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Abstract

Climate change is drastically altering global fire regimes, which may affect the structure
and function of insect communities. Insect responses to fire are strongly tied to fire
history, plant responses, and changes in species interactions. Many insects already
possess adaptive traits to survive fire or benefit from post-fire resources, which may
result in community composition shifting toward habitat and dietary generalists as well
as species with high dispersal abilities. However, predicting community-level resilience
of insects is inherently challenging due to the high degree of spatiotemporal and
historical heterogeneity of fires, diversity of insect life histories, and potential
interactions with other global change drivers. Future work should incorporate
experimental approaches that specifically consider spatiotemporal variability and
regional fire history in order to integrate eco-evolutionary processes in understanding

insect responses to fire.

Highlights
1. Fire uniquely disturbs ecosystems with persistent impacts on insect communities
2. Life history, interactions, adaptive traits and habitat structure affect recovery
3. More frequent and severe fires may favor generalists and high-dispersal abilities
4. Predicting community resilience requires accounting for spatiotemporal variability

5. Experimental manipulations across habitats and fire regimes are needed
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Introduction

Natural wildfire is an important form of periodic disturbance that disrupts
ecological processes at a landscape scale [1,2] and places unique selective pressures
on fire-affected communities. In particular, fire alone can alter the abundance and
quality of basal resources, cause short- and long-term effects on soil nutrient
availability, temperature, and moisture, and transform habitat structure (Fig. 1). Recent
changes in the intensity and frequency of droughts are leading to higher incidences of
fire [3]; ecosystems are also experiencing changes in fire frequency, seasonality, extent,
duration, and severity as a result of global climate change [3]. Such changes in fire
regimes will likely affect insect community composition via ecological and evolutionary
mechanisms with consequences for the strength of biological interactions and the
provision of ecosystem services (Fig. 1)[3].

Many insects are adapted to survive fire and some even benefit from ecosystem
changes associated with fire [4]. For example, immediately after grassland fires, prairie
mole crickets (Gryllotalpa major) profit from enhanced acoustics within their burrows for
improved signaling to potential mates [5]. Similarly, some forest beetles (e.g.
Buprestidae and Cerambycidae), respond to heat and smoke generated by fires to
colonize newly available, high-quality habitat [6]. It is nevertheless unclear, even in fire-
prone habitats, whether existing morphological, life history, and behavioral adaptive
traits will be sufficient for maintaining species and functional insect diversity as fire
regimes continue to change. Moreover, many insect species that rarely experience fire
(e.g. high latitude biota) are beginning to do so on a more regular basis. Despite the

importance of fire as a natural disturbance in many ecosystems, the role of evolutionary
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processes in shaping insect responses to fire is an underdeveloped research area. Yet
the potential for adaptation is especially important in this context, because many insect
species have short generation times and large population sizes, which facilitate rapid
evolution [7].

Here we provide a brief review of recent advances in our understanding of insect
responses to fire from an ecological perspective that considers how responses to fire
alter species interactions and functional roles of insects within ecological communities.
We also discuss specific traits that allow insects to survive fire and how these traits may
contribute to certain groups having the capacity to cope with or adapt to rapidly

changing fire regimes.

Ecological responses to fire

Various aspects of fire, including severity, extent, frequency, and seasonality,
impact the abundance and diversity of insects across all trophic levels [e.g. 1,8,9-
11](Fig. 1A,C,F). For instance, high soil temperatures during severe fires kill ground-
nesting insects, such as Megachilidae bees [12] that typically survive lower intensity
fires. Most community-level recovery depends on re-colonization from nearby
undisturbed areas [13], so increased fire extent will delay recovery in central portions of
burned areas. Effects of fire on some insects are short-lived, with certain groups
recovering quickly post-fire. However, increased fire frequency may not allow enough
time for many arthropods to recover. Further, changes in soil moisture and temperature
due to fire can alter soil arthropod community composition for decades [14]. Some soil-

dwelling arthropods may recover more quickly [13], but this response is linked to
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seasonality, demonstrating that fire timing also influences recovery. Even ephemeral
responses to disturbance can have cascading effects on communities [e.g. 15]. Given
that insects are key herbivores, pollinators, and detritivores, their short- and long-term
responses to changing fire regimes could have important consequences for ecosystem
functioning.

Our understanding of insect responses to fire has historically come from a
bottom-up perspective that primarily considers insect recovery in relation to recovery of
the plant community [13](Fig. 1B,D). This narrow focus is understandable as recovery of
the plant community defines habitat structure and availability of resources for the entire
insect community [16,17]. Thus, fire return intervals that maximize plant diversity, such
as mosaic burns that increase spatial heterogeneity of resources, should maximize
post-burn insect functional diversity even though this is rarely measured explicitly [13].

Fire effects vary across space and functional groups [e.g. 18,19,20], meaning
that fire indirectly alters the spatial and temporal distribution of species interactions [e.g.
between bees and flowers or herbivores and their hosts, 21,22] (Fig. 1F). This variation,
along with the unpredictable nature of post-fire resource availability, tends to result in a
higher proportion of diet generalists and fewer specialized interactions in fire affected
areas [10,23]. Specialist-feeders are potentially more influenced by bottom-up effects
than generalist-feeders [24], suggesting that recovery by diet specialists is likely to be
slower and more closely tied to the recovery of particular plant or prey species. Thus,
while the first species to colonize burned habitats are those that survive fire (e.g. some
soil-dwellers) or capable dispersers from nearby unburned patches, species with

generalist feeding habits are the most likely to benefit from post-fire resources and
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recover quickly. For instance, grasshoppers, which are good dispersers and largely
generalist feeders, commonly increase in abundance post-fire as they exploit re-
sprouting vegetation [e.g. 21].

Fire responses are best documented for herbivores and pollinators that depend
directly on plant resources. Plant biomass and community composition are key
determinants of herbivore recovery (Fig 1D), as are fire-induced changes in plant quality
[e.g. 25,26,27] and plant defenses [e.g. 28]. For example, low-severity, frequent fires
induce resin production that protects trees against bark beetles [29]. However, fire
effects on herbivore communities have also been found to be mediated through
changes in habitat structure instead of fire-related changes in host plant quality [30,31].
Fire-induced changes in both resource and habitat quality therefore select for a
combination of generalist traits in post-fire herbivore communities. Despite these
insights, predicting herbivore responses to changing fire regimes is still challenging and
will require a better understanding of both the direct and indirect effects of fire on
herbivore communities across a wider array of habitats.

Our understanding of responses of insect pollinators to fire is mainly focused on
floral resources (Fig. 1D), and less on nesting habitat or mortality due to fire. Notably,
many ground-nesting species do survive fires [12] and are positively associated with
recent burns in some systems [32]. After fire opens space for flowering plants to thrive,
pollinators are attracted to abundant floral resources [e.g. 33]. Pollinator abundance and
diversity, especially of diet-generalist bees [22], show a strong time-since-fire signal,
peaking soon after fire and decreasing with declining floral resources as succession

proceeds [34]. These successional trajectories differ depending on fire severity [35], life
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history, and ecosystem. However, species with different nesting habitats (e.g. below-
ground vs. above-ground) are not influenced by time-since-fire in all ecosystems [36].
Changes in fire regimes may favor large-bodied pollinators that can more rapidly
colonize the center of large burns and generalists that can forage in recently burned
areas despite restricted floral options.

Responses to fire by higher trophic levels (e.g. predators and parasitoids) are
tied to prey recovery and are therefore sensitive to mismatches in species responses.
Predators with generalized diet breadths are typically able to recover more rapidly than
diet-specialists. For example, several recent studies detected no post-fire changes in
the abundance and diversity of spiders and predaceous beetles, which tend to be
generalist-feeders [37,38]. Relative to many predators, parasitoids tend to be more
specialized on specific hosts and sensitive to fire-induced shifts in community structure.
Parasitoid responses to fire may also be taxon-specific, as shown with other types of
disturbances. For example, variability in precipitation and host-availability affects
specialized hymenopteran parasitoids more than generalized dipteran parasitoids [39].
Taken together, diet-generalist predators are likely to be more resilient to changes in
global fire regimes than diet-specialist predators and parasitoids. However, other
studies have found mixed effects of fire, indicating that habitat type, taxonomic group,
dispersal ability, and time-since-fire are all important components of predator recovery
[e.g. 40,41,42]. Changing fire regimes may further exacerbate mismatches in species
interactions post-fire, resulting in longer recovery times or altered community

composition (e.g. more generalist-feeding predators). For instance, fire can cause
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increased soil temperatures that promote earlier hatches of soil-dwelling insects [2] or
provide some organisms temporary relief from specialist natural enemies [4,43].
Habitat quantity and quality may be more important for the short-term recovery
of litter- and soil-dwelling arthropod communities than other traits such as dispersal
ability [44](Fig. 1E). Fire reduces or eliminates the availability of resources and habitat
space for detritivores and other litter insects in the short-term [45]. In the long-term, the
abundance of soil arthropods are not commonly affected [reviewed in 46], but their
diversity decreases and can remain altered for decades due to persistent changes in
resource quality [47]. While belowground habitat and resources for insects increase as
plant communities recover in some systems [48], high-frequency fires also result in
reduced soil carbon and nitrogen over decadal timescales in others (e.g. broadleaf
forests and savannah grasslands)[49]. Therefore, recovery of soil arthropods [41,50] is
influenced by a combination of pre- and post-fire soil quality, litter availability, and plant
composition, necessitating consideration of short- and long-term legacy effects of fire to

understand detritivore responses.

Adaptive Traits and Potential Evolutionary Responses to Fire

Species that are able to survive fire or recolonize fire-affected areas can benefit
from post-fire conditions via increased resource availability [26,51,52], advantageous
habitat alterations [33], and/or altered species interactions [e.g. reduced predation,
4,13](Fig. 1F,G). Many insects currently exhibit a variety of morphological, behavioral,
and life history traits that allow them to survive fire events and recover quickly from fire

disturbance [2](Fig. 1C). Some of these include morphological adaptations to detect fire,
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including smoke-detecting antennae in cerambycid beetles [53] and infrared radiation
sensors in buprestid beetles (Melanophila acuminata)[54]. Such traits can allow them to
escape fire, synchronize emergence, and locate resources and mates post-fire [e.g. 55].
Many insects exhibit adaptive behaviors to fire, such as climbing trees, fleeing, and
burrowing into the soil [2,56-58]. Life history traits that can improve survival to fire
include living some or all life stages belowground [2,59], high-dispersal capabilities [13],
and diet- and habitat-generalism [23,60].

Even within habitats that have historically been exposed to fire, it is unclear how
changes in the fire regime, such as increased fire frequency and severity [3], may
ultimately affect insect communities. While more frequent low-severity fires could favor
fire-adapted insects [13], they could also pose risks to species that thrive during later
successional stages. As fires become more severe, species adapted to low-severity
fires may be negatively affected and community recovery times may increase. Changing
fire regimes could influence community-level succession in unpredictable ways, such as
by preventing species from recolonizing from non-burned patches, or by imposing
severe founder effects and genetic bottlenecks. Under certain conditions, changes in
fire regimes could result in evolutionary tipping points and population collapse [61].
Insect species from more variable environments might have higher degrees of plasticity
and may therefore be better adapted to cope with increasing extreme fire events [62].
However, selection and the potential for rapid evolution could be strongest on species
with limited phenotypic plasticity [63].

Emerging evidence suggests that global changes have the potential to drive

evolutionary trajectories of functional traits that lead to eco-evolutionary feedbacks to
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ecosystem processes [64]. Fire is one such global change that may serve as both an
important selection pressure and driver of changes in the function of insect communities
(Fig. 1). Few studies connect shifts in insect communities with ecosystem processes
such as carbon and nitrogen cycling in fire-affected ecosystems, but fire does alter the
functional roles of these organisms. For example, although pollination levels can be
high after fire [i.e., pollen deposition, 9], pollinator visitation and seed set vary with time-
since-fire [e.g. 33,65,66]. It is an open question whether post-fire insect communities
alter the environment to a degree that may feedback to fire frequency and severity (Fig
1H), but this area warrants further investigation. In particular, as insects serve key
functions within ecosystems as herbivores, pollinators, and detritivores, their responses
to changing fire regimes could influence the susceptibility of some ecosystems to future

fires (e.g. via biomass removal from herbivory).

Conclusions and Perspectives

Several fundamental challenges have limited an eco-evolutionary approach to
linking insect communities and changing fire regimes. First, our current understanding
of insect responses to fire is largely skewed toward observational studies in grasslands
and forests where fire is common and taxa already tend to possess fire-adapted traits
[1,2,13]. Second, most studies use a single fire to document insect responses, but these
effects cannot be extrapolated to predict changes in community interactions,
evolutionary responses, or ecosystem functions due to frequent, repeated disturbances.
Third, fires do not occur in isolation of other global changes. Altered fire regimes could

exacerbate effects of other selective pressures, including changes in temperature,
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precipitation, nutrient pollution, habitat fragmentation and degradation, invasive species,
range shifts, biodiversity loss, as well as spatially and temporally mismatched biological
interactions [e.g. 67,68]. How insect responses to fire are influenced by these and other
drivers of global change still needs to be assessed.

Future studies can address these gaps by using manipulative experiments of fire
frequency and severity to investigate effects of fire regimes (as opposed to single fires),
on insect communities. These types of studies are particularly important in ecosystems
where wildfire is historically rare but projected to increase (e.g. tundra)[3,69].
Experimental approaches allow for systematic manipulation of variables such as fire
severity, focal taxa, burn season, and abiotic conditions, all of which play into the
ecological and evolutionary responses of insect communities. While recent studies have
worked towards understanding habitat and resource heterogeneity [e.g. 70], future
experimental study designs should be more explicit in incorporating temporal and
spatial variability when considering the resilience of insect communities to changing fire
regimes. Similarly, a better understanding of post-fire feedbacks between plant recovery
and insect-driven ecosystem services (e.g. herbivory, detritivory, pollination) could be
achieved through experimental manipulations of these community components. Long-
term experiments that manipulate other global change variables along fire frequency
and severity gradients (e.g. Konza Prairie and Arctic LTERs) provide opportunities for
insect ecologists to advance our understanding of the interactive effects of multiple
disturbances.

As fire regimes continue to shift as a result of climate change [3], insects and the

ecological communities they inhabit are also likely to change. A better understanding of
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the effects of these changing fire regimes on insects will require consideration of the
actual traits (e.g. diet and habitat generalism, dispersal ability, belowground life stages,
temperature tolerance) that enable insects to survive and/or benefit from fire, how these
traits vary across sites, and how quickly they are able to change in species with different
ecological and natural history backgrounds. Experimental approaches that use insects
are a promising way to further develop understanding of eco-evolutionary feedbacks in

response to changing fire regimes and other types of disturbances.
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Figure Caption

Figure 1. Conceptual diagram depicting the ecological and evolutionary effects of fire on
insect and plant communities. Fire directly affects insect (A) and plant (B) mortality and
also has a number of indirect effects that act as selection pressures on insect traits (C).
Indirect effects of fire (C) can include long-term changes to plant and detrital resource
availability, quality, and heterogeneity, as well as habitat structure. Short-term indirect
effects include immediate changes to soil nutrients, moisture, and temperature. Plant
community responses and recovery to fire are influenced by insect herbivory and
pollination (D) and by insect effects on detritivory and nutrient cycling (E). Likewise,
recovery of the insect community is tightly tied to the resources and habitat provided by
the plant community (D, E). The strength and timing of species interactions within the
insect community (F), such as predation, parasitism, competition, and mutualism, vary
with time since fire and can also affect insect community recovery. Insect and plant
communities are adapting and evolving in response to fire-induced selection pressures
on insect traits (G). On a longer timescale, post-fire changes to plant community
biomass and composition due to interactions with insects (e.g. biomass removal due to
herbivory) may result in eco-evolutionary feedbacks to fire regimes that either promote
or inhibit future fires (H). Changes in fire severity, extent, frequency, and duration may
amplify and/or attenuate the strength of these fire effects on insect and plant

communities.
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