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Abstract—Tissue motion makes perfusion ultrasound imaging
without contrast difficult. We previously developed an adaptive
demodulation (AD) method to correct for this motion prior
to tissue filtering. Additionally, 2D space and time eigen-based
clutter filtering has been shown to be superior to conventional
frequency domain filtering performed only in the slow-time
dimension, especially when long ensembles are used. We have
shown that combining AD with singular value decomposition
(SVD) filtering can improve slow blood flow detection. Here, we
aim to develop and evaluate an adaptive independent component
analysis (ICA) approach to clutter filtering and compare it to
adaptive SVD filtering with and without AD using simulations
and a single vessel phantom. We show that AD+ICA and ICA
produce the highest blood-to-background signal-to-noise ratios in
simulations and in the phantom, respectively.

Index Terms—perfusion, adaptive demodulation, indepen-
dent component analysis, singular value decomposition, power
Doppler, ultrasound

I. INTRODUCTION

Efficient tissue clutter filtering is challenging but crucial for
ultrasound blood flow imaging. Without contrast, tissue needs
to be filtered because blood signal is weaker than tissue and
cannot be visualized. Tissue can also move at similar or greater
velocities than perfusion or the slowest flow, causing a spectral
overlap in the slow-time dimension [1]. This overlap makes
conventional slow-time frequency domain filtering difficult.
Additionally, conventional focused Doppler techniques are
limited to small ensemble lengths, resulting in insufficient
sampling for optimal tissue filtering [2].

To overcome these problems, several beamforming and
post-processing advancements have been proposed. Among
these is an adaptive tissue clutter demodulation (AD) technique
that we previously developed to suppress the tissue clutter
bandwidth prior to filtering [3]. Additionally, spatio-temporal
singular value decomposition (SVD) filtering has been pro-
posed in combination with plane wave synthetic focusing to
overcome both the slow-time dimension and ensemble length
limitations [4]. We previously showed that combining AD
with an adaptive SVD filter [5] as well as plane wave syn-
thetic focusing can further improve tissue clutter suppression,
especially for smaller ensembles [6]. However, although the
slow-time frequency-domain spectra overlap problem is better
addressed with AD and SVD, tissue and blood principal
components in the eigen-domain are not always distinct [7].

To overcome the eigen-domain overlap problem, we propose
an adaptive independent component analysis (ICA) approach
to tissue filtering in combination with the benefits of AD
and plane wave synthetic focusing. ICA differs from SVD or
principal component analysis (PCA) in that it identifies and
separates based on higher order correlations that could oth-
erwise cause principal components to overlap. ICA has been
investigated previously in comparison to principal component
analysis (PCA) methods and was shown to better separate
tissue and blood [8]. However, ICA-based filtering has not
yet been evaluated with other recent advancements in slow-
flow ultrasound imaging. Furthermore, we propose an adaptive
blood component selection reminiscent of the adaptive SVD
approach proposed by Song et al. [5].

II. METHODS

A. Theory and Implementation

We first assume a simple signal model, s, consisting of
tissue, blood, and noise that is three dimensional in depth,
lateral position, and time. Similar to SVD approaches, we start
by reshaping s into a two dimensional casorati matrix, S, in
space and time [4]. We then transpose S, take only the real
part, and perform a singular value decomposition, S = UλV ′,
where U and V are the temporal and spatial eigenvectors of
S, respectively, and λ contains the singular values. We remove
noise here using the same adaptive method as in Song et al.
[5], such that Stissue+blood = Uλtissue+bloodV

′. To reduce
dimensionality, we perform ICA on the spatial eigenvectors
only, Ss = λtissue+bloodV

′.
ICA generally works by solving for two unknowns, A and

D, such that Ss = AD. A is a square mixing matrix and
D is our unmixed signal. ICA works by first solving for A,
and then using A−1 to solve for D. Several techniques exist
for solving for A. We use a maximum likelihood approach
with BFGS optimization [9]–[11]. Once we solve for D,
we can reconstruct blood using only the blood independent
components in A and D, such that Sblood = UAbloodDblood.
Finally, we can transpose and reshape Sblood back to the
original three dimensions in depth, lateral position, and time.

In this work, we developed an automated method for se-
lecting the blood independent components using the energy of

the components through time, E =
√
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T
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descending energy. Using two thresholds, we compute when
the slope of E stops changing (from left to right) as well
as when it starts to increase (from right to left). The mean
of these two values is used as the cutoff between tissue and
blood.

B. Simulations

A 0.5mm diameter vessel of blood scatterers within a 0.6 by
1cm area of tissue scatterers was constructed. Blood moved
laminarly at a peak velocity of 1mm/s. Displacements esti-
mated from hand motion phantom data were used to displace
the tissue and blood scatterers to generate 6 realistic tissue
motion realizations.

Field II [12] was used to simulate a 9-angle plane wave
transmit sequence evenly spaced between -8◦ and 8◦. A
7.8MHz frequency and PRF of 9kHz (1kHz frame rate) were
used to acquire 1s of data. Channel data were beamformed
using the method by Montaldo et al. [13].

AD was applied to all beamformed RF data as described in
Tierney et al. [3], and tissue was filtered using both adaptive
SVD and ICA. Adaptive SVD was implemented as in Song
et al. [5], and adaptive ICA was implemented as described in
the previous section.

C. Phantom

A polyvinyl alcohol and graphite mixture was used to make
a phantom with a 0.6mm diameter vessel within a 2 by 3cm
mold. After one freeze-thaw cycle, a syringe pump was used
to flow blood mimicking fluid through the vessel at an average
velocity of 1mm/s.

A Verasonics L12-5 probe was used to acquire plane wave
channel data using the same transmit sequence that was used
for simulations (1s, 9 angles, 7.8MHz frequency, 9kHz PRF).
A volunteer held the probe during the acquisition to generate
realistic tissue motion.

Channel data were beamformed and AD was applied the
same way as was done for simulations. Different thresholds
were used for SVD and ICA, but filtering was otherwise
implemented the same as was done for simulations.

D. Image Quality Metrics

Power Doppler images were made by summing the squared
filtered signal through slow-time. Blood-to-background signal-
to-noise ratios (SNR) were computed as in Li et al. [14]. SNR
was computed on power Doppler images made using ensem-
bles between 20ms and 1s. B-mode and power Doppler images
were log compressed and scaled to individual maximums and
fixed dynamic ranges.

III. RESULTS & DISCUSSION

A. Simulations

Figure 1a shows simulated average blood-to-background
SNR for ensemble sizes between 20ms and 1s for each filtering
method with and without AD. AD+ICA produces the highest
overall SNR when using a 400ms ensemble size. ICA and

AD+ICA are more variable on average than SVD or AD+SVD,
which have more consistent trends.

Figure 1b shows power Doppler images for an example
realization at the 400ms ensemble for each filtering method
with and without AD. Qualitatively, ICA and AD+ICA sup-
press background noise better than SVD. For this example,
AD+SVD appears to make the vessel signal brighter and also
suppresses the background noise better than SVD by itself.
AD+ICA also appears to make the vessel brighter compared
to ICA by itself, but ICA appears to suppress the background
noise better than AD+ICA.

Fig. 1. (a) Average simulated blood-to-background SNR (± standard error)
for each filtering method: SVD (solid orange), AD+SVD (dashed orange),
ICA (solid green), AD+ICA (dashed green). (b) B-mode and power Doppler
images for an example realization scaled to 60dB and 15dB, respectively.

B. Phantom

Figure 2a shows blood-to-background SNR for ensemble
sizes between 20ms and 1s for each filtering method with
and without AD for the phantom realization. ICA by itself
produces the highest overall SNR when using a 400ms ensem-
ble size. ICA and AD+ICA overall produce higher SNR than
SVD and AD+SVD for larger ensemble sizes (above 300ms).
AD+ICA produces the highest SNR for smaller ensemble
sizes.

Figure 2b shows power Doppler images of the phantom
using a 400ms ensemble for each filtering method with and
without AD. Similar to the simulation results, qualitatively,
ICA and AD+ICA suppress background noise better than
SVD. For this realization, AD+SVD appears to suppress the
background noise better than SVD. ICA by itself for this case
suppresses the background noise the best.
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Fig. 2. (a) Average phantom blood-to-background SNR (± standard error)
for each filtering method: SVD (solid orange), AD+SVD (dashed orange),
ICA (solid green), AD+ICA (dashed green). (b) B-mode and power Doppler
images for an example realization scaled to 60dB and 20dB, respectively.

IV. CONCLUSION

Tissue clutter filtering remains challenging when trying
to image slow flow or perfusion. Several recent advance-
ments in beamforming and tissue filtering have been proposed
to improve tissue clutter suppression, including plane wave
synthetic focusing, adaptive tissue clutter demodulation, and
adaptive SVD filtering. Although ICA has been considered
for tissue filtering in the past, it has yet to be evaluated in
combination and in comparison to other recent advancements.
Here, we developed an adaptive ICA-based tissue filtering
approach and evaluated it in comparison to adaptive SVD
with and without AD and with plane wave synthetic focusing.
We demonstrate that adaptive ICA can improve blood-to-
background SNR compared to adaptive SVD filtering.
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