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ABSTRACT

Background: In an era of “big data,” computationally efficient and privacy-aware solutions for large-scale
machine learning problems become crucial, especially in the healthcare domain, where large amounts of
data are stored in different locations and owned by different entities. Past research has been focused on
centralized algorithms, which assume the existence of a central data repository (database) which stores and
can process the data from all participants. Such an architecture, however, can be impractical when data are
not centrally located, it does not scale well to very large datasets, and introduces single-point of failure risks
which could compromise the integrity and privacy of the data. Given scores of data widely spread across
hospitals/individuals, a decentralized computationally scalable methodology is very much in need.
Objective: We aim at solving a binary supervised classification problem to predict hospitalizations for cardiac
events using a distributed algorithm. We seek to develop a general decentralized optimization framework en-
abling multiple data holders to collaborate and converge to a common predictive model, without explicitly
exchanging raw data.

Methods: We focus on the soft-margin [;-regularized sparse Support Vector Machine (sSVM) classifier. We de-
velop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving the large-scale sSVM problem in a
decentralized fashion. Such a distributed learning scheme is relevant for multi-institutional collaborations or
peer-to-peer applications, allowing the data holders to collaborate, while keeping every participant's data pri-
vate.

Results: We test cPDS on the problem of predicting hospitalizations due to heart diseases within a calendar
year based on information in the patients Electronic Health Records prior to that year. cPDS converges faster
than centralized methods at the cost of some communication between agents. It also converges faster and
with less communication overhead compared to an alternative distributed algorithm. In both cases, it
achieves similar prediction accuracy measured by the Area Under the Receiver Operating Characteristic
Curve (AUC) of the classifier. We extract important features discovered by the algorithm that are predictive
of future hospitalizations, thus providing a way to interpret the classification results and inform prevention
efforts.

1. Introduction

1.1. Motivation

design efficient healthcare policies, detect disease causes, provide
medical solutions that are personalized and less costly, and finally,
improve the quality of care for the patients. We are motivated by
problems in the medical domain that can be formulated as binary su-

As the volume, variety, velocity and veracity (the four V’s) of the pervised classification problems and solved using Support Vector
clinical data grow, there is greater need for efficient computational Machines; the applications range from prediction of the onset of dia-
models to mine these data. Insights from these techniques could help betes [1,2], prediction of hospitalizations for cardiac events [3],
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prediction of medication adherence in heart failure patients [4], and
cancer diagnosis [5], to automated recognition of the obstructive sleep
apnea syndrome [6].

Results in the literature suggest that sparse classifiers (i.e., those
that rely on few features), have strong predictive power and gen-
eralize well out-of-sample [7,8], providing at the same time inter-
pretability in both models and results. Interpretability is crucial for
healthcare practitioners to trust the algorithmic outcomes. Another
major concern, especially in the medical domain, is the privacy of the
data, attracting recent research efforts [9-11]. Two well-known ex-
amples of privacy breaches are the Netflix Prize and the Massachusetts
Group Insurance Commission (GIC) medical records database. In both
cases, individuals were identified even though the data had been
through a de-identification process. This demonstrated that one’s
identity and other sensitive information could be compromised once a
single center has access and processes all the data. Especially under
the Precision Medicine Initiative [12], in the near future, these data
could include individuals’ genome information, which is too sensitive
to be shared.

We are particularly interested in addressing three challenges tied to
healthcare data: (1) data reside in different locations (e.g., hospitals,
doctors’ offices, home-based devices, patients’ smartphones); (2) there
is a growing availability of data, which makes scalable frameworks
important; and (3) aggregating data in a single database is infeasible or
undesirable due to scale and/or data privacy concerns. In particular,
even though maintaining all data in a central location enables the im-
plementation of anonymization measures (e.g., k-anonymity [13]), it
introduces a single point of attack or failure and makes it possible for a
data breach to expose identifiable data for many individuals. Further-
more, establishing a central data repository requires significant infra-
structure investments and overcoming information governance hurdles
such as obtaining permissions for storing and processing data. Instead, a
decentralized computational scheme that treats the available data as
part of a federated (virtual) database, avoiding centralized data col-
lection, processing, and raw data exchanges, may address the above
challenges.

1.2. Aim

The focus of this paper is to develop a distributed (federated)
method to predict hospitalizations during a target year for patients with
heart diseases, based on their medical history as described in their
Electronic Health Records (EHRs). The records of each patient may lie
with them in the patient’s smartphone, or may be stored in the EHR
systems of different hospitals. In all cases, the collaboration of different
parties (agents) is required to develop a global hospitalization predic-
tion model. We will formulate the problem as a binary supervised
classification problem and we will develop a distributed soft-margin £;-
regularized (sparse) Support Vector Machines (sSVM) algorithm. We
consider SVMs because they are effective classifiers [14] and perform
well in predicting hospitalizations [3]. Furthermore, sparse classifiers
can reveal relatively few predictive features and, thus, enable inter-
pretation of the predictions [15].

1.3. Health application

We focus on cardiovascular conditions because they comprise a
significant portion of morbidity and mortality, as well as, hospitaliza-
tion in the U.S. and worldwide. In the fact, in the U.S. alone, more than
30% (equal to $9 billion) of hospitalizations deemed preventable are
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due to cardiovascular conditions [16]. For many decades, the research
interest has been focused on understanding the pathophysiology of
these conditions and treating them effectively. The efforts have now
shifted to the understanding of the disease process and the early pre-
vention. This goal has obvious public health implications, but also so-
cioeconomic significance. It is well known that preventing the pro-
gression of the disease process by intensified follow up and treatment
can result in long-term stability and improved survival of the patient.
Hospitalization is a well-known negative prognostic factor for cardio-
vascular disease outcome. One critical step in the effort to halt the
disease process is the understanding of the etiology and modifiable risk
factors of hospitalization.

1.4. Main contributions

We summarize our main contributions below:

We develop a federated optimization scheme (cPDS) for solving the
sparse Support Vector Machine problem. Advantages include scal-
ability and the fact that it avoids raw data exchanges, which is
important in healthcare. We also demonstrate that cPDS has im-
proved convergence rate and favorable communication cost com-
pared to various centralized and distributed alternatives.

e We apply our new methodology to a dataset of de-identified
Electronic Heart Records from the Boston Medical Center, con-
taining patients with heart-related diseases. Each patient is de-
scribed by a set of features, including demographics, diagnoses,
prior admissions, and other relevant medical history.

e We use cPDS to differentiate between patients that are likely and not
likely to be hospitalized within a target year and report and discuss
the experimental results.

o The proposed cPDS framework is general and can be applied to any

learning problem with a “nonsmooth + nonsmooth” loss function

objective. Such problems can be found in machine learning, where
we aim to minimize functions with non-smooth regularizers, or in
distributed model predictive control.

2. Material and methods
2.1. Objective and background

We consider a dataset extracted from an EHR system, containing
patients’ demographic data such as age, gender, and race, physical
characteristics such as weight, height, Body Mass Index (BMI), medical
history captured by diagnoses, procedures, office visits, and a history of
drug prescriptions, all captured by a feature vector ¢, € R?, for each
patient i = 1, ..., n. We are interested in predicting whether or not a
patient will be hospitalized in a given year, for instance in the next
calendar year from the time the record is being examined. We denote a
hospitalization by a label [; = + 1, and a non-hospitalization by a label
[; = — 1. Using machine learning terminology, this is a binary classifi-
cation problem. Using the popular Support Vector Machine (SVM)
classifier [14], we seek to find a hyperplane that maximizes the margin
(“distance”) between the two classes, while allowing a few points to be
misclassified (as shown in Fig. 1). Further requiring that a few features
are used, we end up with a sparse Support Vector Machine (sSVM)
problem:
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Fig. 1. Support Vector Machines.
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where (8, B,), B €RY B, €R, identifies the hyperplane/classifier;
hi(B, By) = max{0, 1 — [;(p/B + fB,)} is a hinge loss function for sample i;
7 and p are penalty coefficients; ydenotes transpose, and the [;-norm
term |||, serves to induce sparsity.

In the distributed context, we are interested in a setting where each
agent' holds a part of the data/samples, namely, a subset of
{o; i=1,.,n} and {l;, i = 1,..,n}, and would like to collaborate with
others to solve Problem (1) for  and f3,. Due to scalability, regulatory,
and privacy reasons, agents are not willing to share their raw data with
each other or with a processing center. We will develop a decentralized
algorithm that avoids raw data exchanges.

2.2. Related literature

Problem (1) involves minimization of the sum of two convex but
non-smooth terms, i.e., the loss function and the penalty terms
0. 57]|8I% + pllll,. When all the data are stored and computations are
executed in a centralized unit, we can solve the problem using the
interior point (also referred to as barrier) method or the classical
subgradient method (SubGD) [17]. Another approach with o0(1/vk)
convergence rate that can solve the sSVM and allows a decentralized
implementation is the incremental subgradient method (IncrSub)
[18]. However, IncrSub needs to deploy vanishing step size to reach
exact convergence and only works over networks with a ring struc-
ture. A recent fully decentralized scheme that has made a significant
improvement over the IncrSub is the linear time-average consensus
optimization algorithm (LAC) [19]. The LAC algorithm is an iterative
algorithm that takes smalls steps towards the optimal solution at
each iteration utilizing a fixed but small step size and is shown to
have 0(1/vk) convergence rate. A good feature of the LAC is that it
improves algorithmic scalability in the size of the network.

2.3. The cluster primal dual splitting

Next, we introduce the general decentralized primal-dual splitting
scheme we have designed for solving “nonsmooth + nonsmooth” op-
timization problems like (1).

Let us assume there is a network of agents, each of which is holding
part of the data and they all collectively would like to solve (1) uti-
lizing all data. We consider two scenarios: each agent is holding
multiple samples (semi-centralized); or one sample (fully-decen-
tralized). In our healthcare context, agents in the first scenario are

1 We will use the generic term “agent” to represent each data/computation center. The
term could refer to institutions (hospitals), or even individuals’ (patients’) devices such as
phones, sensors, etc.
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Table 1
Theoretical comparison of various methods that solve the sSVM problem.

Method Decentralized?  Per iteration e-accuracy
complexity iterations

Subgradient Descent X O(nd) 0(1/€?)

Incremental X 0o(d) 0(1/¢?)
Subgradient

Linear Average N 0(n? + nd) 0(1/¢?)
Consensus (LAC)

Cluster Primal Dual N o((n + m?)d) o(1/¢)

Splitting (cPDS)

hospitals that process the data of their patients only and exchange
messages with other hospitals to jointly solve (1). In the second sce-
nario, each patient maintains personal data (e.g. in a smartphone) and
exchanges messages with other patients to jointly solve (1). A com-
bination of these two scenarios is also possible. In either scenario, the
m agents are connected through a communication network, which is
modeled by an undirected graph ¢ = (77, €), where 7" = {1,2,...,m} is
the vertex set and ¢ is the edge set. Throughout the paper, we make the
assumption that (A1) the graph ¢ is connected; and (A2) information
exchange happens only between neighbors.

In the decentralized environment, Problem (1) can be reformulated
into the following m-cluster splitting formulation:

m
min (x) + £(y;
Jnin, jZl CACORSVAY

X) = X=... =Xy,

s.t.
(2)

m

where each agent j holds n; samples (such that n = z n;) and main-
tains its own copy of the model parameters jtol be estimated
%= (B, By) € R?+1, Let us define a vector X = [X;...;X,,] € R"W@+D o
compactly represent all the local copies; a vector variable
Y = [y;;--3¥,,] € R" where each block y; = [)ﬁl;...;ij] € R% is handled
by agent j, and Vi = lﬁ(goJ.iTﬁj + [Ejo), with I, @;; being the label and
features of the i-th sample held by agent j, respectively. This relation-
ship between x; and y; is described by the first set of constraints, with I;
some locally produced/tuned pre-conditioner to ensure the fast con-
vergence of the cPDS algorithm. The function fj(y;) contains all the
hinge loss functions at agent j while the function g;(x) includes the
regularizers over agent j. The consensus among agents is achieved
through the second group of constraints in (2). To solve the cluster
sSVM, or its more general form (2), in a decentralized fashion, we
propose the following algorithm (cPDS), which finds the separating
hyperplane through updates on parameters of both the primal problem
(2), i.e., X, yj, and its corresponding dual problem, i.e., q; A;. The
matrices I'; and ©; serve as algorithmic parameters that accelerate the
convergence, and W = [wj] is a doubly stochastic weight matrix of the
graph (see definition in the Appendix A). In the algorithm, the norm
IIxllolxlle/lxlle;is the @;weighted norm of x defined as lIxllg; = |/x'@x
and ./j denotes the neighboring nodes of node j. We emphasize that the
update of the classifier x; for each agent is implemented using only the
local information, which constitutes a salient advantage of cPDS com-
pared to other methods in the literature.
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Cluster PDS Method

INPUT: V],
Prepare data/objectives f; and g;. Set parameters I and ©;.

INITIALIZE: Vj,

REPEAT
x —update (locally): Vj

y- update (locally): Vj

yitt = arg min{f;(y;) + (@, =Ly)) + 05lly; = Al 3.
J
q-update (locally): Vj

af" = af + X" -y,

A-update (requires information exchange): Vj
k+1 _ gk k+1 _ gkt
A=A X = ey Wik

UNTIL specific criteria are met.

x}] € R4*1, y](-’ € RY, q]Tl =0, q? = [‘].(A}xj‘? - yl‘.’), 11,—1 = 0and Aj‘-’ = x}] - z

iEN;UL)

X1 = argmin{(2qf — qf 7", ;A;X;) + g;(x)) + (24] — 4771, x;) + 0.5]1x; — x[ 113 3.
J

0
WjiX(.

Algorithm 1. The cluster Primal Dual Splitting Algorithm (cPDS).

2.4. Theoretical comparison of methods

Table 1 shows comparative results that illustrate the trade-offs be-
tween different methods when applied to the sSVM problem. “Per
iteration complexity” measures how many scalar multiplications are
needed per iteration. “e-accuracy iterations” measures how many
iterations are needed to reach e-accuracy. The details for applying cPDS
to sSVM can be found in the Appendix A.

2.5. Performance evaluation

We split the patients in our dataset into two sets: a training and a
test set. Training patients are used to train the algorithm. In order to
evaluate the accuracy of the predictions, we use the trained classifier to
predict the label of patients (whether or not will be hospitalized) in the
test set. We measure the performance of cPDS in terms of the Area
Under the Receiver Operator Characteristic (ROC) curve (AUC), which
plots the true positive rate (i.e., out of the hospitalized patients how
many were correctly predicted as hospitalized) versus the false positive
rate (i.e., out of the non-hospitalized patients how many were wrongly
predicted to be hospitalized). The true positive rate is also referred to as
sensitivity or recall and specificity is used to refer to one minus the false
positive rate. We also report the computation time, i.e., the cumulative
time needed at all nodes to train the model, and the communication
cost, which is defined as 2 times the product of the number of edges, the
dimension of the features, and the number of iterations. (Only the
coefficients of the features are exchanged with adjacent nodes.) Note
that the number of edges in the graph decides the amount of informa-
tion exchanged.

3. Data-results-discussion
3.1. Data description and preprocessing

The data used for the experiments come from the Boston Medical
Center and consist of Electronic Health Records (EHRs) containing the
medical history in the period 2001-2012 of patients with at least one
heart-related diagnosis between 2005 and 2010. The medical history of
each patient includes demographics, diagnoses, procedures, vitals, lab
tests, tobacco use, emergency room visits, and past admission records.

62

For each patient, we set a specific target year and we predict hospita-
lization during that year based on the prior medical history. We follow
the steps below to preprocess the data:

o Setting the target time interval to a calendar year. Based on preliminary
experiments, we observed that there is greater variability in the
results when trying to predict hospitalizations in periods of time
shorter than a year. Thus, we have designed our experiment to
predict hospitalizations in the target time interval of a year (January
1st-December 31st). We elected to use a calendar year after obser-
ving that hospitalizations occur roughly uniformly within a year.

e Selection of the target year. As a result of the nature of the data, the
two classes (hospitalized and non-hospitalized patients) are highly
imbalanced. To increase the number of hospitalized patient ex-
amples, if a patient had only one hospitalization throughout
2005-2010, the year of hospitalization will be set as the target year.
If a patient had multiple hospitalizations, a target year between the
first and the last hospitalizations will be randomly selected. 2010 is
set as the target year for patients with no hospitalization, so that
there is as much available history for them as possible. By this
policy, the ratio of hospitalized patients in the data set is 16.97%.

® Summarization of the features in the history of a patient. An effective
way to summarize each patient's medical history is to form four time
blocks for each medical factor with all corresponding records sum-
marized over one, two, three years before the target year and a
fourth time block containing averages of all earlier records. This
produces a 215-dimensional vector of features characterizing each
patient.

® Removing patients with no record. Patients who have no records be-

fore the target year are removed, since there is nothing on which a

prediction can be based. The total number of patients left is 45,579.

Splitting the data into a training set and a test set randomly. As is

common in supervised learning, the population of patients is ran-

domly split into a training and a test set. Since from a statistical
point of view, all the data points (patients’ features) are drawn from
the same distribution, we do not differentiate between patients
whose records appear earlier in time than others with later time
stamps. A retrospective/prospective approach appears more often in
the medical literature and is more relevant in a clinical trial setting,
rather than in our algorithmic approach. What is critical in our
setting is that for each patient prediction we make (hospitalization/
non-hospitalization in a target year), we only use that patient’s
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Table 2
Experimental comparison for various methods that solve the sSVM problem.
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Method Distributed? AUC Number of iterations Computation cost (sec) Communication cost
Subgradient Descent X 0.7667 1500 2055 N/A

Barrier X 0.7688 32 40,174 N/A

Incremental Subgradient X 0.7734 554 6.3485 N/A

Linear Average Consensus (LAC) \/ 0.7683 200 27,703 1.04e + 11

Cluster Primal Dual Splitting (cPDS) (m = 10, random graph) \/ 0.7806 100 544 2600

Table 3
Performance of cPDS for different number of agents m and different graph topologies.

Graph topology Number of hospitals Number of edges Number of iterations Computation time (sec) Communication cost AUC

Random 5 4 90 906 720 0.7738
Random 10 13 100 544 2600 0.7806
Cyclic 5 5 90 909 900 0.7736
Cyclic 10 10 250 1482 5000 0.7723
Fully connected 5 10 90 917 1800 0.7696
Fully connected 10 45 100 585 9000 0.7747

information before the target year.

e Normalization of the features. All predictors are standardized before
fed into our algorithm.

® Balancing the training set. During training, we oversample the posi-
tive class in order to make the two classes balanced.

3.2. Experimental results and discussion

The data are distributed between m hospitals connected through a
specific graph topology. The cPDS algorithm is considered to converge
if the normalized residual, which is defined as the I, norm of the dif-
ference between the cPDS and the sSSVM parameter estimates, is small
enough. Since we do not know the true parameter values, the solution
from solving sSVM with a centralized (barrier) method is used as a
substitute for the ground truth. We want to investigate the impact of
two factors on the convergence of cPDS:

1. The number of hospitals m € {5,10}.

2. The graph topology: (a) random graph generated by the
Erd§s-Rényi model, where two nodes are connected with a prob-
ability p; (b) cyclic graph, where nodes are connected in a closed
chain; (c) fully connected graph, where each node is connected with
every other node in the graph.

Table 2 shows the comparison between cPDS and the centralized
barrier method, the SubGD, the IncrSub descent and the LAC scheme.
For SubGD and IncrSub, we use the steplength rule for the diminishing
stepsize.” We defined in Materials and Methods the various perfor-
mance metrics we use. AUC for all methods is similar since they solve
the same problem. Just to provide a baseline, we note that using a
classifier based on a common risk factor used by cardiologists yields less
accurate predictions. Specifically, using the 10-year risk factor for
cardiovascular disease developed by the Framingham heart study [20],
and comparing that risk-factor to a threshold in order to classify, yields
an AUC of 0.56.

The computation cost reported in Table 2 reflects effort at all nodes
(or the single node for centralized schemes), so it depends on both the
number of iterations and the number of nodes (hospitals). On one hand,
the more hospitals there are, the longer the computation time. On the
other hand, the more edges in the graph, the less time needed for

2 Following the steplength rule, the diminishing stepsize in k-th iteration is set as
ax = ao/(HVg(xk)H + ¢€), where qo is an initial value of the stepsize and ¢ a very small
number.
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convergence because information reaches all nodes faster. The com-
munication cost measures the number of messages exchanged between
nodes (each message is a vector in R¢*!) and is mainly impacted by the
number of edges in the graph, which also depends on the number of
nodes. In the table, LAC is much more costly than cPDS because it uses a
fully distributed approach with n nodes, whereas cPDS uses a graph
with m < n nodes.

Table 3 considers only cPDS and shows the convergence time and
AUC for different combinations of m and graph topology. Fully con-
nected graphs have the most edges, and thus the highest communica-
tion cost. But the number of iterations needed for convergence is not
significantly smaller than others. In general, the more edges there are,
the faster the algorithm converges, since the information exchange
becomes faster.” We note that when the number of edges is “large en-
ough,” the number of iterations needed for convergence stays stable, in
other words, the convergence speed comes to be saturated. This is in-
carnated in the random graph topology. When m = 5, 4 edges lead to
saturation; and for m = 10, 13 edges are needed.

In Table 4 we summarize the important features identified by the
cPDS algorithm. We run cPDS for each of the six settings of Table 3,
averaged the coefficients corresponding to the various features (ele-
ments of the vector f8) over the six runs, and report the features with the
largest average coefficients. Note that all features are standardized, and
thus it is reasonable to identify important features based on the mag-
nitudes of the average coefficients.

It is interesting that the classifier identifies many of the diagnoses
and health events that are major public health problems and which
constitute common reasons for hospitalization with major economic
implications. Hypertension, increasing in parallel with obesity, cor-
onary artery disease, as it is identified indirectly by cardiac catheter-
ization, heart failure- a true epidemic as the population is getting older,
as well as, cardiac arrest are some of the most prevalent heart-related
diagnoses. It is, therefore, important to establish the ability of these
diagnoses to predict hospitalization and use such predictions as a tool to
prevent the disease process.

4. Conclusions

In this paper, we focused on developing a federated learning model
that is able to predict future hospitalizations for patients with heart-

3 Here, we define the convergence speed via the number of iterations needed for
convergence.
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Table 4
Important features.
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Important features

Average coefficients over 6 runs

Age
Factors — 1 year before the target year

year

Admission due to Cardiac Arrest — 1 year before the target year
Systolic Blood Pressure Measured — 1 year before the target year

Factors — 2 years before the target year

target year

Admission due to Cardiac Valve or Other Major Cardiothoracic Procedure - 2 years before the target

year

Diagnostic ultrasound of heart — 2 years before the target year
Admission for Acute and Subacute endocarditis — 2 years before the target year
Admission for Acute Myocardial Infarction — 2 years before the target year

Factors — 3 years before the target year

Diagnosis of Heart Failure — 1 year before the target year

Admission due to Other Circulatory System Diagnoses — 1 year before the target year

Admission due to Heart Failure — 1 year before the target year

Admission due to a Percutaneous Cardiovascular Procedure — 1 year before the target year
Admission for Cardiac Defibrillator Implant with Cardiac Catheterization — 1 year before the target

Diagnosis of Heart Failure — 2 years before the target year

Admission due to Other Circulatory System Diagnoses — 2 years before the target year
Admission due to Cardiac Arrest — 2 years before the target year

Admission due to a Circulatory Disorder Except Acute Myocardial Infarction — 2 years before the

Diagnosis of Heart Failure — 3 years before the target year

Admission due to Other Circulatory System Diagnoses — 3 years before the target year
Admission due to a Percutaneous Cardiovascular Procedure — 3 years before the target year
Admission due to Cardiac Arrest — 3 years before the target year

Admission for Acute and Subacute endocarditis — 3 years before the target year

224.03
225.63
204.14
183.09
168.53
145.78

144.96
136.71

162.20
139.12
127.59
184.57

175.84

137.40
129.07
120.73

178.02
158.67
170.34
155.05
135.91

related diseases using EHR data spread among various data sources/
agents. Our proposed decentralized framework, the cluster Primal Dual
Splitting (cPDS) algorithm, can solve the sparse Support Vector
Machine problem, which yields classifiers using relatively few features
and facilitates the interpretability of the classification decisions. cPDS
has improved convergence rate compared to various alternatives we
present. The method is applicable to any binary classification problem
with distributed data.

A major advantage of our formulation is the flexibility to address a
range of settings, from fully-centralized to fully-decentralized. We for-
mulate our motivating healthcare problem as a binary classification
problem. Information processing can happen either at the level of the
patients, e.g., through their smartphones, or at the level of the hospitals
that process data of their own patients. cPDS is a general framework
and can be applied to any problem that has the structure of minimizing
two non-smooth terms. A possible extension of this work could be the
analysis of cPDS when the graph that connects the agents is time-
varying.
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Summary table

What was already known

e Electronic Health Records (EHRs) can potentially be used to
assess a person’s health and predict future hospitalizations.
Some comprehensive risk metrics exist (Framingham risk
factor) to assess the risk of a major heart-related episode.
Centralized machine learning methods are typically used to
train predictive models (classifiers) from data.

What this study added to our knowledge

e Using the entirety of the EHR, it is possible to accurately
predict an individual’s hospitalization for cardiac events in
the following calendar year, improving upon the accuracy of
existing risk metrics (such as the Framingham risk factor).

e A new distributed learning framework has been developed to
solve the learning (classification) problem in a setting where
data reside with many agents, no raw data get exchanged,
and the agents collaborate to jointly learn the model (clas-
sifier). The distributed algorithms is more scalable than
centralized algorithms or earlier distributed methods.

The new learning framework is flexible to accommodate a

range of data aggregation levels at the nodes, from each

node holding a single data point (e.g., an individual EHR) to

a setting where each node maintains many data points (a

hospital maintaining all the hospital’s EHRs).

e The sparse classifiers produced by our method automatically
concentrate on relatively few features, facilitating the in-
terpretability of the classification results.
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Appendix A. The sparse Support Vector Machine (sSVM) Problem
(3) The sparse Support Vector Machine (sSVM) Problem

sSVM finds the classifier (8, $,), B € R% B, € R, by solving the following problem:

2

min 0.5|8 +C2 &+ x||B
B.Bo =1 |
s.t. &>0,V1,
L@B+pY=21-¢§, Vi (3)

The ||-||1 constraint in the above formulation is forcing the classifier B to be sparse. In the decentralized setting with m agents, problem (3) could be
reformulated into the following m-cluster splitting form:

min ¥ {Z?il [1-y;], + 0. 5711 ”z +p Hﬁ]Hl}

B:Bo
s.t. Vi Ui (@B + Bio)—y) = 0,V j, s
B, = B=-=B,;
51,0 = 52,o:~~':ﬁmo’

m
where each agent (hospital) j holds n; samples (such that n = E n), and y; =l [(p}lﬁ] + ﬁjo] The parameters vy;s are arbitrary nonzero scalar
j=1
constants and serve as algorithmic parameters.
Definition 1. [Doubly stochastic matrix] W = [wy] is defined to be a doubly stochastic matrix generated by the following the Metropolis rule on
g:

1

max{degree(i), degree(j)} + 1 if(i’ '}) €&,
wy = {0 if(i, j) ¢ Eandi # J,
1= 0 wy ifi = j.

ker”

Such rule allows each agent i to generate wy, Vj, by only using local information (its own and neighbors' degree information). Note we always
have —I,, < W< I, Let us also define L2(I,, — W) ® I4; and U £ /L. Here, ® denotes the Kronecker product of matrices and I,, the m x midentity
matrix. We note U has the same null space as that of L.

(4) Insights on the cPDS Algorithm

To get some insight on how the algorithm works, let us further write (2) into an even more compact form.
min  {g(x) + £(y)}
xy

st. T(Ax—-y) =0,
Ux = 0. (C))

We note that Ux = 0 is equivalent to x; = X5 = ... = X,, as long as the graph is connected.

We will make two more assumptions: (A3) The functions g: R™+) — R and f: R" — R are both proper, closed, and convex. (A4) The solution
set x* is nonempty and bounded. Assumption (A3) imposes a minimal requirement on the objectives to conduct convex analysis. Assumption (A4) is
obviously satisfied by the sSVM problem.

The augmented Lagrangian function of (4) is as follows

L=g® +f(y) +r'Ux + d'T(Ax-y),

where r and q contain the dual variables. The idea behind our proposed algorithm is based on minimizing the Lagrangian function with respect to the
primal variables x and y and the dual variables r and q. However, when doing so, the x — update is not implementable in a fully distributed setting.
This is the key limitation that cPDS is addressing and contributing to the literature.

Application of cPDS on £;-Regularized Support Vector Machines
We will show the details of applying the cPDS framework to solve the distributed sSVM problem. Assume that n samples of data are distributed

among m agents that want to collectively agree on a global classifier to separate the two classes. Each agent is holding n; samples and maintains a
copy (B, ) of the classifier parameters to be estimated. (8, §;,) are updated in each iteration of the method, using data locally stored at the agent j as
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well as information that the agent receives from its neighbors. Let ¢; € R? and I; € R be the features and the label of sample i in agent j accordingly,
and fj; be the corresponding hinge loss for that sample. gj contains the regularizers of parameters (ﬁj, /Sjo) for each agent j. Define a; = (I; Dii» 1;)), which
we will use later. In every iteration each agent updates x; = (§;, B;,) € Ré+1, y;€RY,q; € RV and 4; € R4+, Let us illustrate below the cPDS updates
that each agent is performing. For simplicity, in the implementation, we use ®; = ;15,1 where 6; is a positive scalar maintained by agent j locally.
Next we describe the updates over each agent j.

(5) x—update
' g 2 8 8 (8\[
1 A A A ;
k+1 pk+1y _ ; k_ k=1 J T k_ k=131 7V J J
B B = ar?_r;m Z ¥ (2q—q; Dal [/3-0] +o B +po|B| +Q@4=47) [5'0] +0.5 [ﬁ- ]— i 6;.
360 i=1 J X J J o ()

The simple form of the non-smooth g; allows us to get a closed form solution for this problem. Problem (5) can be decoupled into two problems,
one that finds ,’5’}‘“, whose solution is given by the soft thresholding function, i.e., Vt =1, ..., d,

Uje — p, ifue > p,
= sgn(w)(lu | — py = 0, ifluy | < u,
Wi + u, ifuy < — u,

7
o 2P — 1 k k-1 k k-1 k 3 k+1 : : fom.
with = Ts,\mu’ and u; = —HQJ_[Z Vili| 205 — g4 )qoﬁ + (24510 — Aita) — Gjﬁj] and one that finds j0+ , which has as an optimal solution:
i=1

S g ogk — gk=1] — k _ k-1 .gk
Zi:lyﬂlﬂ[iji i ) [Mf,dn Ai,d+1]+efﬁj0

*

Jjo 6
* y- update
nj 2
y}‘+1 = arg minz max{0,1 — y;} + <yﬁq}‘i, —;g,-> + % }'ji(lji%ﬁf“ + lﬂﬁjgcoﬂ _ yji) )
Yo i=1

To deal with the second non-smooth term, the hinge loss function, we consider three cases for each term: 1 —y; > 0,1 —y; < 0,1 —y;; = 0.
For each agent j, we can obtain every entry of y; in parallel, i.e., for all i:

® Solve

2

Skl _ o RN k 2 k+1 27 pk+1

Vit = argm1n{7yﬁ + (—1 = Yy — Vila#iB — viliB )}=>
Yi

1
Sk+1 k 2 k+1 2 k+1
Vi = yZ(l Vi + Vil #6; ViliiBjo )
Ji

Ifl —§; > 0, then yi*' = 75*'; otherwise proceed to the next step.

® Solve

~k+1

. 1
Vi =ams ”;’”{<Vﬁqﬁ’ —Jj,-> + E‘
'ji

2
ngie + gl b

5 1 k 2 k+1 2 k+1
Vi = ﬁ(yjiqji + VLB + viliBo |
Jt
S+l k+1 _ skl :
If1 -y <0, then y;*" = y;*'; otherwise proceed to the next step.

° y]{§+1 =1.

q-update: Vi

k+1 _ .k k+1 k+1 k+1
i —qj,-+7/ﬁ(lﬁ¢},»ﬁj + i = Vi )

66



T.S. Brisimi et al.

A-update

k+1 _ 1k
A= 2k 4

k+1
VUJli .

2

i€ {j}

methods listed in Table 1.
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