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Abstract 23 

Climate change is drastically altering global fire regimes, which may affect the structure 24 

and function of insect communities. Insect responses to fire are strongly tied to fire 25 

history, plant responses, and changes in species interactions. Many insects already 26 

possess adaptive traits to survive fire or benefit from post-fire resources, which may 27 

result in community composition shifting toward habitat and dietary generalists as well 28 

as species with high dispersal abilities. However, predicting community-level resilience 29 

of insects is inherently challenging due to the high degree of spatiotemporal and 30 

historical heterogeneity of fires, diversity of insect life histories, and potential 31 

interactions with other global change drivers. Future work should incorporate 32 

experimental approaches that specifically consider spatiotemporal variability and 33 

regional fire history in order to integrate eco-evolutionary processes in understanding 34 

insect responses to fire. 35 

 36 

Highlights  37 

1. Fire uniquely disturbs ecosystems with persistent impacts on insect communities 38 

2. Life history, interactions, adaptive traits and habitat structure affect recovery 39 

3. More frequent and severe fires may favor generalists and high-dispersal abilities 40 

4. Predicting community resilience requires accounting for spatiotemporal variability 41 

5. Experimental manipulations across habitats and fire regimes are needed 42 

 43 
 44 
  45 
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Introduction 46 

Natural wildfire is an important form of periodic disturbance that disrupts 47 

ecological processes at a landscape scale [1,2] and places unique selective pressures 48 

on fire-affected communities. In particular, fire alone can alter the abundance and 49 

quality of basal resources, cause short- and long-term effects on soil nutrient 50 

availability, temperature, and moisture, and transform habitat structure (Fig. 1). Recent 51 

changes in the intensity and frequency of droughts are leading to higher incidences of 52 

fire [3]; ecosystems are also experiencing changes in fire frequency, seasonality, extent, 53 

duration, and severity as a result of global climate change [3]. Such changes in fire 54 

regimes will likely affect insect community composition via ecological and evolutionary 55 

mechanisms with consequences for the strength of biological interactions and the 56 

provision of ecosystem services (Fig. 1)[3]. 57 

Many insects are adapted to survive fire and some even benefit from ecosystem 58 

changes associated with fire [4]. For example, immediately after grassland fires, prairie 59 

mole crickets (Gryllotalpa major) profit from enhanced acoustics within their burrows for 60 

improved signaling to potential mates [5]. Similarly, some forest beetles (e.g. 61 

Buprestidae and Cerambycidae), respond to heat and smoke generated by fires to 62 

colonize newly available, high-quality habitat [6]. It is nevertheless unclear, even in fire-63 

prone habitats, whether existing morphological, life history, and behavioral adaptive 64 

traits will be sufficient for maintaining species and functional insect diversity as fire 65 

regimes continue to change. Moreover, many insect species that rarely experience fire 66 

(e.g. high latitude biota) are beginning to do so on a more regular basis. Despite the 67 

importance of fire as a natural disturbance in many ecosystems, the role of evolutionary 68 
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processes in shaping insect responses to fire is an underdeveloped research area. Yet 69 

the potential for adaptation is especially important in this context, because many insect 70 

species have short generation times and large population sizes, which facilitate rapid 71 

evolution [7].  72 

Here we provide a brief review of recent advances in our understanding of insect 73 

responses to fire from an ecological perspective that considers how responses to fire 74 

alter species interactions and functional roles of insects within ecological communities. 75 

We also discuss specific traits that allow insects to survive fire and how these traits may 76 

contribute to certain groups having the capacity to cope with or adapt to rapidly 77 

changing fire regimes. 78 

 79 

 Ecological responses to fire 80 

            Various aspects of fire, including severity, extent, frequency, and seasonality, 81 

impact the abundance and diversity of insects across all trophic levels [e.g. 1,8,9-82 

11](Fig. 1A,C,F). For instance, high soil temperatures during severe fires kill ground-83 

nesting insects, such as Megachilidae bees [12] that typically survive lower intensity 84 

fires. Most community-level recovery depends on re-colonization from nearby 85 

undisturbed areas [13], so increased fire extent will delay recovery in central portions of 86 

burned areas. Effects of fire on some insects are short-lived, with certain groups 87 

recovering quickly post-fire. However, increased fire frequency may not allow enough 88 

time for many arthropods to recover. Further, changes in soil moisture and temperature 89 

due to fire can alter soil arthropod community composition for decades [14]. Some soil-90 

dwelling arthropods may recover more quickly [13], but this response is linked to 91 
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seasonality, demonstrating that fire timing also influences recovery. Even ephemeral 92 

responses to disturbance can have cascading effects on communities [e.g. 15]. Given 93 

that insects are key herbivores, pollinators, and detritivores, their short- and long-term 94 

responses to changing fire regimes could have important consequences for ecosystem 95 

functioning.  96 

Our understanding of insect responses to fire has historically come from a 97 

bottom-up perspective that primarily considers insect recovery in relation to recovery of 98 

the plant community [13](Fig. 1B,D). This narrow focus is understandable as recovery of 99 

the plant community defines habitat structure and availability of resources for the entire 100 

insect community [16,17]. Thus, fire return intervals that maximize plant diversity, such 101 

as mosaic burns that increase spatial heterogeneity of resources, should maximize 102 

post-burn insect functional diversity even though this is rarely measured explicitly [13].   103 

Fire effects vary across space and functional groups [e.g. 18,19,20], meaning 104 

that fire indirectly alters the spatial and temporal distribution of species interactions [e.g. 105 

between bees and flowers or herbivores and their hosts, 21,22] (Fig. 1F). This variation, 106 

along with the unpredictable nature of post-fire resource availability, tends to result in a 107 

higher proportion of diet generalists and fewer specialized interactions in fire affected 108 

areas [10,23]. Specialist-feeders are potentially more influenced by bottom-up effects 109 

than generalist-feeders [24], suggesting that recovery by diet specialists is likely to be 110 

slower and more closely tied to the recovery of particular plant or prey species. Thus, 111 

while the first species to colonize burned habitats are those that survive fire (e.g. some 112 

soil-dwellers) or capable dispersers from nearby unburned patches, species with 113 

generalist feeding habits are the most likely to benefit from post-fire resources and 114 
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recover quickly. For instance, grasshoppers, which are good dispersers and largely 115 

generalist feeders, commonly increase in abundance post-fire as they exploit re-116 

sprouting vegetation [e.g. 21].  117 

Fire responses are best documented for herbivores and pollinators that depend 118 

directly on plant resources. Plant biomass and community composition are key 119 

determinants of herbivore recovery (Fig 1D), as are fire-induced changes in plant quality 120 

[e.g. 25,26,27] and plant defenses [e.g. 28]. For example, low-severity, frequent fires 121 

induce resin production that protects trees against bark beetles [29]. However, fire 122 

effects on herbivore communities have also been found to be mediated through 123 

changes in habitat structure instead of fire-related changes in host plant quality [30,31]. 124 

Fire-induced changes in both resource and habitat quality therefore select for a 125 

combination of generalist traits in post-fire herbivore communities. Despite these 126 

insights, predicting herbivore responses to changing fire regimes is still challenging and 127 

will require a better understanding of both the direct and indirect effects of fire on 128 

herbivore communities across a wider array of habitats. 129 

            Our understanding of responses of insect pollinators to fire is mainly focused on 130 

floral resources (Fig. 1D), and less on nesting habitat or mortality due to fire. Notably, 131 

many ground-nesting species do survive fires [12] and are positively associated with 132 

recent burns in some systems [32]. After fire opens space for flowering plants to thrive, 133 

pollinators are attracted to abundant floral resources [e.g. 33]. Pollinator abundance and 134 

diversity, especially of diet-generalist bees [22], show a strong time-since-fire signal, 135 

peaking soon after fire and decreasing with declining floral resources as succession 136 

proceeds [34]. These successional trajectories differ depending on fire severity [35], life 137 
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history, and ecosystem. However, species with different nesting habitats (e.g. below-138 

ground vs. above-ground) are not influenced by time-since-fire in all ecosystems [36]. 139 

Changes in fire regimes may favor large-bodied pollinators that can more rapidly 140 

colonize the center of large burns and generalists that can forage in recently burned 141 

areas despite restricted floral options.  142 

            Responses to fire by higher trophic levels (e.g. predators and parasitoids) are 143 

tied to prey recovery and are therefore sensitive to mismatches in species responses. 144 

Predators with generalized diet breadths are typically able to recover more rapidly than 145 

diet-specialists. For example, several recent studies detected no post-fire changes in 146 

the abundance and diversity of spiders and predaceous beetles, which tend to be 147 

generalist-feeders [37,38]. Relative to many predators, parasitoids tend to be more 148 

specialized on specific hosts and sensitive to fire-induced shifts in community structure. 149 

Parasitoid responses to fire may also be taxon-specific, as shown with other types of 150 

disturbances. For example, variability in precipitation and host-availability affects 151 

specialized hymenopteran parasitoids more than generalized dipteran parasitoids [39]. 152 

Taken together, diet-generalist predators are likely to be more resilient to changes in 153 

global fire regimes than diet-specialist predators and parasitoids. However, other 154 

studies have found mixed effects of fire, indicating that habitat type, taxonomic group, 155 

dispersal ability, and time-since-fire are all important components of predator recovery 156 

[e.g. 40,41,42]. Changing fire regimes may further exacerbate mismatches in species 157 

interactions post-fire, resulting in longer recovery times or altered community 158 

composition (e.g. more generalist-feeding predators). For instance, fire can cause 159 
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increased soil temperatures that promote earlier hatches of soil-dwelling insects [2] or 160 

provide some organisms temporary relief from specialist natural enemies [4,43]. 161 

            Habitat quantity and quality may be more important for the short-term recovery 162 

of litter- and soil-dwelling arthropod communities than other traits such as dispersal 163 

ability [44](Fig. 1E). Fire reduces or eliminates the availability of resources and habitat 164 

space for detritivores and other litter insects in the short-term [45]. In the long-term, the 165 

abundance of soil arthropods are not commonly affected [reviewed in 46], but their 166 

diversity decreases and can remain altered for decades due to persistent changes in 167 

resource quality [47]. While belowground habitat and resources for insects increase as 168 

plant communities recover in some systems [48], high-frequency fires also result in 169 

reduced soil carbon and nitrogen over decadal timescales in others (e.g. broadleaf 170 

forests and savannah grasslands)[49]. Therefore, recovery of soil arthropods [41,50] is 171 

influenced by a combination of pre- and post-fire soil quality, litter availability, and plant 172 

composition, necessitating consideration of short- and long-term legacy effects of fire to 173 

understand detritivore responses.  174 

 175 

Adaptive Traits and Potential Evolutionary Responses to Fire  176 

Species that are able to survive fire or recolonize fire-affected areas can benefit 177 

from post-fire conditions via increased resource availability [26,51,52], advantageous 178 

habitat alterations [33], and/or altered species interactions [e.g. reduced predation, 179 

4,13](Fig. 1F,G). Many insects currently exhibit a variety of morphological, behavioral, 180 

and life history traits that allow them to survive fire events and recover quickly from fire 181 

disturbance [2](Fig. 1C). Some of these include morphological adaptations to detect fire, 182 
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including smoke-detecting antennae in cerambycid beetles [53] and infrared radiation 183 

sensors in buprestid beetles (Melanophila acuminata)[54]. Such traits can allow them to 184 

escape fire, synchronize emergence, and locate resources and mates post-fire [e.g. 55]. 185 

Many insects exhibit adaptive behaviors to fire, such as climbing trees, fleeing, and 186 

burrowing into the soil [2,56-58]. Life history traits that can improve survival to fire 187 

include living some or all life stages belowground [2,59], high-dispersal capabilities [13], 188 

and diet- and habitat-generalism [23,60]. 189 

Even within habitats that have historically been exposed to fire, it is unclear how 190 

changes in the fire regime, such as increased fire frequency and severity [3], may 191 

ultimately affect insect communities. While more frequent low-severity fires could favor 192 

fire-adapted insects [13], they could also pose risks to species that thrive during later 193 

successional stages. As fires become more severe, species adapted to low-severity 194 

fires may be negatively affected and community recovery times may increase. Changing 195 

fire regimes could influence community-level succession in unpredictable ways, such as 196 

by preventing species from recolonizing from non-burned patches, or by imposing 197 

severe founder effects and genetic bottlenecks.  Under certain conditions, changes in 198 

fire regimes could result in evolutionary tipping points and population collapse [61]. 199 

Insect species from more variable environments might have higher degrees of plasticity 200 

and may therefore be better adapted to cope with increasing extreme fire events [62]. 201 

However, selection and the potential for rapid evolution could be strongest on species 202 

with limited phenotypic plasticity [63]. 203 

Emerging evidence suggests that global changes have the potential to drive 204 

evolutionary trajectories of functional traits that lead to eco-evolutionary feedbacks to 205 
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ecosystem processes [64]. Fire is one such global change that may serve as both an 206 

important selection pressure and driver of changes in the function of insect communities 207 

(Fig. 1). Few studies connect shifts in insect communities with ecosystem processes 208 

such as carbon and nitrogen cycling in fire-affected ecosystems, but fire does alter the 209 

functional roles of these organisms. For example, although pollination levels can be 210 

high after fire [i.e., pollen deposition, 9], pollinator visitation and seed set vary with time-211 

since-fire [e.g. 33,65,66]. It is an open question whether post-fire insect communities 212 

alter the environment to a degree that may feedback to fire frequency and severity (Fig 213 

1H), but this area warrants further investigation. In particular, as insects serve key 214 

functions within ecosystems as herbivores, pollinators, and detritivores, their responses 215 

to changing fire regimes could influence the susceptibility of some ecosystems to future 216 

fires (e.g. via biomass removal from herbivory).  217 

 218 

Conclusions and Perspectives 219 

Several fundamental challenges have limited an eco-evolutionary approach to 220 

linking insect communities and changing fire regimes. First, our current understanding 221 

of insect responses to fire is largely skewed toward observational studies in grasslands 222 

and forests where fire is common and taxa already tend to possess fire-adapted traits 223 

[1,2,13]. Second, most studies use a single fire to document insect responses, but these 224 

effects cannot be extrapolated to predict changes in community interactions, 225 

evolutionary responses, or ecosystem functions due to frequent, repeated disturbances. 226 

Third, fires do not occur in isolation of other global changes. Altered fire regimes could 227 

exacerbate effects of other selective pressures, including changes in temperature, 228 
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precipitation, nutrient pollution, habitat fragmentation and degradation, invasive species, 229 

range shifts, biodiversity loss, as well as spatially and temporally mismatched biological 230 

interactions [e.g. 67,68]. How insect responses to fire are influenced by these and other 231 

drivers of global change still needs to be assessed.  232 

Future studies can address these gaps by using manipulative experiments of fire 233 

frequency and severity to investigate effects of fire regimes (as opposed to single fires), 234 

on insect communities. These types of studies are particularly important in ecosystems 235 

where wildfire is historically rare but projected to increase (e.g. tundra)[3,69]. 236 

Experimental approaches allow for systematic manipulation of variables such as fire 237 

severity, focal taxa, burn season, and abiotic conditions, all of which play into the 238 

ecological and evolutionary responses of insect communities. While recent studies have 239 

worked towards understanding habitat and resource heterogeneity [e.g. 70], future 240 

experimental study designs should be more explicit in incorporating temporal and 241 

spatial variability when considering the resilience of insect communities to changing fire 242 

regimes. Similarly, a better understanding of post-fire feedbacks between plant recovery 243 

and insect-driven ecosystem services (e.g. herbivory, detritivory, pollination) could be 244 

achieved through experimental manipulations of these community components. Long-245 

term experiments that manipulate other global change variables along fire frequency 246 

and severity gradients (e.g. Konza Prairie and Arctic LTERs) provide opportunities for 247 

insect ecologists to advance our understanding of the interactive effects of multiple 248 

disturbances. 249 

 As fire regimes continue to shift as a result of climate change [3], insects and the 250 

ecological communities they inhabit are also likely to change. A better understanding of 251 
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the effects of these changing fire regimes on insects will require consideration of the 252 

actual traits (e.g. diet and habitat generalism, dispersal ability, belowground life stages, 253 

temperature tolerance) that enable insects to survive and/or benefit from fire, how these 254 

traits vary across sites, and how quickly they are able to change in species with different 255 

ecological and natural history backgrounds. Experimental approaches that use insects 256 

are a promising way to further develop understanding of eco-evolutionary feedbacks in 257 

response to changing fire regimes and other types of disturbances.  258 
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Figure Caption 503 

Figure 1. Conceptual diagram depicting the ecological and evolutionary effects of fire on 504 

insect and plant communities. Fire directly affects insect (A) and plant (B) mortality and 505 

also has a number of indirect effects that act as selection pressures on insect traits (C). 506 

Indirect effects of fire (C) can include long-term changes to plant and detrital resource 507 

availability, quality, and heterogeneity, as well as habitat structure. Short-term indirect 508 

effects include immediate changes to soil nutrients, moisture, and temperature. Plant 509 

community responses and recovery to fire are influenced by insect herbivory and 510 

pollination (D) and by insect effects on detritivory and nutrient cycling (E). Likewise, 511 

recovery of the insect community is tightly tied to the resources and habitat provided by 512 

the plant community (D, E). The strength and timing of species interactions within the 513 

insect community (F), such as predation, parasitism, competition, and mutualism, vary 514 

with time since fire and can also affect insect community recovery. Insect and plant 515 

communities are adapting and evolving in response to fire-induced selection pressures 516 

on insect traits (G). On a longer timescale, post-fire changes to plant community 517 

biomass and composition due to interactions with insects (e.g. biomass removal due to 518 

herbivory) may result in eco-evolutionary feedbacks to fire regimes that either promote 519 

or inhibit future fires (H). Changes in fire severity, extent, frequency, and duration may 520 

amplify and/or attenuate the strength of these fire effects on insect and plant 521 

communities.  522 

  523 
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