidis/.

suppliers), who are interested in devising optimal bidding
strategies that would allow them to “outsmart” competitors
and realize profits exceeding those that a perfectly competitive
market would allow. Second, to market regulators, who are
interested in identifying market power abuses and developing
policies to increase efficiency and social welfare.

There is an immense amount of literature on strategic
bidding in the context of electricity markets (see e.g., [3] for
a related non-exhaustive literature review) particularly when
one takes into account the specific market rules that apply.
Currently, U.S. markets involve multi-part bids for energy
and commitment costs, as well as several types of ancillary
services, resulting in location-dependent hourly and real-time
(5 min) prices. In the European day-ahead market coupling
problem [4], even more complex bids are allowed. Regardless
of the underlying framework and market rules, an optimal
bidding strategy aims to answer the same question: how to
bid in order to maximize profits.

From a game-theoretic point of view, the approaches for
equilibrium analysis of the strategic bidding problem can be
further classified as Bertrand models, Cournot and Stackelberg
models, and Supply Function Equilibrium (SFE) models. In the
latter approach, instead of setting their price bids (Bertrand)
or quantities (Cournot), suppliers bid their supply functions
that link prices with quantities. The SFE literature originates
from the seminal work of Klemperer and Meyer [5], and,
since its first application in electricity markets [6], it has been
extensively studied [7], [8] — an overview is presented in [9],
in both stylized examples and actual electricity markets (see,
e.g., [10], [11], [12] for analytical and numerical results, and
[13] for an empirical analysis).

One of the main criticisms regarding game-theoretic ap-
proaches is the unrealistic assumption that the payoff functions
of all participants are publicly available. Most related works
deal with this issue by assuming some type of uncertainty. An
early work [14] proposes a recursive dynamic programming
approach for determining the optimal bid price for each block
of generation, in which each supplier models the uncertainty
about rival bid prices by a probability distribution. In [15],
the developed bidding scheme maximizes the hourly profit
assuming all other producers’ bids are represented by a mul-
tivariate normal distribution whose parameters are estimated
from historical data. In [16], each supplier assumes types
(based on the cost structure) of other suppliers and their
joint probability distribution, based on the published infor-
mation on fuel contracts, availability of transmission lines,
and operating parameters. In [17], a decomposition-based
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particle swarm optimization method is proposed to solve the
expected profit maximization problem with the market clearing
price modeled as an uncertain, exogenous variable. In [18], a
decentralized Nash equilibrium learning strategy is presented
in a Bertrand competition framework to solve the economic
dispatch problem. Recently, in [19], a Bayesian inference
approach is proposed to reveal the aggregate supply curve
in a day-ahead electricity market. In [20], a non-cooperative
game with incomplete information among demand response
aggregators is considered under different market conditions,
where a Bayesian approach is used to estimate the unknown
information such as the types of competitors. In [21], a multi-
period market equilibrium problem is considered to study
the strategic behavior of energy storage systems, where the
optimality conditions of all participants’ profit maximization
problems are collected and solved together.

In this paper, we consider SFE-based equilibrium strategies
for suppliers in the context of a day-ahead electricity market.
We address the aforementioned criticism by estimating payoff
functions using an inverse optimization approach combined
with the theory of variational inequalities [22]. Inverse opti-
mization seeks to recover input data to optimization problems
from optimal solutions; it was first introduced in [23] but
recently revisited in new settings [24], [22], [25]. Interestingly,
inverse optimization has not been extensively used in the
context of electricity markets. In [26], inverse optimization is
used to identify the bids of marginal suppliers in a multi-period
network-constrained electricity pool. In [27], it is employed
to address the market-bidding problem of a cluster of price-
responsive consumers of electricity. In [28], it is used to
determine market structure from commodity and transportation
prices; the methodology is applied to data from the MISO
electricity market. Recently, [29] used inverse optimization to
estimate how loads respond to demand response price signals.

A preliminary conference version of this paper has ap-
peared in [30]. That paper focused on comparisons between
inverse optimization-based strategic bidding versus earlier
approaches [15]. The present paper uses a different, more real-
istic parametrization of the unknown cost function with respect
to observable market variables, has an extensive numerical
validation of the proposed approach, establishes new rigorous
results on algorithm termination, and offers extensions to
location-dependent prices.

To the best of our knowledge, we are the first to leverage
inverse optimization for estimating cost parameters in payoff
functions and obtaining equilibrium bids in the context of
electricity markets. Our method is driven purely by data,
in the sense that only the observed samples are utilized for
inference and estimation, without relying on any distributional
assumptions on the observed data. We note that any hypothesis
on the data generating pattern could be questionable, due to
the lack of supporting evidence on such assumption and the
noisy nature of the data. By contrast, data-driven approaches
receive input from the observed samples and are self-adjusted
in the estimation process as more samples are available.

The main idea of this paper is to learn from past bids of
electricity suppliers that bid strategically in a day-ahead market
context. We develop an inverse optimization approach for es-
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timating suppliers’ cost functions, based on historical bidding
data. We propose an algorithm that randomly searches for cost
function parameters with good out-of-sample performance,
among multiple possible values that are compatible with past
data. Our proposed framework is validated with extensive
numerical experimentation, and is extended to accommodate
location-dependent prices.

The remainder of the paper is organized as follows. In
Section II, we present the general market framework. In Sec-
tion III, we formulate the strategic bidding problem (referred
to as the “forward” problem), and in Section IV we present
the inverse optimization framework as it applies to our day-
ahead market setting. In Section V, we discuss the specific
algorithm we use to estimate competitors’ cost parameters,
based on which equilibrium bids are obtained, and establish
its convergence properties. In Section VI we illustrate our
approach with numerical examples. In Section VII, we discuss
the extension of our approach to location-dependent prices.
We conclude and provide directions for further research in
Section VIII.

II. MARKET FRAMEWORK

We consider a day-ahead electricity market setting, which
is composed of IV electricity suppliers, and a market operator
instantiating a Power Exchange (PX). Each supplier submits
a bid curve (supply curve) that describes the relationship
between energy price and production quantity, for each of
the 24 hours of the next day. After receiving the bidding
functions from all suppliers, the market operator clears the
market by balancing aggregate supply and demand; the output
is the hourly market clearing price and the supplier specific
dispatch schedules. Assuming no inter-temporal coupling in
the PX setting, the auctions for different hours are performed
separately and independently. This allows us to consider the
bidding strategy for a specific hour and omit the time index
in our analysis.

In actual power markets, the bidding functions are
piecewise-constant curves, reflecting the constant bid price
(marginal as-bid cost) for each block of electricity generation.
These piecewise-constant curves correspond to piecewise-
linear functions for the total as-bid costs of the suppliers,
which approximate a quadratic cost function of typical gener-
ators. Piecewise-linear functions are used in practice to allow
reliance on available commercial optimization solvers (for
solving large-scale security-constrained unit commitment and
economic dispatch problems typically formulated as mixed
integer linear programming problems). In this paper, we as-
sume the same affine bid curve as commonly used in the SFE
literature; this assumption not only facilitates our analysis, but
also corresponds to a quadratic approximation of generator
cost functions.

Assume that supplier ¢ submits a linear non-decreasing bid
function to the market operator, o; + 3; P;, i = 1, ..., N, that
denotes the marginal as-bid cost of power at production level
P;, and «y, B; are the bidding coefficients to be determined
under the optimal bidding strategy. After receiving these linear
bidding functions, the market operator derives the clearing
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price and the generator dispatch schedule as follows:

forecas min max
Q — Q orecast __ Ziel Pi — Zief Pi 5
Q= ZiEIPiv

T={i: R>a;+BP"™), IT=1{i: R<a;+BiP"),
T—1{1,....N}\{TuZ},

where R is the market clearing price, Q% is the demand
forecast (or as-bid load as is also the case in actual electricity
markets) that is publicly announced by the market operator,
Pimi“, P are the minimum and maximum generation levels,
respectively, of supplier 4, Z is the set of suppliers producing
at PM™>* T is the set of suppliers producing at P™", 7 the
set of marginal suppliers, and () the effective demand met by
marginal suppliers.

Since for ¢ € Z the capacity constraints are not binding, for
a given Qforeesst (hence, Q) the solution to (1) becomes

Q+Yier %
R(a, 3;Q) = ZZETB 6)
i€T B;
Plop@) = MO0 e g

R(aw@vQ) :P'miny 7’6-13 Pz(a,ﬁ,Q) :P'maxv 2677

3 7

where we write R(a, 3;Q), P;(c, 3; Q) to explicitly express
the dependency on o = (ay,...,ay) and B = (B4, ..., 8N)
for a given demand forecast resulting in effective demand Q).

III. FORWARD PROBLEM FORMULATION

The forward problem deals with the individual profit maxi-
mization problem, in which supplier ¢ determines her bidding
curve (a, 3;) to maximize her profit ¢;(c, 3; Q) defined as

d)z(avﬁaQ) = R(aaﬁvQ)Pl(awBaQ) - CZ(PZ(aaIBa Q))7

where C;(P;(a,3;Q)) is the production cost at generation
level P;(a, 3; Q). The problem is formulated as follows:

max ¢y, 5;Q)
s.t. 0<o; <a, €)]
ﬁi>07

where & is an upper bound on «;, and is related to the price
cap in electricity markets. !

Note that the form of the profit function is generic (defined
as revenues minus costs) and, in general, each supplier can
have her own cost function. For the case of electricity gener-
ators, a common assumption is a quadratic cost function:

Ci(P) =cio+canP + Cizpf» 4

which implies a marginal cost equal to ¢;1 + 2¢;2FP;. Since
the intercept of the quadratic cost function (parameter c;g) is
constant (this practically refers to the so-called “no-load” cost

IStrictly speaking, the price cap imposes a bound on the marginal cost at
the maximum capacity, o; + 8; PJ"* < &, implying that the upper bound is
different for each supplier 4, ie., a; = & — 51‘P{"M- However, in practice,
the price cap is high enough, and we can assume without loss of generality
a common upper bound on a;.
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of a generator), its value will not affect the profit maximization
problem of the supplier and, without loss of generality, it can
be set to zero.

A direct comparison of the marginal cost (c¢;1 + 2¢;2F;)
and the linear bid function («; + (;P;) indicates that the
cost parameters c¢;; and 2¢; correspond to the bidding curve
parameters «; and [3;, respectively. Hence, truthful bidding
would result in a; = ¢;1 and 3; = 2¢;0.

In this paper, we assume that suppliers game only with
parameter «;, and that §; is small and equal to 2¢;s, rep-
resenting a publicly known, technology-specific efficiency
decline associated with approaching generating capacity. This
assumption corresponds to the “bid-a” game in [31], implying
that 3; is known to other suppliers for all intents and purposes.
We elaborate on this assumption next.

The technology and capacity of individual generating plants
is public information that provides useful partial information
about their cost functions. Nevertheless, their fuel and variable
maintenance cost, and their exact heat rate (efficiency), re-
flected primarily in parameter c;;, is proprietary and not known
with sufficient accuracy to competitors so as to allow them to
bid optimally. On the other hand, as also pointed out in [32],
the marginal cost functions of individual suppliers usually have
very shallow slopes, and thus j; is relatively small (about two
orders of magnitude lower than «;); furthermore, if both «;
and f3; can be chosen, the existence of a unique equilibrium
is rare. Hence, one can argue that the small value of the
slope of the marginal cost (2¢;2) is more or less known, and
that the suppliers reflect this cost in parameter 3;, > as in
[32], thus avoiding bidding non credible high slopes. Still,
in our results section, we mainly explore cases in which we
allow errors in the estimates of past bids or the knowledge
of parameters (including parameter 53;). Furthermore, we note
that if we consider the framework from the perspective of a
regulator, the technology-specific data (e.g., heat-rate curves)
that mainly drive the slope of the marginal cost are declared
by the participants; as such, the slope is relatively easily
calculated.

For the purposes of this paper, we assume that c;; consists
of two cost components: (i) one non-fuel cost component that
reflects operational and maintenance variable costs (e.g., labor,
parts, consumables, lubricants, chemicals, consumption from
power station supplies, etc.), and (i7) a fuel-cost component
(essentially depending on the heat rate and the fuel price). As
such, ¢;; is defined as

cin = 0i1 + 0:2€, )

where & is a variable reflecting the publicly known fuel
price, and 6;1,0;2 are the unknown cost coefficients. This
decomposition is in line with the declared characteristics of
the generation units, which comprise the heat rate curve and
operational (other than fuel) and maintenance variable costs.
We note that the framework can support even more detailed

>The parameter §3; reflects (i) the smoothing/regularization of the bid
conforming to the monotonically increasing market rule requirement (marginal
costs are physically not strictly monotonic), and (4¢) the advantage of and
desire for achieving unique price-directed marginal generator schedules. In
the experiments, the values of 3; are on the order of 0.1.
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decompositions (e.g., consider separately a carbon price for
emissions). Also, we note that the unknown cost coefficients
can be interpreted in various ways. For instance, assuming a
publicly known fuel price £, coefficient §;2 may contain the
combined effect of the heat rate curve and potential discounts
that suppliers may have secured; such contract information is
not available to either regulators or competitors.

Following the above assumptions, i.e., setting c;o = 0 and
cio = (1/2)f; in the quadratic cost function (4), and using
(5), the profit function for supplier 7 can be rewritten as

¢l(a7/67 Q7§) :[R(aaﬁa Q) - (911 + 9z2£)]PZ(a7/67 Q)
- %51‘[3(0175;62)]2- (6)

Note that for a given @) and &, the profit of supplier i is
determined by the actions « of all players and her own cost
parameter 8; = (6,1, 0;2). We therefore write ¢;(0;; , Q,€)
to emphasize this dependency (3 is removed since it is
constant and known).

Since all suppliers choose their bids by solving the profit
maximization problem (3), we can construct a SFE model
describing the game among all profit-maximizing suppliers.
By definition, a specific a is a Nash equilibrium if no single
supplier can increase her profit by unilaterally changing her
own bid. We know (see [30]) that there exists a unique Nash
equilibrium a* = (of,...,a}) in this SFE model, since
0i(0;; o, Q, &) is strictly concave in «, i.e., its second partial
derivative is strictly negative.

Next, we compute both the first and the second partial
derivatives of the profit function with respect to «;. From (6),
the first derivative is

1 - ~ ~

E[ﬂi@i +ai(B? 1) = (Bi -
where 0 < f; = (1/8:))/ X5ez(1/B) < 1, and Q; =
(Q+> kez ki @k/Br)/ 2212 (1/B1). We observe that the first
derivative is linear in «; and also linear in 6;; and 6;5. From

(7), the second derivative is

V?ﬁbi(@i; a,Q, f)

1)(0i1 + 6:28)], ()

1

Bi
From (8), it is easy to verify that VZ,4:(6i; ¢, Q,€) < 0,
which implies strict concavity since 5; > 0 and 0 < §5; < 1.

(B —1)(B; +1). ®)

IV. INVERSE PROBLEM FORMULATION

The inverse problem seeks to estimate rivals’ cost parame-
ters. This knowledge is required for estimating the objective
of the profit maximization problem (3). The main theoretical
foundation is attributed to [22], where the authors estimate
the utility functions of the players in a Nash game from the
observed equilibrium.

In the context of this paper, we are given (or we can
obtain/estimate) M past equilibrium bids (observations) ol =
(al; i€7), j=1,...,M, where 7/ is the set of marginal
suppliers for observation j and is defined similar to Z in (2).
The o’ are realized under different residual demand levels
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@’ and fuel prices &7, and we are interested in estimating
0; of supplier ¢ = 1,..., N. Without loss of generality, we
assume that for each supplier i there are sufficient observations
j at which supplier i was marginal (i.e., i € Z7), so that
there is enough information to estimate 6. In case this is not
true for some suppliers, we can a priori remove them from
the set {1,..., N} (and appropriately adjust (1)). For such
suppliers, we simply do not have enough information to esti-
mate their cost parameters. It should be noted, however, that
these suppliers will generally correspond to base loaded units
that do not compete in the market. Given the quadratic cost
function representation, the resulting linear supply curve is
associated with a broadly construed notion of marginality that
will render non-base-loaded units marginal during some hours.
As long as each unit is marginal in some of the observations
— not all units need to be marginal in all observations — the
proposed framework is broadly applicable, and there is no loss
of generality from the exclusion of base loaded units.

The estimates for the cost parameters are obtained by
applying [22, Theorem 3], which is derived through duality,
and leads to the following optimization problem:

min €]l oo

Y.€
61,....0n .

st. yl >0,i€Z?; j=1,...,M,

yf 2 Vi¢i(0i;aj7Qj7§j)7 VZ € Ijaj7
> (ay! — alVigi(8s09,Q7,60)) < €.,
i€
vz(bl(ela aklan“é\ki) = ¢in0rm, VZ7
- ©)

where y = (yf);ezzl s 18 the decision variable (introduced
as a dual variable in [22, Theorem 2]); € = (e1,...,€n),
|l€ll o = max; |¢;] is the infinity norm, and the last constraint
is used for normalization purposes and will be discussed
below. We note that the variables in V;¢; are 6;, and that
Vi¢; is linear in @;, where o/, 7, and ¢/ are parameters of
the optimization problem. From (7), we have
al

_ B @t Ymeri i g

Vigi(0i;07,Q7, &) = +
9i(6::07,Q7%,&7) Bi Zlezjé
i _ A _ B
%(63*1)4’01‘11 @ﬂl +91'21 ﬁiﬂzfj- (10)

Interestingly, we can reformulate the optimization problem
(9) as a Linear Programming (LP) problem, which can be
solved very efficiently. Specifically, instead of the infinite norm
objective, we can introduce constraints that impose an upper
bound to each |e;| and then minimize this upper bound.

The last constraint in (9) is a normalization constraint,
which is equivalent to [22, Egs. (39d) and (39e)]. The right
hand side (rhs) of the constraint, ¢,;"°™, is some estimate of
the partial derivative at a specific point, which is evaluated at
an observation k; (potentially different for each 7). In [22],
for illustration purposes, the rhs estimate is obtained using the
actual values of 6; at a median observation, considering some
lower bounds for the bidding coefficients. We further elaborate
on the implementation of this constraint in Section V.

We note that this inverse optimization technique still applies
even when more constraints are imposed in the forward
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problem setup or when the bid function is changed, as long
as R and P; have closed-form expressions w.r.t. the bidding
coefficients.

The quality of the computed equilibrium strategies depends
on the explanatory value of the estimated cost parameters.
Indeed, good estimators should explain future equilibria as
well as the equilibria used to estimate them. The following
result, which is a restatement of [22, Theorem 6], ensures the
quality of the estimated cost functions under mild conditions.
To simplify the notation, we assume that all suppliers are
marginal at all past observations j; otherwise, proper adjust-
ments to the statement of the theorem can be made.

Theorem 1V.1. Suppose that o, j = 1,...,M are i.id.
realizations of a random variable &, and & € {a : 0 <
a; < &, VY i} almost surely. Then, for any 0 < § < 1, with
probability at least 1 — n w.r.t. the sampling,

IP’(& is a z-approximate equilibrium for the game

N N 11
with payoffs defined through 0, . . ., 0N) >1-9, (1)

where n = Zfivo @1) 81— 6)M=%;: 2 is the optimal value of

problem (9); and 0+, . ..,0 N are the optimal solutions to (9).

Roughly speaking, the z-approximate equilibrium describes
the situation where each supplier does not necessarily play
her best action given what others are doing, playing instead a
strategy that is no worse than z relative to the best response.
For the definition of z-approximate equilibrium, we refer the
interested reader to [22, Section 2.2].

There are two probability measures in the statement of
Theorem IV.1. One is related to the new data &, while the
other is related to the samples ', ..., a™ . The probability in
(11) is taken w.r.t. the new data . For a fixed set of samples,
(11) holds with probability at least 1 — n w.r.t. the measure
of samples. Theorem IV.1 essentially states that given typical
samples, the probability that the estimated cost functions
explain well a new future equilibrium is bounded below. It
guarantees the accuracy of the estimated cost parameters under
mild conditions.

V. ALGORITHMIC IMPLEMENTATION

In this section, we present the algorithmic implementation
for estimating the rivals’ profit functions (or cost parameters
6;), which can then be used to obtain equilibrium bids. We
use historical data from which we can derive the past bids.
Suppose we are aware of the market clearing price and the
dispatch schedules of all suppliers. 3 Using this information,
the past bids o/ = (o5 i € I7), j = 1,..., M, can be
computed via the market-clearing condition in (1), where (3
is constant and known. As before, we assume that for each
supplier ¢ there are sufficient observations j at which supplier
i was marginal (i € Z7).

3Such information is publicly available in some European power markets,
or it can be assumed to be discoverable at a later point in time by market
participants. It is certainly available to regulators even in pool-based markets,
and, to some extent, it can be estimated by entities with market knowledge;
as we will discuss later, errors in the estimates can be viewed as noise in the
data.
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It is worth mentioning that (9) might give multiple optimal
solutions. Our goal is to recover the true cost parameters from
this set. Although there might be multiple cost function esti-
mates that can explain the observed equilibria well, only true
costs are expected to have good out-of-sample performance.
The following Algorithm is thus proposed to identify the true
cost functions, based on which equilibrium bids could be com-
puted via an iterative best response process. We refer to this
algorithm as “random search,” since it searches randomly in
the set of optimal solutions until the one that performs well on
a validation dataset is found. The out-of-sample performance is
measured by the average discrepancy, d, between the computed
and true bids on the validation dataset. The variable k serves
as a counter of the iterations (random searches); the algorithm
terminates when the discrepancy d is smaller than the tolerance
level (7) or the maximum number of iterations is reached
(MaxIter). In the latter case, we select the iteration with
the best out-of-sample performance (smallest d).

In what follows, we present the main steps of the Algorithm.

1: Input: N suppliers, with constant and known bidding
slopes B;, ¢ = 1,...,N; M past bids (observations),
and for each bid j = 1,..., M, the market-clearing
price R7, residual demand @)/, fuel price &, dispatch
schedules P/, upper bound for bids &; percentage of
training samples p; tolerance level 7; maximum number
of iterations MaxIter.

2: Initialize: d = oo, k = 0.

3: while d > 7 and k < MaxIter do

k < k + 1. Randomly choose M; = |Mp]| samples
from all past bids (observations) to constitute the training
dataset (as a percentage p of the entire set), and use the
remaining bids (M, = M — M,) as the validation dataset.

5: Obtain éi, t=1,..., N, by solving problem (9) using
the training dataset.

6: Compute equilibrium strategies (solving (3) via an
iterative best response process) &, j = 1,...,M,, on
the validation dataset using é,;, i=1,...,N.

7: Evaluate the discrepancy between computed and true
bids on the validation dataset as

M . s
Zj:vl Haial B a\j/allll/N
)

M,

d= (12)

where aﬁa] is the j-th true bid (obtained form the historical
data) on the validation dataset, and |- ||; is the ¢; norm
operator defined as the sum of the absolute elements of
the argument.

8: end while

9: Compute equilibrium bids using 97;, 1 =1,...,N for
given () and &.

The iterative best response process mentioned in Step 6 for
computing equilibrium bids (which also applies to Step 9) is
a standard fixed point iteration process. Each supplier solves
problem (3) assuming all other suppliers are fixed in their
previous bids (in fact, problem (3) in our case can be solved
even analytically). Then the bids are updated and the process
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is repeated until an equilibrium is reached, i.e., no supplier can
gain by unilaterally changing her bid. In practice, this process
terminates in a few iterations since the profit functions are
strictly concave.

We also note that the algorithm is amenable to paralleliza-
tion, as essentially, given adequate resources, all iterations
(Steps 3 to 8) could be run in parallel. Our next result
establishes that the algorithm requires more than 7T itera-
tions with a probability that diminishes exponentially with
T. Equivalently, we can select a large enough maximum
number of iterations, MaxIter, so that the algorithm will
terminate before MaxIter is reached with a desirable large
probability. The result further establishes that the convergence
rate of the algorithm improves as we increase the size M;
of the training set. The proof of the result is included in the
Appendix. We numerically explore in Section VI the out-of-
sample performance of the cost estimators obtained through
this algorithm.

Theorem V.1. Assume that for some v > 0, (1 — (2)/8; >
v,Yi = 1,...,N, and the conditions of Thm. IV.I hold.
Assuming that all the past bids are at most € away from the
equilibrium, and for a threshold T = \/€/(Nv), it follows:
1) for any T > 1, the probability that the algorithm
terminates after ' iterations is no more than 77T;
2) for any 0 < € < 1, when T > (loge)/(logn),
the probability that the algorithm terminates after T
iterations is no more than e,

where 1) is defined in the statement of Thm. IV.1. Moreover,
as we increase the training sample size My, the number of
iterations that are needed for termination decreases when M,
is large enough.

Another issue mentioned in the previous section is the
implementation of the normalization constraint, i.e., the last
constraint in (9). For the purposes of this paper, unlike [22],
we do not use the true costs (since they are indeed unknown);
instead, we set the rhs (estimate of the partial derivative) to
zero for the median observation of the training dataset.

Finally, we note that the algorithm can handle cases in
which “noise” is present in the data, e.g., in the past bids
(observations). This is perhaps the most interesting — and
not trivial, application which we also explore in Section VI.

VI. NUMERICAL ILLUSTRATION

In this section, we use synthetic input data to test the validity
of our approach. We first describe the experimental setup.

We consider a setup with N = 2,3,4,5, and 10 suppliers.
For each case, we assume that the true cost parameters 6;; and
02, as well as c¢;o of supplier ¢ are equispaced in the intervals
[7,5], [0.7,0.9], and [0.05,0.07], respectively. *

We generate M = 200 past observations, in which demand
@ and fuel price £ are randomly selected within the intervals
[50,100], and [10, 30], respectively. For each demand and fuel
price realization, i.e., for each observation j (among the 200),

“For instance, for the case N = 3, we have for supplier 1, 611 = 7,
612 = 0.7, c12 = 0.05, for supplier 2, 21 = 6, 22 = 0.8, c22 = 0.06,
and for supplier 3, 031 = 5, 032 = 0.9, c32 = 0.07.

http://dx.doi.org/10.1109/TSG.2019.2891747

using the true cost estimators, we generate equilibrium bids
o7, assuming that all suppliers are marginal at all observations.
The upper bound & is set to 200. ° The training and validation
datasets are assumed to be of equal size, M; = M, = 100,
using p = 0.5. For evaluating the out-of-sample performance
we generate a test dataset with 100 additional demand and
fuel price values, randomly selected within the aforementioned
intervals.

The algorithm was implemented using Matlab R2017a and
Gurobi 7.5.1 (for solving the LP problem (9)), without any
parallelization, and the computational experiments were run
on an Intel i7 5500U, at 2.4GHz, with 8 GB RAM.

In what follows, we consider two setups: a “clean” setup
without noise in the data (Subsection VI-A), and a setup
with noise (Subsection VI-B). We evaluate the out-of-sample
performance for the noisy data case (in Subsection VI-C), and
we perform sensitivity analysis with respect to key parame-
ters (in Subsection VI-D). Lastly, we present an interesting
comparison of our approach with a method introduced in [15]
(Subsection VI-E).

A. “Clean” Setup

As a measure of error for the cost estimators of 8;, we
use the Mean Absolute Percentage Error (MAPE), defined as
(100/2N) SN S22 (621 — 1) /62| Notably, we expect to
see that cost parameters with low discrepancy values would
exhibit low MAPE values. In all cases, the algorithm managed
to exactly reveal the true costs within 1 or 2 iterations for
N = 2,3,4,5 and 86 iterations for N = 10. We plot the
results for N = 10, in Fig. 1. Each circle corresponds to
the discrepancy and MAPE values on the validation dataset
for a certain partition of the samples into training/validation

datasets Out-of-sample performance (10 suppliers)

g ot

o
o = o
= 3 ¥

Discrepancy (d)
o
&

od ‘ ‘ ‘ |
0% 1% 2% 3% 4%

MAPE of cost estimators
Fig. 1. Validation dataset performance (/N = 10 suppliers, “clean” setup).

In Fig. 1 we see that in general, the lower the discrepancy
(the better the performance in the validation set), the lower
the MAPE of the cost estimators (the better the estimates of
the true costs).

B. Setup with Noise

We introduce noise in past bid observations, by generating
them within 1% of the optimal value obtained by the iterative
best response process. Alternatively, one may think of this

SNote that, in practice, we would estimate these bids, using the market
outcomes.
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noise as an error in estimating past bids from the market
results. For instance, noisy data may be due to errors in
estimates of the market outcome when not all det~ renmired
(e.g., the exact schedules) are available, or due to ¢
slopes of the marginal cost function (reflected in pa
Further, noise may account for inaccurate estimat
marginal or extra-marginal suppliers that are ren
the observations. In a more loose interpretation of a
equilibria, one may also think of this noise as obs
which suppliers do not play exactly their equilibri

For practical purposes, we set Maxlter =
a tight tolerance level 7 = 1073, In all cases t
limit is reached first; computational times rangec
10 min. We note that by selecting such a tight tol¢
in absolute figures (with an average bid « of arc
algorithm would terminate when reaching discrep:
than 0.005%), and with 1% noise present in the
almost certain that the algorithm will terminate
the iteration limit. Hence, it is highly unlikely th:
tolerance limits (which are achieved in the clean
be also achievable in the case of noisy data. N
we keep both termination conditions in the fra
the sake of completeness in case of noise-free de
unnecessary iterations. We also note that, by setting
high iteration limit, we enhance the confidence ir
(see also Thm. V.1); we elaborate further on the
this limit in Subsection VI-D.

For all cases (N = 2,...,5,10), the best achieved discrep-
ancy at the validation dataset ranges from 0.111 to 0.154 in
absolute figures — an average bid « of around 20 implies that
the discrepancy is less than 1%. The results indicate reasonably
good cost estimators with MAPE ranging from 0.86% to
3.44% (for the aforementioned best achieved discrepancies).
In Fig. 2, we show the performance in the validation dataset
for N = 10 suppliers — compare with Fig. 1 for the “clean”

setupn. Fie. 2 also verifies the expected behavior when noise
032 Out-of-sample performance (10 suppliers)
03[

0.28
0.26

§0.24 r

&

c 022

®

Q.
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(8]

(2]

7018
0.16
0.14 -
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0% 1% 2% 3% 4% 5% 6% 7% 8%
MAPE of cost estimators

Fig. 2. Validation dataset performance (/N = 10 suppliers, setup with noise).

9% 10%

is present in the data, i.e., good performance in the validation
dataset is associated with good cost estimators.

In Fig. 3, we plot the true costs #;; and 6;> and their
estimates for V = 5 and N = 10 suppliers. We illustrate
the best estimate (the one that corresponds to the lowest
discrepancy calculated at the validation dataset), as well as
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the average cost estimators and their standard deviation (o)
over the 10,000 iterations.
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Fig. 3. True costs and estimates (best and average +o) for N = 5 (upper
figure) and N = 10 (lower figure) suppliers. Values of 6;; are shown on the
left axis; values of 0;2 are shown on the right axis.

The results indicate that the best estimates range from
—3.9% (—2.3%) to 2% (2.2%) for 6;;, and from —1%
(—0.4%) to 2% (1.3%) for ;5 for the case of N = 5 (N = 10)
suppliers. The best estimates, which the Algorithm is designed
to obtain, are reasonably close to the true cost parameters,
and hence, they are expected to exhibit good out-of-sample
performance. In fact, even the average estimates over the
10,000 iterations are not too far from the true cost parameters.

Next, we evaluate the out-of-sample performance of the
best cost estimators using the test dataset (100 observations,
different from the 200 observations that were used for the
training and validation datasets).

C. Out-of-Sample Performance

For each observation (i.e., value of @ and &) of the test
dataset, we compare the equilibrium bids using the estimates
of @; with bids derived using the true costs 6;, and we
calculate the discrepancy (d) — using (12) with M, = 1.
We summarize the results (average discrepancy — in absolute
figures, and its standard deviation) in Table I. In Fig. 4, we
illustrate the values of the discrepancy for each observation of
the test dataset for the case of N = 5 suppliers.

The results in Table I and Fig. 4 indicate a satisfactory
out-of-sample performance. In fact, the average discrepancy
is lower than the best achieved over the validation set. The
reason is that the validation dataset contains noise, whereas
the test dataset is a “clean,” free of noise setup.
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TABLE I

OUT-OF-SAMPLE PERFORMANCE OF BEST C(

http://dx.doi.org/10.1109/TSG.2019.2891747

Suppliers  Avg. Discrepancy (d)
2 0.086
3 0.047
4 0.052
5 0.063
10 0.104
%0 [e ]
28
26
_Hre o ° o ’
22
8 200 ° ° ¢ L4
o ° °
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Fig. 4. Discrepancy of bids using the best cost estimar
(N = 5 suppliers).

We then take a closer look at the equilibrium bids and
profits. We consider 3 instances of demand and fuel price:
(@A Q =45 ¢6=8,(b) Q=75 &=20,and (c) @ = 110,
& = 35. Note that instance (b) refers to the mean demand and
mean fuel price of the past bids, whereas instances (a) and (c)
contain values that are outside the intervals used for generating
the past bids, i.e., that fall outside the range of previously
observed values. For each instance, we list the discrepancy
values (in absolute figures) in Table II.

TABLE I
DISCREPANCY OF EQUILIBRIUM BIDS (ESTIMATES VS TRUE COSTS)

Instance (a)

Instance (b)

Instance (c)

Suppliers Q =45,£=8 Q=75¢§=20 Q=110,£=35
2 0.154 0.037 0.278
3 0.048 0.041 0.114
4 0.104 0.035 0.111
5 0.062 0.059 0.140
10 0.064 0.100 0.162

We show the equilibrium bids (¢x;) for the three instances,
and for N =2, 3, 4, 5 and 10 suppliers, in Fig. 5.

From Fig. 5 we see that the difference between the equilib-
rium bids using the estimates compared to the ones using the
true costs is very small. For example, for the case N = 5
suppliers, the difference ranges from —0.135 to 0.047 for
instance (a), from —0.074 to 0.133 for instance (b), and from
—0.076 to 0.351 for instance (c). The differences reported
as percentages range from —1.1% to 0.4%, from —0.3% to
0.6%, and from —0.2% to 1%, for instances (a), (b), and (c),
respectively.

Lastly, we provide in Table III the total profits for the
three instances, calculated using (6); the profits using the
estimated costs are shown first and the profits using the
true costs follow in parenthesis for comparison. Apart from

42
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Fig. 5. Equilibrium bids using true costs and estimates for instances (a), (b)
and (c) and N =2, 3, 4, 5, and 10 suppliers (setup with noise).

the expected behavior of total profits decreasing when the
number of supplier increases, and total profits increasing with
increasing demand, the results also show that the differences
using the estimated costs are very small (in fact the relative
differences are within 5%).

TABLE III
TOTAL PROFITS USING ESTIMATES (VS TRUE COSTS)

Instance (a) Instance (b) Instance (c)

Suppliers Q =45,£=8 Q=75¢(=20 @Q=110,£=35
2 188.8 (181.7) 516.0 (518.7) 1122.5 (1151.0)
3 81.3 (80.4) 230.6 (233.7) 525.7 (537.5)
4 51.5 (50.3) 150.8 (150.0) 358.4 (361.1)
5 34.5 (36.4) 113.5 (111.7) 294.9 (283.6)
10 15.1 (15.3) 61.4 (58.3) 206.0 (195.8)

D. Sensitivity Analysis

In this subsection, we perform sensitivity analysis with
respect to the level of noise, the number of available observa-
tions, and the number of iterations. As a base case, we consider
the case for N = 5 suppliers.

1) Noise Level: As already mentioned, introducing noise
in the past bids can be thought of as introducing errors in
obtaining the past bids from the available or estimated market
data. In the previous subsections, we assumed a noise level of
1%; in this subsection, we explore higher noise levels (2%,
3%, 4%, 5%, and 10%), and we present the results for the
performance on the validation dataset (discrepancy vs. MAPE)
in Fig. 6.

The best discrepancy achieved ranges from 0.116 (noise
level 1%) to 1.204 (noise level 10%). MAPE values range from
1.75% to 10.46%. The results verify the expected behavior,
i.e., discrepancy and MAPE increase with the noise level. They
also verify that good performance in the validation dataset
(low discrepancies) is associated with good estimators (low
MAPE), under all noise levels. Table IV presents the out-of-
sample performance under various noise levels. The results
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Fig. 6. Validation dataset performance, N = 5 suppliers, various noise levels.

are in good agreement with the ones presented in Table I.
They also indicate low average discrepancies, which increase
with the noise level. Note that at high noise levels (see e.g.,
10%) the standard deviation becomes low, indicating that the
discrepancy is mostly affected by the noise.

TABLE IV
OUT-OF-SAMPLE PERFORMANCE OF BEST COST ESTIMATORS, N = 5
SUPPLIERS, VARIOUS NOISE LEVELS

Noise Level ~ Avg. Discrepancy (d)  Std of d
1% 0.063 0.0220
2% 0.152 0.0373
3% 0.219 0.0802
4% 0.303 0.0895
5% 0.380 0.1210
10% 0.614 0.0181
0.15
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Fig. 7. Out-of-sample performance of best cost estimators (average dis-
crepancy o), N = 5 suppliers, noise level 1%, various numbers of past
observations.

Not surprisingly, and as predicted by Thm. IV.1, Fig. 7
shows that the out-of-sample performance improves with the
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number of available past observations. From Thm. IV.1 we
deduce that as the number of past observations M increases,
the probability that our estimates él, cee Oy yield an equi-
librium that is close to the true one increases. This is due to
the fact that, as shown in the Appendix (cf. Egs. (14) and
(15)), n decreases with the number of past observations. As
a result, increasing the training sample size could lead to a
small discrepancy between computed and true bids, and thus
an improved out-of-sample performance, which is consistent
with Fig. 7. Interestingly, even with 20 available observations,
the performance discrepancy is reasonable. We also checked
the average discrepancies (out-of-sample performance) for the
various noise levels with only 20 observations and the results
are also good; average discrepancies range from 0.107 to 0.852
(increasing with the level of noise) with standard deviations
that range from 0.0241 to 0.0644.

3) Number of Iterations: Last but not least, we elaborate
on the selection of the maximum number of iterations, i.e.,
the termination condition. Thm. V.1 yielded a rigorous result
that provides guidance on how to select the iteration limit.
Here, we numerically verify that a small number of iterations
is sufficient to provide some good enough estimators.

0.3
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> o o o °o0
é 0.2 o &° o OO O&o & DOO ) OO o E o QDOoz:» @
5 015 oo e o o7g® P° o9
é 0% 6 o I o, ) w 0 oo o % o
A o1

0 20 40 60 80 100
Iterations

Fig. 8. Discrepancy values calculated in the validation dataset (Step 7 of
the Algorithm) at each iteration (shown for the first 100 iterations), N = 5
suppliers, noise level 1%.

In Fig. 8, we show the values of the discrepancy calculated
in the validation dataset at each iteration k, for the case of
N =5 suppliers with noise level 1%. For ease of exposition,
we plotted the first 100 iterations of the algorithm (out of
the 10,000). The results indicate that good enough estimators
(with low discrepancy) can be obtained early in the process.
In fact, in the first 100 iterations, we observed 7 instances
with discrepancies that are less than 10% higher than the best
achieved (which in our tests was 0.116). We elaborate on this
indication in the following figure.

Fig. 9 shows the maximum average discrepancy (o)
computed over the top x% of the iterations ranked in ascending
order of discrepancy computed over the same test dataset. For
instance, for the top 1%, i.e., the top 100 iterations out of
10,000, the worst achieved out-of-sample performance was an
average d = 0.100 with ¢ = 0.0167.

Lastly, we investigate the relationship between discrepancy
values and the total profits. In Fig. 10, we show the values of
the discrepancy and the total profits calculated in the validation
dataset at each iteration, for the case of N = 5 suppliers, M =
200 past observations with noise level 1%, and MaxIter =
10, 000 iterations. It can be seen that the larger the discrepancy
is, the smaller the total profits, which validates the use of the
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Fig. 9. Out-of-sample performance of cost estimators (maximum average
discrepancy *+o), N = 5 suppliers, noise level 1%, top x% (x-axis) of
iterations (ranked in ascending order of discrepancy).

discrepancy as a performance metric in identifying the best
cost estimators.
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Fig. 10. Total profits vs. discrepancy values calculated in the validation
dataset, N = 5 suppliers, noise level 1%, 200 observations, 10,000 iterations.
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E. Comparison with the Method in [15]

In this subsection, we compare the performance of our
approach with the method introduced in [15], which assumes
that the bidding coefficients of any rival supplier follow a
bivariate normal distribution whose mean and covariance could
be inferred from the past observed bids. The profit maximiza-
tion problem for a single supplier ¢ is then reformulated to
involve only «; and 3;, with the market clearing price R and
the production level P; evaluated at the mean bids of the rival
suppliers.

We note that [15] does not estimate rivals’ cost functions; it
calculates the bids using as input the mean and covariance of
rivals’ bidding coefficients. In our setup, since we assume that
the bidding slope S is known, only the mean and variance of
a need to be inferred from the historical data. For the needs of
our comparisons, we use the noisy setup with 1% noise level.

We evaluate the performance of [15] on the test dataset
(that contains 100 equilibrium bids). The average discrepancy
between the solution obtained using [15] and the equilibrium
bids on the test dataset is shown in Table V (the differences
with the values presented in Table I that are obtained using our
approach are shown in parentheses). The results show that [15]
leads to significantly higher discrepancies (as well as higher
standard deviations), indicating that our approach obtains a
more accurate prediction of the bids.
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TABLE V
AVERAGE DISCREPANCY OF BIDS ON THE TEST DATASET USING [15]
(DIFFERENCES WITH TABLE I)

Suppliers  Avg. Discrepancy (d) Std. of d
2 1.406 (+1.32) 0.7891 (+0.73)
3 1.026 (+0.98) 0.5709 (+0.55)
4 0.818 (+0.77) 0.4551 (+0.44)
5 0.681 (+0.62) 0.3793 (+0.36)
10 0.372 (+0.27) 0.2071 (+0.19)

We then take a closer look at the bids and profits by
considering the 3 instances illustrated in Section VI-C. In
Table VI we list the discrepancy of bids obtained using [15]
(in parentheses we show the differences with the values listed
in Table II). The results show that for instance (b), which
represents instances that have been constantly observed in the
past, [15] achieves a comparable performance with our ap-
proach, and occasionally even lower discrepancies. However,
the performance of [15] is much worse for instances (a) and
(c), which contain values that were outside the range of past
observations. The reason is that [15] implicitly assumes that
rivals’ bidding behavior is similar to what has been observed
in the past, which results in a large bias when a new, unseen
scenario occurs. By contrast, through estimating rivals’ cost
functions from the past bids, our approach acquires more
information, and exhibits a stronger out-of-sample inference
capability that guarantees a low estimation bias for every pos-
sible scenario. Interestingly but not surprisingly, [15] achieves
better results when the number of suppliers is large, in which
case the bids are very close (due to competition), see e.g.,
Fig. 5.

TABLE VI
DISCREPANCY OF BIDS USING [15] (DIFFERENCES WITH TABLE II)

Instance (a) Instance (b) Instance (c)

Suppliers Q=456=8 Q=75¢(=20 Q=110¢=235
2 3773 (43.62)  0.048 (+ 0.01) 17776 (+4.50)
3 2487 (+2.44)  0.050 (+0.01) 3211 (+3.10)
4 1923 (+1.82)  0.043 (+0.01) 2.497 (+2.39)
5 1.581 (+1.52) 0.037 (-0.02) 2.057 (+1.92)
10 0.849 (+0.79) 0.021 (-0.08) 1.108 (+0.95)

In Table VII we list the total profits for the bids derived
using [15], and we show in parentheses the differences with
the values in Table III obtained using the cost estimates. Recall
that the profits obtained using the cost estimates are very close
to the profits obtained using the true costs (within +/- 5%).
For instance (b), the two methods obtain similar profits. For
instance (c) which represents higher demands and fuel prices,
our approach achieves much higher profits. The opposite is
true for instance (a), which represents lower demands and fuel
prices. This is an interesting result, which is explained by the
fact that the bids generated using [15] are biased by the mean
past bids. Hence, they tend to be values of past observations,
i.e., they are inflated for the instances of lower demands and
fuel prices, and they are reduced for higher demands and fuel
prices. More specifically, the values of the equilibrium bids
are about 25% higher in instance (a), and about 12% lower in
instance (c) compared to the ones shown in Fig. 5. Of course,
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in instance (a) where the bids (and hence, profits) are inflated,
the conditions are ripe for a new supplier to come in, underbid,
and capture significant market share.

TABLE VII
TOTAL PROFITS OF ESTIMATED BIDS USING [15] (DIFFERENCES WITH
TABLE III USING ESTIMATES)

Instance (a) Instance (b) Instance (c)

Suppliers Q =45,£=8 Q=75,§=20 @Q=110,£=35
2 350.2 (+161.40) 515.3 (-0.70) 636.0 (-486.50)
3 192.4 (+111.10) 230.0 (-0.60) 186.2 (-339.50)
4 137.1 (+85.60) 146.7 (-4.10) 87.0 (-271.40)
5 107.7 (+73.20) 108.9 (-4.60) 57.4 (-237.50)
10 53.7 (+38.60) 56.8 (-4.60) 73.7 (-132.30)

In conclusion, our approach possesses a stronger out-of-
sample inference capability attributed to the estimation of
the cost functions. The method proposed in [15] ignores the
interaction among suppliers, assumes a normal distribution and
uses only the mean values of the past bids to infer rivals’
behavior, which accounts for its unsatisfactory performance
in new, unseen scenarios.

VII. EXTENSION TO LOCATION-DEPENDENT PRICES

So far, we assumed competition among suppliers in uncon-
gested networks. Indeed, several day-ahead electricity markets
clear ignoring network congestion. In the instance of such day-
ahead market rules, the system operator adjusts the generation
dispatch to observe line flow capacity constraints and ensure
secure and reliable operation.

In U.S. markets, however, the transmission system represen-
tation has been part of the standard market design for many
years, with resulting “Locational Marginal Prices” (LMPs)
representing the marginal cost at each node of the transmission
system. In practice, without entering in a detailed analysis
of how LMPs are formed, we note that “price islands” may
characterize clearing prices, differing only slightly to reflect
varying loss factors.

Our method appears to assume away the fact that network
connected markets result in location dependent clearing price
differentials driven by (7) small effects of location-specific
line loss contributions, but also, (i) significant contributions
during network congestion events. It can capture and address,
however, significant congestion-caused differentials by detect-
ing market-splitting occurrences that result in “price islands”
with essentially homogeneous prices within each island. Al-
though this limits the number of relevant observations when
price islanding occurs, it utilizes the unusually high or low
price events associated with congestion.

Our approach applies to price islands where congestion is
a result of generators outside of the relevant island, which
do not set the price and, hence, are not part of our analysis.
In this context, the market clearing price in each island s is
Ry = «a; + BiP;, © € Zs, where Z; is the set of marginal
suppliers in island s. The residual demand in each island is
Qs = Zigs P;. Similarly to (2), the solution for island s, in
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terms of price and quantity, is
Qs+ Vi, §
1 )
Z'LGIS Bi

Pi(as’ﬂs;Qs) _ Rs(ab716é7Qb) — Oy

where o, 3, refer to suppliers in island s.

In the forward problem, the profit of the suppliers in each
island is therefore straightforwardly defined. Considering the
inverse problem, we note that the past bids may contain both
congested and uncongested instances. The set of marginal
suppliers may be different in each instance, and furthermore
the islands in the congested instances may be different. But
in either case, our approach can handle these different sets,
since for each observation j, we can have different price
islands s € S;, where S; is the set of price islands for the
j-th observation, and for each price island of that observation
we have a set of marginal suppliers denoted by Z7. Hence,
the inverse optimization problem in (9) is applied for each
price island s for observations j within this island, and for
the respective set of marginal suppliers for the specific island.
Essentially, the uncongested case represents one single island
(and can still be described by the above notation).

Rs(aswgs; Qs) =

, 1 € Ly,

VIII. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we proposed an inverse optimization method
to estimate electricity suppliers’ cost functions in the day-
ahead electricity market based on historical bidding data. The
problem of computing optimal bidding strategies can be seen
as an equilibrium computation problem given the estimated
payoff functions. We applied a “random search” algorithm to
estimate the cost function parameters of electricity generators;
specifically, the parameters that are proportional to their gen-
eration output. The algorithm essentially seeks cost function
parameters (among multiple possible values compatible with
the past data) which have good out-of-sample generalization
performance. We established strong, exponential-type proba-
bilistic convergence guarantees for this algorithm. Extensive
numerical experimentation verifies that one can recover accu-
rate estimates of the cost function parameters, which, in turn,
allows generators to bid with knowledge of how competitors
would respond. Even though we considered a simple set-
ting involving no congestion or transmission network effects,
we discussed an extension of the methodology to location-
dependent prices.

Regarding future research directions, it would be of interest
to develop non-parametric approaches that do not require to
assume a specific parametric form for the cost functions.
Finally, in addition to estimating competing generators’ cost
functions, our methodology is particularly useful in estimating
the underlying cost functions of market participants who bid
synthetic or virtual generators corresponding to contracts with
either physical generation owners or a portfolio of demand-
response-capable consumers.
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APPENDIX
PROOF OF THM. V.1
Proof: Assume that the optimal solutions to the in-

. . ~k ~k .
verse problem at iteration k are 6, ...,0,, and the optimal

value is z,. We will first show that the function f*(a) £

~k ~k .
(_V1¢1(01 O Q7 E)a ) _VNQSN(ON? «, Q7 E)) 18 Strongly
monotone. For simplicity we suppress the dependence of f
on 6;,Q and &. By definition, a function f*(c) is strongly
monotone if 3y > 0 such that

(ff(en) = fF(a2)) (o1 — @) > yllar — a3, Veur, s

Plugging in the formula for V,;¢,(0;; a, Q, £), we have:

FFlan) = fFag) =
1- 3 1- 5%
5 o
where oy ;, a2 are the ¢-th elements of «; and «, respec-
tively. Using (1 — 32)/B; > 1, Vi, it follows
(ff (1) = f¥(02)) (01 — @) > 7llos — a3

With the strongly monotone function f k (at), we can use [22,
Thm. 8], which shows that for any 0 < § < 1, with probability
at least 1 — n with respect to the sampling,

||a$al - din”? < \% Zk/ ) v] = 13 . -7Mva

where zj is the optimal value of the inverse optimization
problem (9) at iteration k. Using the norm inequality

||a€/dl - dim”l S v NHa{/al - d\]/al”Q’

(1 —a21),..., (1N — 042,N)>,

we obtain that at iteration k, the discrepancy satisfies:
d < V/z/(N7) < VE/ (N7),
which yields that
P(d < V/€/(N7y)) 21—n.

Since the iterations are independent from each other, setting
p 2 P(d < /¢/(Nv)), and using (13), we have:

13)

]P’(Algorithm terminates after T' iterations) =(1-pT <t

Therefore, for any small 0 < € < 1, if the probability that the
algorithm terminates after 7" iterations is below €, we need

T > (loge)/(logn).
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We next show that as the training sample size M; increases,
the number of iterations that are needed decreases for a large
enough M,. First note that

2N
M\ o —i
n=y < Z-t>5 (1— o)™
=0

QXNI(Mt—HU...Mt
: il

§'(1— )Mt

(14)
0
(M)’
7!

)
Il

IA

8 (1 — §)Me—.

(e}

i=

Define h;(M;) £ %!‘)iéi(l —0)Me=i and take its derivative:

M, i—1 ) M,
((zi)]_)léz(l — 5)1\/@71 <1 + Tf log(l — 5))

' (15)
We see that for a large enough M;, Vh;(M,;) < 0,Vi, since
log(1 — §) < 0. Therefore, as M; increases, 1 decreases, and

the number of iterations, i.e., (log €)/(logn), decreases as well.
|

Vhi (M) =
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