

1 **Title:**

2 Global change and the importance of fire for the ecology and evolution of insects

3

4 **Author Names and Affiliations:**

5 Amanda M. Koltz^{a*}, Laura A. Burkle^b, Yamina Pressler^c Jane E. Dell^d, Mayra C. Vidal^e

6 Lora A. Richards^d, and Shannon M. Murphy^{e*}

7

8 a. Department of Biology, Washington University in St. Louis, One Brookings Drive,

9 St. Louis, MO 63130, USA. Email: akoltz@wustl.edu

10 b. Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, MT

11 59717, USA. Email: laura.burkle@montana.edu

12 c. Natural Resource Ecology Laboratory, Colorado State University, 1499 Campus

13 Delivery, Fort Collins, CO 80523, USA. Email: yamina.pressler@colostate.edu

14 d. Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV

15 89557, USA. Email: lorar@unr.edu, jane.dell@nevada.unr.edu

16 e. Department of Biological Sciences, University of Denver, 2050 E Iliff Ave,

17 Boettcher West, Denver, CO 80210 USA Emails: Mayra.Vidal@du.edu,

18 Shannon.M.Murphy@du.edu

19

20 ***Corresponding Authors:**

21 Amanda M. Koltz: akoltz@wustl.edu

22 Shannon Murphy: Shannon.M.Murphy@du.edu

23 **Abstract**

24 Climate change is drastically altering global fire regimes, which may affect the structure
25 and function of insect communities. Insect responses to fire are strongly tied to fire
26 history, plant responses, and changes in species interactions. Many insects already
27 possess adaptive traits to survive fire or benefit from post-fire resources, which may
28 result in community composition shifting toward habitat and dietary generalists as well
29 as species with high dispersal abilities. However, predicting community-level resilience
30 of insects is inherently challenging due to the high degree of spatiotemporal and
31 historical heterogeneity of fires, diversity of insect life histories, and potential
32 interactions with other global change drivers. Future work should incorporate
33 experimental approaches that specifically consider spatiotemporal variability and
34 regional fire history in order to integrate eco-evolutionary processes in understanding
35 insect responses to fire.

36

37 **Highlights**

38 1. Fire uniquely disturbs ecosystems with persistent impacts on insect communities
39 2. Life history, interactions, adaptive traits and habitat structure affect recovery
40 3. More frequent and severe fires may favor generalists and high-dispersal abilities
41 4. Predicting community resilience requires accounting for spatiotemporal variability
42 5. Experimental manipulations across habitats and fire regimes are needed

43

44

45

46 **Introduction**

47 Natural wildfire is an important form of periodic disturbance that disrupts
48 ecological processes at a landscape scale [1,2] and places unique selective pressures
49 on fire-affected communities. In particular, fire alone can alter the abundance and
50 quality of basal resources, cause short- and long-term effects on soil nutrient
51 availability, temperature, and moisture, and transform habitat structure (Fig. 1). Recent
52 changes in the intensity and frequency of droughts are leading to higher incidences of
53 fire [3]; ecosystems are also experiencing changes in fire frequency, seasonality, extent,
54 duration, and severity as a result of global climate change [3]. Such changes in fire
55 regimes will likely affect insect community composition via ecological and evolutionary
56 mechanisms with consequences for the strength of biological interactions and the
57 provision of ecosystem services (Fig. 1)[3].

58 Many insects are adapted to survive fire and some even benefit from ecosystem
59 changes associated with fire [4]. For example, immediately after grassland fires, prairie
60 mole crickets (*Gryllotalpa major*) profit from enhanced acoustics within their burrows for
61 improved signaling to potential mates [5]. Similarly, some forest beetles (e.g.
62 Buprestidae and Cerambycidae), respond to heat and smoke generated by fires to
63 colonize newly available, high-quality habitat [6]. It is nevertheless unclear, even in fire-
64 prone habitats, whether existing morphological, life history, and behavioral adaptive
65 traits will be sufficient for maintaining species and functional insect diversity as fire
66 regimes continue to change. Moreover, many insect species that rarely experience fire
67 (e.g. high latitude biota) are beginning to do so on a more regular basis. Despite the
68 importance of fire as a natural disturbance in many ecosystems, the role of evolutionary

69 processes in shaping insect responses to fire is an underdeveloped research area. Yet
70 the potential for adaptation is especially important in this context, because many insect
71 species have short generation times and large population sizes, which facilitate rapid
72 evolution [7].

73 Here we provide a brief review of recent advances in our understanding of insect
74 responses to fire from an ecological perspective that considers how responses to fire
75 alter species interactions and functional roles of insects within ecological communities.
76 We also discuss specific traits that allow insects to survive fire and how these traits may
77 contribute to certain groups having the capacity to cope with or adapt to rapidly
78 changing fire regimes.

79

80 **Ecological responses to fire**

81 Various aspects of fire, including severity, extent, frequency, and seasonality,
82 impact the abundance and diversity of insects across all trophic levels [e.g. 1,8,9-
83 11](Fig. 1A,C,F). For instance, high soil temperatures during severe fires kill ground-
84 nesting insects, such as Megachilidae bees [12] that typically survive lower intensity
85 fires. Most community-level recovery depends on re-colonization from nearby
86 undisturbed areas [13], so increased fire extent will delay recovery in central portions of
87 burned areas. Effects of fire on some insects are short-lived, with certain groups
88 recovering quickly post-fire. However, increased fire frequency may not allow enough
89 time for many arthropods to recover. Further, changes in soil moisture and temperature
90 due to fire can alter soil arthropod community composition for decades [14]. Some soil-
91 dwelling arthropods may recover more quickly [13], but this response is linked to

92 seasonality, demonstrating that fire timing also influences recovery. Even ephemeral
93 responses to disturbance can have cascading effects on communities [e.g. 15]. Given
94 that insects are key herbivores, pollinators, and detritivores, their short- and long-term
95 responses to changing fire regimes could have important consequences for ecosystem
96 functioning.

97 Our understanding of insect responses to fire has historically come from a
98 bottom-up perspective that primarily considers insect recovery in relation to recovery of
99 the plant community [13](Fig. 1B,D). This narrow focus is understandable as recovery of
100 the plant community defines habitat structure and availability of resources for the entire
101 insect community [16,17]. Thus, fire return intervals that maximize plant diversity, such
102 as mosaic burns that increase spatial heterogeneity of resources, should maximize
103 post-burn insect functional diversity even though this is rarely measured explicitly [13].

104 Fire effects vary across space and functional groups [e.g. 18,19,20], meaning
105 that fire indirectly alters the spatial and temporal distribution of species interactions [e.g.
106 between bees and flowers or herbivores and their hosts, 21,22] (Fig. 1F). This variation,
107 along with the unpredictable nature of post-fire resource availability, tends to result in a
108 higher proportion of diet generalists and fewer specialized interactions in fire affected
109 areas [10,23]. Specialist-feeders are potentially more influenced by bottom-up effects
110 than generalist-feeders [24], suggesting that recovery by diet specialists is likely to be
111 slower and more closely tied to the recovery of particular plant or prey species. Thus,
112 while the first species to colonize burned habitats are those that survive fire (e.g. some
113 soil-dwellers) or capable dispersers from nearby unburned patches, species with
114 generalist feeding habits are the most likely to benefit from post-fire resources and

115 recover quickly. For instance, grasshoppers, which are good dispersers and largely
116 generalist feeders, commonly increase in abundance post-fire as they exploit re-
117 sprouting vegetation [e.g. 21].

118 Fire responses are best documented for herbivores and pollinators that depend
119 directly on plant resources. Plant biomass and community composition are key
120 determinants of herbivore recovery (Fig 1D), as are fire-induced changes in plant quality
121 [e.g. 25,26,27] and plant defenses [e.g. 28]. For example, low-severity, frequent fires
122 induce resin production that protects trees against bark beetles [29]. However, fire
123 effects on herbivore communities have also been found to be mediated through
124 changes in habitat structure instead of fire-related changes in host plant quality [30,31].
125 Fire-induced changes in both resource and habitat quality therefore select for a
126 combination of generalist traits in post-fire herbivore communities. Despite these
127 insights, predicting herbivore responses to changing fire regimes is still challenging and
128 will require a better understanding of both the direct and indirect effects of fire on
129 herbivore communities across a wider array of habitats.

130 Our understanding of responses of insect pollinators to fire is mainly focused on
131 floral resources (Fig. 1D), and less on nesting habitat or mortality due to fire. Notably,
132 many ground-nesting species do survive fires [12] and are positively associated with
133 recent burns in some systems [32]. After fire opens space for flowering plants to thrive,
134 pollinators are attracted to abundant floral resources [e.g. 33]. Pollinator abundance and
135 diversity, especially of diet-generalist bees [22], show a strong time-since-fire signal,
136 peaking soon after fire and decreasing with declining floral resources as succession
137 proceeds [34]. These successional trajectories differ depending on fire severity [35], life

138 history, and ecosystem. However, species with different nesting habitats (e.g. below-
139 ground vs. above-ground) are not influenced by time-since-fire in all ecosystems [36].
140 Changes in fire regimes may favor large-bodied pollinators that can more rapidly
141 colonize the center of large burns and generalists that can forage in recently burned
142 areas despite restricted floral options.

143 Responses to fire by higher trophic levels (e.g. predators and parasitoids) are
144 tied to prey recovery and are therefore sensitive to mismatches in species responses.
145 Predators with generalized diet breadths are typically able to recover more rapidly than
146 diet-specialists. For example, several recent studies detected no post-fire changes in
147 the abundance and diversity of spiders and predaceous beetles, which tend to be
148 generalist-feeders [37,38]. Relative to many predators, parasitoids tend to be more
149 specialized on specific hosts and sensitive to fire-induced shifts in community structure.
150 Parasitoid responses to fire may also be taxon-specific, as shown with other types of
151 disturbances. For example, variability in precipitation and host-availability affects
152 specialized hymenopteran parasitoids more than generalized dipteran parasitoids [39].
153 Taken together, diet-generalist predators are likely to be more resilient to changes in
154 global fire regimes than diet-specialist predators and parasitoids. However, other
155 studies have found mixed effects of fire, indicating that habitat type, taxonomic group,
156 dispersal ability, and time-since-fire are all important components of predator recovery
157 [e.g. 40,41,42]. Changing fire regimes may further exacerbate mismatches in species
158 interactions post-fire, resulting in longer recovery times or altered community
159 composition (e.g. more generalist-feeding predators). For instance, fire can cause

160 increased soil temperatures that promote earlier hatches of soil-dwelling insects [2] or
161 provide some organisms temporary relief from specialist natural enemies [4,43].

162 Habitat quantity and quality may be more important for the short-term recovery
163 of litter- and soil-dwelling arthropod communities than other traits such as dispersal
164 ability [44](Fig. 1E). Fire reduces or eliminates the availability of resources and habitat
165 space for detritivores and other litter insects in the short-term [45]. In the long-term, the
166 abundance of soil arthropods are not commonly affected [reviewed in 46], but their
167 diversity decreases and can remain altered for decades due to persistent changes in
168 resource quality [47]. While belowground habitat and resources for insects increase as
169 plant communities recover in some systems [48], high-frequency fires also result in
170 reduced soil carbon and nitrogen over decadal timescales in others (e.g. broadleaf
171 forests and savannah grasslands)[49]. Therefore, recovery of soil arthropods [41,50] is
172 influenced by a combination of pre- and post-fire soil quality, litter availability, and plant
173 composition, necessitating consideration of short- and long-term legacy effects of fire to
174 understand detritivore responses.

175

176 **Adaptive Traits and Potential Evolutionary Responses to Fire**

177 Species that are able to survive fire or recolonize fire-affected areas can benefit
178 from post-fire conditions via increased resource availability [26,51,52], advantageous
179 habitat alterations [33], and/or altered species interactions [e.g. reduced predation,
180 4,13](Fig. 1F,G). Many insects currently exhibit a variety of morphological, behavioral,
181 and life history traits that allow them to survive fire events and recover quickly from fire
182 disturbance [2](Fig. 1C). Some of these include morphological adaptations to detect fire,

183 including smoke-detecting antennae in cerambycid beetles [53] and infrared radiation
184 sensors in buprestid beetles (*Melanophila acuminata*)[54]. Such traits can allow them to
185 escape fire, synchronize emergence, and locate resources and mates post-fire [e.g. 55].
186 Many insects exhibit adaptive behaviors to fire, such as climbing trees, fleeing, and
187 burrowing into the soil [2,56-58]. Life history traits that can improve survival to fire
188 include living some or all life stages belowground [2,59], high-dispersal capabilities [13],
189 and diet- and habitat-generalism [23,60].

190 Even within habitats that have historically been exposed to fire, it is unclear how
191 changes in the fire regime, such as increased fire frequency and severity [3], may
192 ultimately affect insect communities. While more frequent low-severity fires could favor
193 fire-adapted insects [13], they could also pose risks to species that thrive during later
194 successional stages. As fires become more severe, species adapted to low-severity
195 fires may be negatively affected and community recovery times may increase. Changing
196 fire regimes could influence community-level succession in unpredictable ways, such as
197 by preventing species from recolonizing from non-burned patches, or by imposing
198 severe founder effects and genetic bottlenecks. Under certain conditions, changes in
199 fire regimes could result in evolutionary tipping points and population collapse [61].
200 Insect species from more variable environments might have higher degrees of plasticity
201 and may therefore be better adapted to cope with increasing extreme fire events [62].
202 However, selection and the potential for rapid evolution could be strongest on species
203 with limited phenotypic plasticity [63].
204 Emerging evidence suggests that global changes have the potential to drive
205 evolutionary trajectories of functional traits that lead to eco-evolutionary feedbacks to

206 ecosystem processes [64]. Fire is one such global change that may serve as both an
207 important selection pressure and driver of changes in the function of insect communities
208 (Fig. 1). Few studies connect shifts in insect communities with ecosystem processes
209 such as carbon and nitrogen cycling in fire-affected ecosystems, but fire does alter the
210 functional roles of these organisms. For example, although pollination levels can be
211 high after fire [i.e., pollen deposition, 9], pollinator visitation and seed set vary with time-
212 since-fire [e.g. 33,65,66]. It is an open question whether post-fire insect communities
213 alter the environment to a degree that may feedback to fire frequency and severity (Fig
214 1H), but this area warrants further investigation. In particular, as insects serve key
215 functions within ecosystems as herbivores, pollinators, and detritivores, their responses
216 to changing fire regimes could influence the susceptibility of some ecosystems to future
217 fires (e.g. via biomass removal from herbivory).

218

219 **Conclusions and Perspectives**

220 Several fundamental challenges have limited an eco-evolutionary approach to
221 linking insect communities and changing fire regimes. First, our current understanding
222 of insect responses to fire is largely skewed toward observational studies in grasslands
223 and forests where fire is common and taxa already tend to possess fire-adapted traits
224 [1,2,13]. Second, most studies use a single fire to document insect responses, but these
225 effects cannot be extrapolated to predict changes in community interactions,
226 evolutionary responses, or ecosystem functions due to frequent, repeated disturbances.
227 Third, fires do not occur in isolation of other global changes. Altered fire regimes could
228 exacerbate effects of other selective pressures, including changes in temperature,

229 precipitation, nutrient pollution, habitat fragmentation and degradation, invasive species,
230 range shifts, biodiversity loss, as well as spatially and temporally mismatched biological
231 interactions [e.g. 67,68]. How insect responses to fire are influenced by these and other
232 drivers of global change still needs to be assessed.

233 Future studies can address these gaps by using manipulative experiments of fire
234 frequency and severity to investigate effects of fire regimes (as opposed to single fires),
235 on insect communities. These types of studies are particularly important in ecosystems
236 where wildfire is historically rare but projected to increase (e.g. tundra)[3,69].

237 Experimental approaches allow for systematic manipulation of variables such as fire
238 severity, focal taxa, burn season, and abiotic conditions, all of which play into the
239 ecological and evolutionary responses of insect communities. While recent studies have
240 worked towards understanding habitat and resource heterogeneity [e.g. 70], future
241 experimental study designs should be more explicit in incorporating temporal and
242 spatial variability when considering the resilience of insect communities to changing fire
243 regimes. Similarly, a better understanding of post-fire feedbacks between plant recovery
244 and insect-driven ecosystem services (e.g. herbivory, detritivory, pollination) could be
245 achieved through experimental manipulations of these community components. Long-
246 term experiments that manipulate other global change variables along fire frequency
247 and severity gradients (e.g. Konza Prairie and Arctic LTERs) provide opportunities for
248 insect ecologists to advance our understanding of the interactive effects of multiple
249 disturbances.

250 As fire regimes continue to shift as a result of climate change [3], insects and the
251 ecological communities they inhabit are also likely to change. A better understanding of

252 the effects of these changing fire regimes on insects will require consideration of the
253 actual traits (e.g. diet and habitat generalism, dispersal ability, belowground life stages,
254 temperature tolerance) that enable insects to survive and/or benefit from fire, how these
255 traits vary across sites, and how quickly they are able to change in species with different
256 ecological and natural history backgrounds. Experimental approaches that use insects
257 are a promising way to further develop understanding of eco-evolutionary feedbacks in
258 response to changing fire regimes and other types of disturbances.

259

260 **Acknowledgements**

261 We thank the University of Denver Organismal Biologists, Carlos Botero, Joan
262 Strassman, and Oswald Schmitz for helpful comments on earlier versions of this
263 manuscript. This research did not receive any specific grant from funding agencies in
264 the public, commercial, or not-for-profit sectors.

265

266 **References and Recommended Reading**

267 Papers of particular interest, published within the period of review, have been
268 highlighted as:

269 * of special interest

270 **of outstanding interest

271

272 1. McCullough DG, Werner RA, Neumann D: **Fire and insects in northern and boreal**
273 **forest ecosystems of North America.** *Annual review of entomology* 1998,
274 **43:**107-127.

275 2. Kral KC, Limb RF, Harmon JP, Hovick TJ: **Arthropods and Fire: Previous**
276 **Research Shaping Future Conservation.** *Rangeland Ecology & Management*
277 2017, **70**:589-598.

278 *A comprehensive review of arthropod responses to grassland fires in the Great Plains.
279

280 3. IPCC: **Climate Change 2014: Synthesis Report. Contribution of Working Groups**
281 **I, II and III to the Fifth Assessment Report of the Intergovernmental Panel**
282 **on Climate Change** Edited by Core Writing Team RKPALAM. Geneva,
283 Switzerland: IPCC; 2014:151.

284 4. Pausas JG, Parr CL: **Towards an understanding of the evolutionary role of fire in**
285 **animals.** *Evolutionary Ecology* 2018.

286 ** Recent review that provides a framework for understanding morphological,
287 physiological and behavioral adaptive traits of animals in fire-prone ecosystems. This
288 work also covers the potential for improved fitness in insects in fire-affected habitats.
289

290 5. Howard DR, Hill PSM: **The effect of fire on spatial distributions of male mating**
291 **aggregations in *Gryllotalpa major* Saussure (Orthoptera: Gryllotalpidae) at**
292 **the Nature Conservancy's Tallgrass Prairie Preserve in Oklahoma:**
293 **evidence of a fire-dependent species.** *Journal of the Kansas Entomological*
294 *Society* 2007, **80**:51-64.

295 6. Saint-Germain M, Drapeau P, Buddle C: **Persistence of pyrophilous insects in**
296 **fire-driven boreal forests: population dynamics in burned and unburned**
297 **habitats.** *Diversity and Distributions* 2008, **14**:713-720.

298 7. Olson-Manning C, Wagner MR, Mitchell-Olds T: **Adaptive evolution: evaluating**
299 **empirical support for theoretical predictions.** *Nature Reviews Genetics* 2012,
300 **13**:867-877.

301 8. Kay AD, Schade JD, Ogdahl M, Wesserle EO, Hobbie SE: **Fire effects on insect**
302 **herbivores in an oak savanna: the role of light and nutrients.** *Ecological*
303 *Entomology* 2007, **32**:754-761.

304 9. Potts SG, Petanidou T, Roberts S, O'Toole C, Hulbert A, Willmer P: **Plant-pollinator**
305 **biodiversity and pollination services in a complex Mediterranean**
306 **landscape.** *Biological Conservation* 2006, **129**:519-529.

307 10. Dell JE, Salcido DM, Lumpkin W, Richards LA, Pokswinski SM, Loudermilk EL,
308 O'Briend JJ, Dyer LA: **Scale dependent patterns in interaction diversity**
309 **maintain resiliency in a frequently disturbed ecosystem.** *Ecology In Review.*

310 ** Uses empirical data to examine the role of diversity in resiliency to fire and quantifies
311 interactions between plants, insect herbivores, and their natural enemies across a time-
312 since-fire gradient. Results demonstrate that frequent fire maintains species diversity
313 and important interactions that contribute to ecosystem services, such as biological
314 control.

315

316 11. Malmstrom A: **The importance of measuring fire severity - evidence from**
317 **microarthropod studies.** *Forest Ecology and Management* 2010, **260**:62-70.

318 12. Cane JH, Neff JL: **Predicted fates of ground-nesting bees in soil heated by**
319 **wildfire: Thermal tolerances of life stages and a survey of nesting depths.**
320 *Biological Conservation* 2011, **144**:2631-2636.

321 13. New TR: *Insects, fire and conservation*: Springer; 2014.

322 14. Huebner K, Lindo Z, Lechowicz MJ: **Post-fire succession of collembolan**
323 **communities in a northern hardwood forest.** *European Journal of Soil Biology*
324 2012, **48**:59-65.

325 15. Murphy SM, Wimp GM, Lewis D, Denno RF: **Nutrient presses and pulses**
326 **differentially impact plants, herbivores, detritivores and their natural**
327 **enemies.** *PLoS ONE* 2012, **7**:e43929.

328 16. Buckingham S, Murphy N, Gibb H: **The Effects of Fire Severity on**
329 **Macroinvertebrate Detritivores and Leaf Litter Decomposition.** *PLOS ONE*
330 2015, **10**:e0124556.

331 17. Arnold KT, Murphy NP, Gibb H: **Post-fire recovery of litter detritivores is limited**
332 **by distance from burn edge.** *Austral Ecology* 2017, **42**:94-102.

333 18. Grunel R, Jean RP, Frohnapple KJ, Glowacki GA, Scott PE, Pavlovic NB: **Floral**
334 **and nesting resources, habitat structure, and fire influence bee distribution**
335 **across an open-forest gradient.** *Ecological Applications* 2010, **20**:1678-1692.

336 19. Lazarina M, Sgardelis SP, Tscheulin T, Devalez J, Mizerakis V, Kallimanis AS,
337 Papakonstantinou S, Kyriazis T, Petanidou T: **The effect of fire history in**
338 **shaping diversity patterns of flower-visiting insects in post-fire**
339 **Mediterranean pine forests.** *Biodiversity and Conservation* 2017, **26**:115-131.

340 20. Lazarina M, Sgardelis SP, Tscheulin T, Kallimanis AS, Devalez J, Petanidou T: **Bee**
341 **response to fire regimes in Mediterranean pine forests: The role of nesting**
342 **preference, trophic specialization, and body size.** *Basic and Applied Ecology*
343 2016, **17**:308-320.

344 21. Knight TM, Holt RD: **Fire generates spatial gradients in herbivory: an example**
345 **from a Florida sandhill ecosystem.** *Ecology* 2005, **86**:587-593.

346 22. Peralta G, Stevani EL, Chacoff NP, Dorado J, Vazquez DP: **Fire influences the**
347 **structure of plant-bee networks.** *Journal of Animal Ecology* 2017, **86**:1372-
348 1379.

349 * Empirical investigation of how time-since-fire influences wood-nesting bee
350 abundances and flower-bee interactions.

351

352 23. Garcia Y, Castellanos MC, Pausas JG: **Fires can benefit plants by disrupting**
353 **antagonistic interactions.** *Oecologia* 2016, **182**:1165-1173.

354 24. Vidal MC, Murphy SM: **Bottom-up vs. top-down effects on terrestrial insect**
355 **herbivores: a meta-analysis.** *Ecology Letters* 2018, **21**:138-150.

356 25. Hahn PG, Orrock JL: **Land-use legacies and present fire regimes interact to**
357 **mediate herbivory by altering the neighboring plant community.** *Oikos* 2015,
358 **124**:497-506.

359 26. Lopes CT, Vasconcelos HL: **Fire increases insect herbivory in a neotropical**
360 **savanna.** *Biotropica* 2011, **43**:612-618.

361 27. Christie FJ, York A: **No detectable impacts of frequent burning on foliar C and N**
362 **or insect herbivory in an Australian eucalypt forest.** *Applied vegetation*
363 *science* 2009, **12**:376-384.

364 28. Wan HY, Rhodes AC, St Clair SB: **Fire severity alters plant regeneration**
365 **patterns and defense against herbivores in mixed aspen forests.** *Oikos*
366 2014, **123**:1479-1488.

367 29. Hood S, Sala A, Heyerdahl EK, Boutin M: **Low-severity fire increases tree**

368 **defense against bark beetle attacks.** *Ecology* 2015, **96**:1846-1855.

369 30. Kim TN, Holt RD: **The direct and indirect effects of fire on the assembly of**

370 **insect herbivore communities: examples from the Florida scrub habitat.**

371 *Oecologia* 2012, **168**:997-1012.

372 31. Murphy SM, Vidal MC, Smith TP, Hallagan CJ, Broder ED, Rowland D, Cepero LC:

373 **Forest fire severity affects host plant quality and insect herbivore damage.**

374 *Frontiers in Ecology and the Environment* In Review.

375 32. Ponisio LC, Wilkin K, M'Gonigle LK, Kulhanek K, Cook L, Thorp R, Griswold T,

376 **Kremen C: Pyrodiversity begets plant-pollinator community diversity.** *Global*

377 *Change Biology* 2016, **22**:1794-1808.

378 33. Van Nuland ME, Haag EN, Bryant JAM, Read QD, Klein RN, Douglas MJ, Gorman

379 **CE, Greenwell TD, Busby MW, Collins J, et al.: Fire Promotes Pollinator**

380 **Visitation: Implications for Ameliorating Declines of Pollination Services.**

381 *Plos One* 2013, **8**.

382 34. Potts SG, Vulliamy B, Dafni A, Ne'eman G, O'Toole C, Roberts S, Willmer P:

383 **Response of plant-pollinator communities to fire: changes in diversity,**

384 **abundance and floral reward structure.** *Oikos* 2003, **101**:103-112.

385 35. Simanonok MP, Burkle LA: **Plant-pollinator network assembly after wildfire.** In

386 Prep.

387 36. Heil LJ, Burkle LA: **Recent post-wildfire salvage logging benefits local and**

388 **landscape forb and bee communities.** *Forest Ecology and Management* 2018,

389 **424**:267-275.

390 37. Jansen R, Makaka L, Little IT, Dippenaar-Schoeman A: **Response of ground-**
391 **dwelling spider assemblages (Arachnida, Araneae) to Montane Grassland**
392 **management practices in South Africa.** *Insect Conservation and Diversity*
393 2013, **6**:572-589.

394 38. Polchaninova N: **Effect of summer fire on cursorial spider (Aranei) and beetle**
395 **(Coleoptera) assemblages in meadow steppes of Central European Russia.**
396 *Hacquetia* 2016, **15**:113-132.

397 39. Stireman JOI, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ, Ricklefs RE,
398 Gentry GL, Hallwachs W, Coley PD, et al.: **Climatic unpredictability and**
399 **parasitism of caterpillars: implications of global warming.** *Proceedings of*
400 *the National Academy of Sciences* 2005, **102**:17384-17387.

401 40. Kwok ABC, Eldridge DJ: **Does fire affect the ground-dwelling arthropod**
402 **community through changes to fine-scale resource patches?** *International*
403 *Journal of Wildland Fire* 2015, **24**:550-559.

404 41. Samu F, Kadar F, Onodi G, Kertesz M, Sziranyi A, Szita E, Fetyko K, Neidert D,
405 Botos E, Altbacker V: **Differential ecological responses of two generalist**
406 **arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the**
407 **effects of wildfire.** *Community Ecology* 2010, **11**:129-139.

408 42. Valko O, Deak B, Magura T, Torok P, Kelemen A, Toth K, Horvath R, Nagy DD,
409 Debnar Z, Zsigrai G: **Supporting biodiversity by prescribed burning in**
410 **grasslands—A multi-taxa approach.** *Science of the Total Environment* 2016,
411 **572**:1377-1384.

412 43. Brown J, York A, Christie F: **Fire effects on pollination in a sexually deceptive**
413 **orchid.** *International Journal of Wildland Fire* 2016, **25**:888-895.

414 44. Gongalsky KB, Persson T: **Recovery of soil macrofauna after wildfires in boreal**
415 **forests.** *Soil Biology and Biochemistry* 2013, **57**:182-191.

416 45. Coleman TW, Rieske LK: **Arthropod response to prescription burning at the**
417 **soil–litter interface in oak–pine forests.** *Forest Ecology and Management*
418 2006, **233**:52-60.

419 46. Pressler Y, Moore JC, Cotrufo MF: **Fire resistance and resilience belowground:**
420 **meta-analysis reveals contrasting responses of soil microorganisms and**
421 **fauna.** *Oikos* In Review.

422 ** Comprehensive meta-analysis that reveals consistent negative effect of fire on soil
423 microorganisms and fauna and highlights need for research on trophic dynamics
424 and aboveground-belowground linkages in fire-prone ecosystems.

425

426 47. Malmstrom A: **Life-history traits predict recovery patterns in Collembola**
427 **species after fire: A 10 year study.** *Applied Soil Ecology* 2012, **56**:35-42.

428 48. Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI: **Post-fire vegetative**
429 **dynamics as drivers of microbial community structure and function in**
430 **forest soils.** *Forest Ecology and Management* 2005, **220**:166-184.

431 49. Pellegrini AF, Ahlstrom A, Hobbie SE, Reich PB, Nieradzik LP, Stayer AC, jackson
432 **RB: Fire frequency drives decadal changes in soil carbon and nitrogen and**
433 **ecosystem productivity.** *Nature* 2018, **553**:194.

434 50. Venier LA, Work TT, Klimaszewski J, Morris DM, Bowden JJ, Kwiaton MM, Webster
435 K, Hazlett P: **Ground-dwelling arthropod response to fire and clearcutting in**
436 **jack pine: implications for ecosystem management.** *Canadian Journal of*
437 *Forest Research* 2017, **47**:1614-1631.

438 51. Setterfield SA, Andersen AN: **Seed supply limits seedling recruitment of**
439 ***Eucalyptus miniata*: interactions between seed predation by ants and fire in**
440 **the Australian seasonal tropics.** *Oecologia* 2018, **186**:965-972.

441 52. Hammond HEJ, Langor DW, Spence JR: **Changes in saproxylic beetle (Insecta:**
442 **Coleoptera) assemblages following wildfire and harvest in boreal *Populus***
443 **forests.** *Forest Ecology and Management* 2017, **401**:319-329.

444 53. Alvarez G, Ammagarahalli B, Hall DR, Pajares JA, Gemenó C: **Smoke, pheromone**
445 **and kairomone olfactory receptor neurons in males and females of the pine**
446 **sawyer *Monochamus galloprovincialis* (Olivier) (Coleoptera:**
447 **Cerambycidae).** *Journal of Insect Physiology* 2015, **82**:46-55.

448 54. Schmitz H, Schmitz A, Schneider ES: **Matched Filter Properties of Infrared**
449 **Receptors Used for Fire and Heat Detection in Insects.** In *The Ecology of*
450 *Animal Senses.* Edited by von der Emde G, Warrant E: Springer, Cham; 2016.

451 55. Milberg P, Bergman K-O, Norman H, Pettersson RB, Westerberg L, Wikars L-O,
452 Jansson N: **A burning desire for smoke? Sampling insects favoured by**
453 **forest fire in the absence of fire.** *Journal of Insect Conservation* 2015, **19**:55-
454 65.

455 56. Dell JE, O'Brien JJ, Doan L, Richards LA, Dyer LA: **An arthropod survival**
456 **strategy in a frequently burned forest.** *Ecology* 2017, **98**:2972-2974.

457 57. Sensenig RL, Kimuyu DK, Guajardo JCR, Veblen KE, Riginos C, Young TP: **Fire**
458 **disturbance disrupts an acacia ant-plant mutualism in favor of a**
459 **subordinate ant species.** *Ecology* 2017, **98**:1455-1464.

460 * Combines post-fire surveys with experimental fires to understand the long-term effects
461 and mechanisms of fire on ant-plant mutualisms.

462

463 58. Korobushkin DI, Gorbunova AY, Zaitsev AS, Gongalsky KB: **Trait-specific**
464 **response of soil macrofauna to forest burning along a macrogeographic**
465 **gradient.** *Applied Soil Ecology* 2017, **112**:97-100.

466 59. Love BG, Cane JH: **Limited direct effects of a massive wildfire on its sagebrush**
467 **steppe bee community.** *Ecological Entomology* 2016, **41**:317-326.

468 60. Rojas D, Ramos Pereira MJ, Fonseca C, Davalos LM: **Eating down the food**
469 **chain: generalism is not an evolutionary dead end for herbivores.** *Ecology*
470 *Letters* 2018, **21**:402-410.

471 61. Botero CA, Weissing FJ, Wright J, Rubenstein DR: **Evolutionary tipping points in**
472 **the capacity to adapt to environmental change.** *Proceedings of the National*
473 *Academy of Sciences* 2015, **112**:184-189.

474 62. Chevin L-M, Hoffmann AA: **Evolution of phenotypic plasticity in extreme**
475 **environments.** *Philosophical Transactions of the Royal Society B: Biological*
476 *Sciences* 2017, **372**:20160138.

477 63. Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T: **Phenotypic**
478 **plasticity and adaptive evolution contribute to advancing flowering**

479 **phenology in response to climate change.** *Proceedings of the Royal Society,*
480 *B* 2012, **279**:3843-3852.

481 64. Monroe JG, Markman DW, Beck WS, Felton AJ, Vahsen ML, Pressler Y:
482 **Ecoevolutionary dynamics of carbon cycling in the Anthropocene.** *Trends in*
483 *Ecology & Evolution* 2018, **33**:213-225.

484 65. Ne'eman G, Dafni A, Potts SG: **The effect of fire on flower visitation rate and**
485 **fruit set in four core-species in east Mediterranean scrubland.** *Plant Ecology*
486 2000, **146**:97-104.

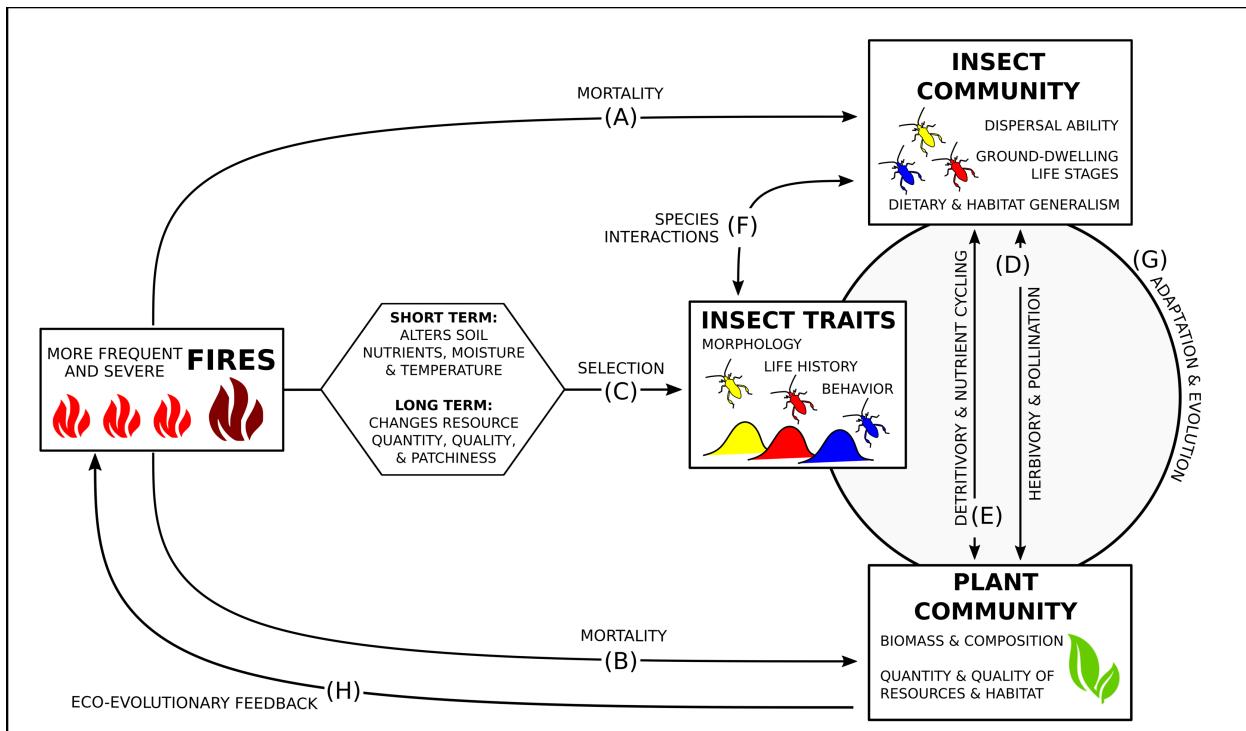
487 66. Bourg NA, Gill DE, McShea WJ: **Fire and Canopy Removal Effects on**
488 **Demography and Reproduction in Turkeybeard (Xerophyllum**
489 **asphodeloides), a Fire-Dependent Temperate Forest Herb.** *Journal of*
490 *Sustainable Forestry* 2015, **34**:71-104.

491 67. Yang LH, Rudolf VHW: **Phenology, ontogeny and the effects of climate change**
492 **on the timing of species interactions.** *Ecology Letters* 2010, **13**:1-10.

493 68. Burkle LA, Marlin JC, Knight TM: **Plant-pollinator interactions over 120 years:**
494 **loss of species, co-occurrence, and function.** *Science* 2013, **339**:1611-1615.

495 69. Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EA, Shaver GR,
496 Verbyla DL: **Carbon loss from an unprecedented Arctic tundra wildfire.**
497 *Nature* 2011, **475**:489-492.

498 70. Gorbunova AY, Korobushkin DI, Zaitsev AS, Gongalsky KB: **Forest fires increase**
499 **variability of soil macrofauna communities along a macrogeographic**
500 **gradient.** *European Journal of Soil Biology* 2017, **80**:49-52.


501

502

503 **Figure Caption**

504 Figure 1. Conceptual diagram depicting the ecological and evolutionary effects of fire on
505 insect and plant communities. Fire directly affects insect (A) and plant (B) mortality and
506 also has a number of indirect effects that act as selection pressures on insect traits (C).
507 Indirect effects of fire (C) can include long-term changes to plant and detrital resource
508 availability, quality, and heterogeneity, as well as habitat structure. Short-term indirect
509 effects include immediate changes to soil nutrients, moisture, and temperature. Plant
510 community responses and recovery to fire are influenced by insect herbivory and
511 pollination (D) and by insect effects on detritivory and nutrient cycling (E). Likewise,
512 recovery of the insect community is tightly tied to the resources and habitat provided by
513 the plant community (D, E). The strength and timing of species interactions within the
514 insect community (F), such as predation, parasitism, competition, and mutualism, vary
515 with time since fire and can also affect insect community recovery. Insect and plant
516 communities are adapting and evolving in response to fire-induced selection pressures
517 on insect traits (G). On a longer timescale, post-fire changes to plant community
518 biomass and composition due to interactions with insects (e.g. biomass removal due to
519 herbivory) may result in eco-evolutionary feedbacks to fire regimes that either promote
520 or inhibit future fires (H). Changes in fire severity, extent, frequency, and duration may
521 amplify and/or attenuate the strength of these fire effects on insect and plant
522 communities.

523

524

525 Figure 1.