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Shear rate dependent margination of sphere-like,
oblate-like and prolate-like micro-particles within
blood flow †

Huilin Ye,a Zhiqiang Shen,a and Ying Lia,b‡

This study investigates the shear rate dependent margination of micro-particles (MPs) with differ-
ent shapes in blood flow through numerical simulations. We develop a multiscale computational
model to handle the fluid-structure interactions involving in the blood flow simulations. Lattice
Boltzmann method (LBM) is used to solve the plasma dynamics and a coarse-grained model is
employed to capture the dynamics of red blood cells (RBCs) and MPs. These two solvers are
coupled together by immersed boundary method (IBM). The shear rate dependent margination of
sphere MP is firstly investigated. We find that margination of sphere MP dramatically increases
with the increment of wall shear rate γ̇ω under 800 s−1, induced by the broken of rouleaux in blood
flow. However, the margination probability only slowly grows when γ̇ω > 800 s−1. Furthermore, the
shape effect of MPs are examined by comparing the margination behaviors of sphere-like, oblate-
like and prolate-like MPs under different wall shear rates. We find that the margination of MPs
is governed by the interplay of two factors: hydrodynamic collisions with RBCs including collision
frequency and collision displacement of MPs, and near wall dynamics. MPs that demonstrate
poor performance in one process such as collision frequency may stand out in the other process
like near wall dynamics. Specifically, the ellipsoidal MPs (oblate and prolate) with small aspect
ratio (AR) outperform those with large AR regardless of the wall shear rate, due to their better
performance in both the collision with RBCs and near wall dynamics. Additionally, we find there
exists a transition shear rate region 700 s−1 < γ̇ω < 900 s−1 for all of these MPs: the margination
probability dramatically increases with shear rate below this region and slowly grows above this
region, similar to sphere MPs. We further use surface area to volume ratio (SVR) to distinguish
different shaped MPs and illustrate their shear rate dependent margination in a contour on shear
rate-SVR plane. It is of significance that we can approximately predict the margination of MPs
with specific SVR. All these simulation results can be potentially applied to guide the design of
micro-drug carriers for biomedical applications.

1 Introduction
Micro-particles (MPs) play important roles in the delivery of ther-
apeutics and imaging agents in biomedical fields such as cancer
treatment and magnetic resonance imaging1–5. During the circu-
lation of MPs in blood flow, margination, defined as the migration
from center of blood stream towards the vessel wall, is the first
step for MPs to reach tumor sites. It is also crucial for the occur-
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rence of subsequent processes, namely adhesion of MPs on the
endothelial cells and their transmigration across the endothelial
wall. However, the efficacy of MPs can be dramatically reduced
by a number of biophysical barriers such as cellular uptake by
immune cells6 and degradation by protein absorption (opsoniza-
tion)7 during the blood circulation. Therefore, the design, syn-
thesis and modification of MPs have attracted a lot of attention,
aiming to maximize their margination towards biological targets
by overcoming biophysical barriers.

The past two decades have witnessed significant advances in
the optimal design of nano- and micro-particles as drug carri-
ers1,5,8–11. It has been recognized that the geometrical features
of MPs is one of the key design parameters12–14. The typical MP
shape includes sphere-like (sphere and cubic), oblate-like (disc
and oblate) and prolate-like (rod and prolate), which we con-
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sidered in this study. A number of relevant efforts have been
dedicated to understand the margination of different shaped MPs
under flowing conditions. For instance, in the absence of red
blood cells (RBCs), nonspherical particles (discoidal particle15

and rod particle16) are found to marginate more readily than
spherical and hemispherical counterparts. Further theoretical
analysis confirmed that discoidal particles showed largest propen-
sity to marginate in a linear laminar flow17. In the real blood
flow, margination of MPs should be influenced by the existence
of RBCs18,19. Tokarev et al.20 proposed a mathematical model
to predict the margination of platelets within blood flow, which
was attributed to the frequency of near-wall rebounding collisions
with RBCs. In the in vivo experiments, discoidal particles were
observed to accumulate more than others in most of the human
organs21. Further experiments conducted by van de Ven et al.22

revealed that disk-like MPs demonstrated higher accumulation at
the near wall region of tumor sites compared to other shaped
MPs. These evidences clearly demonstrate the nonspherical parti-
cle outperforms spherical counterpart in terms of localization on
the wall.

However, the studies mentioned above cannot tell whether
oblate-like or prolate-like MPs demonstrate superior performance
as drug carriers. Furthermore, it should be emphasized that in
many simulations and experiments, the margination is usually
measured based on the counting of number of MPs adhered on
the walls. For example, Thompson et al.23 found that rod MPs dis-
played improved margination compared to spheres of equal vol-
ume. This result is based on the counting of MPs binding on the
walls. Obviously, the margination and adhesion are two separate
processes which are not easy to be differentiated in experimental
studies. MPs that performs better in one of the processes cannot
ensure their better performance in the other one. Vahidkhah and
Bagchi24 investigated these two processes separately. They found
that oblate particles of moderate aspect ratio showed the high-
est near wall accumulation, and the prolate MPs performed the
worst in the margination process. While in the adhesion process,
the oblate particles had strongest adhesion, and the sphere MP
is the worst. Though only considering the margination process,
the shape dependence of MPs on margination behavior is very
complicated. For instance, Reasor et al.25 found that spherical
MPs showed higher margination than that of disk-like ones such
as oblate in their computation study. This is inconsistent with the
results presented in Vahidkhah and Bagchi24. Also, in both sim-
ulation26 and experiment23, it was found that sphere MP indeed
showed higher accumulation than rod-like (prolate) MP.

One of the major reasons for above discrepancy may be the
flow conditions. From simulations to experiments, the flow con-
dition like shear rate varies by one or two orders of magni-
tude. Tilles and Eckstein27,28 observed that the accumulation of
platelet-sized MPs strongly depended on the wall shear rate of
the flow, and they found a critical wall shear rate under which
there is no significant accumulation of MPs. Besides, Gentile et
al.15 found that the margination dynamics of MPs with differ-
ent shapes manifested different dependences on the shear rate
of flow. The influence of flow condition was further confirmed
by Muller et al.26: when increasing the shear rate of the flow,

the difference of margination between sphere and prolate would
become smaller.

Hence, present study further explores the shear rate effect on
the margination of different shaped MPs in blood flow from pure
hydrodynamic perspective, without considering the near wall ad-
hesion. We develop a multiscale computational model to study
the margination behavior of sphere-like, oblate-like and prolate-
like MPs in the blood flow, which is modeled as a suspension
of RBCs within blood plasma. The margination probability is
adopted to quantify the margination behaviors of different shaped
MPs. We find that the margination dynamics of MPs are governed
by their collision with RBCs and near wall motion. The shear rate
influences the margination dynamics through affecting the colli-
sion frequency, collision displacement and near wall motion. Fur-
thermore, we find that all the different shaped MPs have the same
trend of shear rate dependent margination. For the differences
in margination probabilities of different shaped MPs, we can ex-
plain them reasonably well by comparing the collision and near
wall motion. Lastly, we create a contour plot for the margination
probability of different shaped MPs on the shear rate-surface area
to volume ratio (SVR) plane. It provides the direct guidance for
the optimal design of MPs by maximizing their margination.

This work is organized as follows. Section 2 identifies the phys-
ical problem of MPs transport in blood flow and numerical meth-
ods we employ to solve fluid flow and particle dynamics. Section
3 presents the margination results, and a detailed discussion of
different physical mechanisms is proposed. In Section 4, conclud-
ing remarks are given.

2 Computational Model and Numerical
Method

2.1 Physical problem

The blood flow is mainly consisted by RBCs and plasma. Other
components such as white blood cell (also namely leukocyte) and
platelets are not considered here due to their low volume frac-
tion (∼ 1%). In the normal human blood vessel, the occupation
of RBCs (hematocrit) is about 45% in volume fraction. Although
the plasma contains protein, glucose and mineral ions, 92% by
volume of it is water. So, it is usually considered as a Newtonian
fluid. The MPs carrying drug molecules will move with the bulk
flow after they are intravenously injected into blood vessel. There
are two typical while opposite motions happening in blood flow.
The first is the migration of RBCs away from vessel wall. This
cross-stream migration is induced by the deformation of RBCs.
Due to the existence of wall, deformed RBCs break up the sym-
metry of Stokes flow (Reynolds number of blood flow in venule or
vein is usually about O(10−6 ∼ 10−3)) and experience a lift force
guiding them to move away. This migration of RBCs results in
the formation of a cell-free layer (CFL) near the vessel wall, in
which there is no RBCs. Also, it leads to RBC-rich layer in the
center region of channel. The famous Fahraeus-Lindqvist effect29

is caused by the CFL which acts as a lubricant layer to reduce the
blood flow resistance. Comparing with the migration of RBCs,
the other typical motion in blood flow is the margination of stiff
or rigid particles, including white blood cells, nano- and micro-
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drug carriers. Together with the shear stress exerted by the flow,
the interaction between MPs and RBCs such as collision drive the
MPs to move towards the vessel wall.

To systematically investigate the margination behaviors of MPs
under the interplay of shape and shear rate, we conduct 64 sim-
ulations in total. Here, 8 different wall shear rates ranging from
200 s−1 to 2000 s−1 are considered. This regime locates within the
normal physiological flow environment from venules to capillar-
ies30. We consider 8 typical shaped particles which is shown in
Figure 1(b) together with the RBC. All of these particles have the
same volume as the spherical one with diameter 1 µm. In addition
to the RBC model, the details of these particles such as the surface
area and discretization parameters are listed in Table. 1. A rect-
angular channel is adopted to represent the blood vessel shown
in Figure 1(a). Due to limit of computational resource, only part
of the vessel with length of 54 µm (y-direction), width of 27 µm
(x-direction) and height of 36 µm (z-direction) is employed. We
applied periodic boundary conditions in length and width direc-
tions. And height direction is bounded by two fixed flat plates.
The flow is driven by pressure difference in y-direction. Then the
flow configuration in y-z plane is parabolic (plane Poiseuille flow)
whose velocity contour is displayed in Figure 1(a). Because the
channel size is not small (∼ 36 µm in height), this slit-like channel
can reproduce the similar results compared to those in the tubu-
lar channel. Based on the 2D Poiseuille flow, the velocity profile
in shear plane (y-z plane) should be v(z) = − 5p

2µL z(h− z), where
v is the velocity along y-direction, 5p is the pressure difference
between the inlet and outlet with distance L in flow direction (y-
direction) and h is the height of the channel. The wall shear rate
γ̇ω is defined as: γ̇ω =

dv(z)
dz |z=0 = −5ph

2µL . In the rest of this work,
the shear rate points to wall shear rate unless otherwise stated.
162 RBCs and 80 MPs are randomly placed in the channel. Then
the hematocrit in present study is about 29.1%. In the human
body’s microvasculature network, the hematocrit locates within
the range 20∼ 40 %26. Here, we choose an intermediate value. It
should be noted that the MPs are initially constrained within the
center region of the channel. It on one hand results in the more
obvious margination behaviors of MPs, and on the other hand
make the comparison of MPs with different shapes more convinc-
ing through eliminating the influence of initial configuration. In
our mulations, the wall shear rate γ̇ω is varied by tuning the pres-
sure difference 5p. And the dimensionless time in the results is
defined as: t∗ = t γ̇ω .

2.2 Numerical method

2.2.1 Lattice Boltzmann method for fluid flow

Due to ignorance of minorities of blood components such as pro-
tein and glucose, the blood plasma behaves as a Newtonian fluid.
The dynamics is governed by the continuity equation and incom-
pressible Navier-Stokes (NS) equation:

∇ ·v = 0, (1)

∂v
∂ t

+v ·∇v = −∇p
ρ

+µ∇
2v+F, (2)

where ρ is the plasma density, v is the velocity of flow, and p
represents the pressure of the flow. F is the body force and µ is
the dynamic viscosity of the plasma. We employ the Lattice Boltz-
mann method (LBM) to solve the NS equation. LBM is one of
the fluid dynamics solver with over 20 years development31. It is
adopted due to its high efficiency and natural parallelism. And it
is confirmed that LBM is accurate enough to handle incompress-
ible Newtonian flow. Based on the linearized Boltzmann equa-
tion, a finite difference scheme can be obtained by discretizing
velocity in Eulerian space:

fi(x+ei∆t, t +∆t) = fi(x, t)−
∆t
τ
( fi− f eq

i )+Fi, (3)

where fi(x, t) is the distribution function and ei is the discretized
velocity. Current simulations adopt the D3Q19 velocity model,
and the details such as the discretized velocity value and direction
are introduced in Mackay et al.32. In the Eq. (3), τ is a non-
dimensional relaxation time scale, and it is related to the dynamic
viscosity of the fluid with the form: µ = ρc2

s (τ − 1
2 )∆t. f eq

i (x, t)
is the equilibrium distribution function and Fi is the discretized
scheme of external force. They have the form33:

f eq
i (x, t) = ωiρ

[
1+

ei ·u
c2

s
+

(ei ·u)2

2c4
s
− (u)2

2c2
s

]
, (4)

and

Fi = (1− 1
2τ

)ωi

[
ei−u

c2
s

+
(ei ·u)

c4
s

ei

]
·F, (5)

where the weighting coefficients ωi = 1/3 (i = 0),ωi = 1/18 (i =
1− 6),ωi = 1/36 (i = 7− 18). The term cs represents the sound
speed which equals ∆x/(

√
3∆t).

Here, the solver of LB we adopt is the embedded form
in Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)34, which is implemented by Mackay et al.32. The
macroscopic properties of the fluid density and velocity can be
calculated as the following form after the particle density distri-
butions are known:

ρ = ∑
i

fi, u =
1
ρ

∑
i

fiei +
1

2ρ
F∆t. (6)

2.2.2 Coarse-grained model for RBCs and MPs

A coarse-grained model is developed to capture the dynamics
of RBC, and it is implemented into LAMMPS. Utilizing the high
efficiency of LAMMPS due to its optimal parallelization, large
scale systems with thousands, even millions of RBCs can be han-
dled. In our simulations, a RBC is modeled as two dimensional
liquid-filled coarse-grained membrane with no thickness. It is dis-
cretized into 3286 vertices and 6568 triangular elements. We use
a series of potential functions to capture the mechanical behav-
iors of RBC. The stretching potential Ustretching is used to describe
the in-plane shear property of RBC through coupling attractive
nonlinear spring potential - worm-like chain model (WLC) with
repulsive power potential - power function (POW)35,36:

UWLC =
kBT lm

4p
3x2−2x3

1− x
, UPOW =

kp

l
, (7)
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Domain size: 27𝜇𝑚 × 54𝜇𝑚 × 36𝜇𝑚
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Fig. 1 (a) Computational model of blood flow. (b) Shapes of RBC and 8 different shaped particles.

Table 1 Parameters of RBC and MPs in simulations.

Type Volume (µm3) Surface area (µm2) Vertices Elements Surface area to volume ratio (SVR (µm−1))
I. RBC 94.1 134.1 3286 6568 -

II. Sphere 0.52 3.14 198 392 6.0
III. Rod 0.52 3.63 326 648 6.95

IV. Cubic 0.52 3.16 196 368 6.05
V. Disc 0.52 3.66 196 388 7.01

VI. Oblate (AR=3) 0.52 3.93 318 632 7.51
VII. Oblate (AR=2) 0.52 3.43 334 664 6.55
VIII. Prolate (AR=3) 0.52 3.70 318 632 7.07
IX. Prolate (AR=2) 0.52 3.37 342 680 6.45

where kBT is the energy unit. x = l/lm ∈ (0,1), represents the
extension ratio, l is the length of the spring and lm is the maximum
spring extension. p is the persistent length, and kp is the POW
force coefficient. The coefficients are calibrated by the physical
value of the shear modulus which will be discussed later. The out-
of-plane torsion of RBC is reflected by applying potential function:

Ubending = ∑
k∈1...Ns

kb[1− cos(θk−θ0)], (8)

where kb is the stiffness coefficient. θk is dihedral angle between
two adjacent triangular elements, and θ0 is the initial value of
dihedral angle. In the following, subscript 0 represents the cor-
responding initial value unless otherwise stated. Ns denotes the
total number of dihedral angles. The bulk properties, including
surface area and volume conservation, are ensured by introduc-
ing the penalty forms:

Uarea = ∑
k=1...Nt

kd(Ak−Ak0)
2

2Ak0
+

ka(At −At0)
2

2At
, (9)

and

Uvolume =
kv(V −V0)

2V0
, (10)

where in Eq. (9), the two terms represent the local area and
global area constraint, respectively. Ak and At are the area of
k-th element and the total membrane, and kd and ka are the cor-

responding spring constants, respectively. In Eq. (10), kv is the
spring constant and V is total volume.

Then the total energy U is:

U =UWLC +UPOW +Ubending +Uarea +Uvolume. (11)

The nodal forces exerted on vertexes of the membrane are derived
by:

fi =−∂U(Xi)/∂Xi, (12)

where Xi denotes the vertex of membrane. Thus, if we know
the position of membrane vertexes, we can calculate the nodal
force according to Eq. (12). We choose the parameters in the
coarse-grained model of RBC through calibrating the macroscopic
properties with following relationship35,37,38:

µ0 =

√
3kBT

4plmx0
(

x0

2(1− x0)3 −
1

4(1− x0)2 +
1
4
)+

3
√

3kp

4l3
0

,

K = 2µ0 + ka + kd ,

Y =
4Kµ0

K +µ0
, (13)

where µ0 is the shear modulus, K represents the area compression
modulus and Y denotes the Young’s modulus. Through comparing
these macroscopic properties with those in experiments, we can
validate the accuracy of our developed model. And this process
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has been discussed in our previous works39,40.

The above model is also applied to approximately model rigid
MPs. Because the above potentials describe elastic properties of
the membrane, we consider rigid MPs as particles with high stiff-
ness and high stretching coefficient. We enlarge the coefficients
involving in the potential functions of RBC by one order except
the change of shear modulus is two order higher. Additionally, we
impose about 2% volume expansion to the initial state of MPs.
The details of the parameters used in the simulations are listed
in ESI†Table. S1. In addition to the above potentials, it is nec-
essary to employ inter-molecular potential among RBCs to char-
acterize their interactions. Here we use the Morse potential as
inter-molecular interactions18,36,41:

Umorse = D0[e−2β (r−r0)−2e−β (r−r0)],r < rc, (14)

where D0 represents the energy well depth and β controls the
width of potential well, r is the distance between two particles and
r0 is the equilibrium distance, rc is the cutoff distance. Addition-
ally, a short range and pure repulsive Lennard-Jones (LJ) poten-
tial is applied to prevent the overlap between RBCs and MPs40. It
should be noted that the Morse potential and LJ potential are ap-
plied on the vertices of RBCs and MPs. The parameters of morse
potential and LJ potential are provided in ESI†Table. S1.

2.2.3 Immersed boundary method

The LBM and LAMMPS, which account for fluid and structure dy-
namics respectively, are coupled by the immersed boundary (IB)
method. IB was firstly proposed by Peskin42 to investigate the
heart valve motion in the blood flow. And it is developed to simu-
late deformable objects immersed in the flow. Detailed derivation
and application of IB method can be found in Refs.43–46. Briefly,
we use the Lagrangian (X) and Eulerian (x) mesh points in the
computational domain to represent RBC and fluid particles, re-
spectively. The Eulerian mesh is uniform and the resolution is
∆x = 250 nm in all directions. The Lagrangian mesh for RBC or
MP is created by MATLAB47,48. The mesh is approximately uni-
form and the size is about ∆X = 0.6 ∼ 0.8∆x. There are about
32 Eulerian points across major axis of one RBC. This is accurate
enough to capture the deformation and motion of RBCs24,49. The
coupling is fulfilled by the interpolation of velocity and force dis-
tributions between Lagrangian and Eulerian mesh points50.

First, to ensure no-slip boundary condition, the membrane ver-
tices X with Lagrangian coordinate s should move with the same
velocity as the fluid around it. That is:

∂X(s, t)
∂ t

= u(X(s, t)). (15)

The velocity can be interpolated by the fluid velocity through a
smoothed Dirac-Delta function δ :

u(X, t) =
∫

Ω

u(x, t)δ (x−x(X, t))dΩ. (16)

In the present 3D study, four-points interpolation template is
adopted, and it is chosen to be:

δ (x−xs(Xs, t)) = δ (x− x(Xs, t))δ (y− y(Xs, t))δ (z− z(Xs, t)), (17)

where

δ (r) =

{
1
4 (1+ cos( π|r|

2 )), r ≤ 2
0. r > 2

(18)

Then the membrane moves with the velocity u(X, t), and mem-
brane force density F(s, t) is obtained by derivation of the poten-
tial functions mentioned above. We distribute it to the surround-
ing fluid mesh points by the form:

f f si(x, t) =
∫

Ω

F f si(X, t)δ (x−x(X, t))dΩ. (19)

Afterwards, the fluid solver can update with this force density.
The above simulation scheme has been discussed in our previous
work in detail40.

3 Results and Discussion
In this part, the quantification of margination probability is firstly
defined. Secondly, we adopt the sphere MP as an example to
illustrate the dependence of margination behavior of MPs on wall
share rate. Lastly, we vary the shape of MPs and compare their
margination behaviors under different wall shear rates.

3.1 Quantification of margination probability

Apart from the definition, to have a direct observation, we show
the snapshots for margination behavior in Figure 2. At initial
state t∗ = 0, RBCs are in rest biconcave shapes and MPs are placed
among RBCs, but constrained around the center of channel. As
simulation progresses, at t∗ = 800, the whole system displays
parabolic shape due to the Poiseuille flow pattern. The biconcave
shape of RBC vanishes and RBCs align their major axes along the
shear direction. The most obvious phenomenon is that MPs accu-
mulate near the vessel wall. And this is more significant when the
simulation time further increases to t∗ = 2500.

Before quantifying the margination behavior of MPs, the thick-
ness of CFL should be estimated. Firstly, we remove MPs and only
leave RBCs in the channel. We apply different wall shear rates
and calculate the thickness of CFL using the same method pro-
posed by Fedosov et al.51. Figure 3(b) gives the result for CFL
thicknesses under different wall shear rates γ̇ω from 200 s−1 to
2000 s−1. We find that the CFL thickness increases with the in-
crement of γ̇ω when γ̇ω < 1000. Further increase of γ̇ω results
in approximately constant, even small decrease of the CFL thick-
ness. This is consistent with the previous experimental and com-
putational results51–53 shown in the Figure. The increase of CFL
thickness is attributed to the deformation of RBCs. When γ̇ω in-
creases, the deformation of RBC becomes more significant, and
the lift force RBC experienced due to the existence of vessel wall
increases54–56. However, higher shear rate can also strengthen
the hydrodynamic interactions among RBCs, which tend to ex-
pand RBC core in the flow. Thus, further increase of shear rate
could lead to small decrease of the CFL thickness.

Knowing the CFL thickness, we can investigate the margination
behavior of MPs quantitatively. We use the margination probabil-
ity Π(t) to characterize it. Π(t) is defined as:

Π(t) =
n f (t)−n f (0)

N
, (20)
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Fig. 2 Snapshots to show margination behavior of sphere with wall shear rate γ̇ω = 1000s−1.
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Fig. 3 Calculation of the CFL thickness. (a) Schematic of CFL in the blood flow. Shaded planes represent the boundaries of CFL. (b) Thickness of the
CFL under different wall shear rates.

where n f (t) represents the number of MPs with centers locating
within the CFL at time t, and N denotes the total number of MPs
in the channel. Note that we constrain MPs within the center
region at the beginning of simulation n f (0) = 0. In Figure 3(a),
the boundaries of CFL are illustrated as the shaded planes. When
the center of MP enters the region between CFL boundary and
vessel wall, we count it as marginated MP.

Figure 4(a) shows the evolution of the margination probabil-
ity for sphere MP under wall shear rate 500 s−1 and 1000 s−1. We
find that the evolution of margination probability can be split into
three stages. At first stage (t∗ < 500), the margination probability
dramatically increases as the simulation advances. After that, in
the second stage (500 < t∗ < 1800), the growth rate of margina-
tion probability slows but still increases with further increase of
simulation time. At the last stage (t∗ > 1800), it mostly reaches
a plateau with small variations. At the same time, we find the
margination probability fluctuates with the time. In some time
intervals, the fluctuations are significant. So when we take the
averaged value of the margination probability, the choice of the
averaged time interval should be very important. Here, there are
two steps for calculating the averaged value of margination prob-
ability. The first step is varying the integration time interval and
then we can obtain the evolution of the averaged margination
probability. The formulation is:

〈Π〉= 1
T

∫ ttotal

ttotal−T
Π(t)dt, (21)

where ttotal is the total simulation time, and T is the integration
backward time interval from the end of simulation. The evolu-
tion of averaged margination probability against T is shown in
Figure 4(b). We find that when T is small (T < 250), the aver-
aged values of margination probability are significant different.
It manifests that the averaged value of margination probability
strongly depends on the choice of T . However, 〈Π〉 becomes ap-
proximately constant with small fluctuation with further increase
of T . After we obtain the evolution of 〈Π〉, the second step is to
calculate the distribution of 〈Π〉. For example, for the sphere MP
under γ̇ω = 500 s−1, the minimum value of 〈Π〉 in Figure 4(b) is
about 0.675, and the maximum value is about 0.752. Then we
split this regime into several bins with size 0.005. We count the
value of 〈Π〉 locating within these bins and calculate their distri-
butions as shown in Figure 4(c). From these distributions, it is
obvious that the value 0.68 is the most possible 〈Π〉, and we take
it as the ultimate 〈Π〉. If the distribution of two adjacent bins are
close like the case of sphere MP under γ̇ω = 1000 s−1 shown in
Figure 4(d), we take the averaged value of these two bins as the
ultimate 〈Π〉. More cases are given in the ESI†Fig. S1.

3.2 Shear rate dependent margination

For simplicity, we adopt sphere MP as a typical case to demon-
strate the shear rate dependent margination of MPs. Figure 5
presents the particle concentration along height direction (z-
direction) of the channel. The height direction is split into bins
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with the same size 3 µm, which is comparable to the CFL thick-
ness. Then the particle concentration in the bins near the vessel
wall can reflect accumulation of MPs in the CFL. We compare
the particle concentration of sphere MP under γ̇ω = 200 s−1 and
γ̇ω = 500 s−1. The initial state (t∗ = 0) of them are the same, but
when simulation progresses, the particle concentration near the
wall under high shear rate (γ̇ω = 500 s−1) is more than that un-
der low shear rate (γ̇ω = 200 s−1). And the particle concentration
differences between these two cases are more significant at the
end of these simulations. This phenomenon shows that the in-
crement of shear rate can promote the margination behavior of
sphere MPs.

To quantify the margination behavior under different shear
rates, we calculate the averaged margination probability accord-
ing to the method mentioned above. Figure 6(a) shows the rela-
tionship between the averaged margination probability 〈Π〉 and
shear rate γ̇ω . It is found that 〈Π〉 increases with the increment
of shear rate, but the relationship is not simple. When shear rate
is low (γ̇ω < 800 s−1), 〈Π〉 increases dramatically, while under
higher shear rate the growth rate of 〈Π〉 becomes smaller. There
is almost no difference between the cases with γ̇ω = 800 s−1 and
γ̇ω = 1000 s−1.

The mean-squared displacement (MSD) of MPs is firstly exam-

ined to understand the underlying mechanism dominating the
shear rate dependent margination shown in Figure 6(a). Fig-
ure 6(b) presents the MSD result of sphere MPs in the flow un-
der different shear rates. In blood flow, the deformation of RBCs
induces the velocity fluctuation of the flow around them. This
perturbated flow causes the migration of particles either to center
region of channel or towards the vessel wall in the blood flow57.
From Figure 6(b), we find that the MSD of MPs splits into two
stages. The diffusion of MPs in the first stage is stronger than
that in the second stage. We calculate the diffusivity defined as
D =< ∆z2 > /2t in the first stage to account for the diffusional
cross-flow motion of MPs. It is found that D ranges from about
4 to 5× 10−8cm2s−1. The results are consistent with previous
studies24,58. It should be noted that this diffusivity is about 20
times larger than that in Brownian motion. According to Stokes-
Einstein Equation: D = kBT

6πµr , where kB is the Boltzmann constant,
T is temperature, µ is the dynamic viscosity of fluid and r is the
radius of the particle, we assume the T is the human body temper-
ature 37 ◦C, and µ is the corresponding plasma viscosity 1.2 cp, r
is about 0.5 µm, the diffusivity is about 1.8×10−9cm2s−1. We fur-
ther examine whether this is induced by the existence of RBCs or
not. We remove the RBCs in the flow, and monitor the migration
of MPs under the same flow condition. We find that the diffusion
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is very weak. We estimate the diffusivity D = 3.8× 10−9cm2s−1.
It’s about 10 times smaller than that with RBCs in the flow, which
means RBCs in the blood flow promote the diffusion of parti-
cles. We should also note that current simulations cannot con-
sider the hydrodynamic fluctuations due to limitation of compu-
tational method. There exists small, but significant differences
among the diffusions of MPs under different wall shear rates. The
diffusivity increases with the increment of the wall shear rate.
Here diffusivity is an indication of the interaction between RBCs
and particles. The difference for the shear rate dependent diffu-
sion of MPs should be attributed to the interaction between RBCs
and particles. This will be discussed in detail later.

Since the flow approximates Stokes flow, the inertial effect is

negligible here. The cross-flow motion of sphere MPs should be
independent on the shear rate due to the symmetry of Stokes flow.
Thus, the shear rate dependent margination of MPs should rely on
the existence of RBCs.To confirm this hypothesis, we conduct sim-
ulations to monitor the margination of sphere MPs without RBCs
in the channel. We find that the margination of MPs is very small
compared to that with RBCs in the flow (see ESI†for details). We
inspect structures of RBCs in the blood flow under different shear
rates in Figure 7. When shear rate is not high (γ̇ω < 500 s−1), the
rouleaux structure induced by the aggregation of RBCs is obvious
in the blood flow, and it is denoted by using the dashed blue cir-
cle. The aggregation of RBCs is caused by the discoid shape and
interaction between RBCs41,59,60. As the structure of aggrega-
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tion is rouleaux-like, the center distance between two RBCs in the
structure is about the same as the thickness of RBC (∼ 2.33 µm).
We examine the center-of-mass radial distribution function g(r)
of RBCs under different shear rates and show the results in Fig-

ure 8. In Figure 8(a), when γ̇ω < 800 s−1, the first peaks of g(r)
approximate the thickness of RBC. While after γ̇ω >= 800 s−1,
the peaks shift to larger values, which means the rouleaux struc-
ture is not significant and even vanishes. Figure 8(b) presents the
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first peak positions for RBCs under different γ̇ω , we can find that
peak position increases with the increment of γ̇ω . Additionally,
from Figure 8(a), as the γ̇ω increases, the value of g(r) decreases,
meaning the RBC aggregations in the flow gradually reduce.
When the rouleaux forms, there are more void space between
their aggregates in the blood flow as the hematocrit is constant.
This phenomenon is more obvious when the shear rate is low
(γ̇ω = 200 s−1). However, the rouleaux structure vanishes when
the shear rate is higher (γ̇ω = 1000 s−1 and 2000 s−1). And the
distribution of RBCs are more uniform in the blood flow. No sig-
nificant difference of the RBC structures is found between the
cases of γ̇ω = 1000 s−1 and γ̇ω = 2000 s−1.

The structure of RBCs should influence the interaction between
RBCs and MPs. Hydrodynamic interaction between RBCs and
MPs is also named hydrodynamic collision56,61,62. Generally
speaking, one MP is surrounded by multiple RBCs, and three-
body and multi-body effects exist. These effects can only be ne-
glected when the hematocrit is not high (< 20%)63–65. In present
work, the hematocrit is about 29.1%, the three-body and multi-
body effects should play roles in the diffusion of MPs. Although
the collision details are difficult to isolate in blood flow, diffusion
of MPs is one of indication. From Figure 6(b), the diffusion rate of
MPs in blood flow is indeed higher than that in Brownian motion.
Hence, hydrodynamic collision augments the diffusion of MPs.
However, as mentioned above, the difference of diffusion rates
among these cases under different shear rates are not significant.
This can not solely reflect the shear rate dependent margination
of MPs. Based on the previous study that the near-wall dynamics
of platelets is mainly affected by the rebounding collisions with
RBCs20, we believe the hydrodynamic collision between MPs and
RBCs in the near-wall region is crucial. Since there is no RBC
inside the CFL, the hydrodynamic collision is restricted to pair
collision. Vahidkhah et al.24 stated that there are two factors to
influence the margination of MP: (i) collision frequency between
MP and RBC, and (ii) collision displacement from each individual
collision. Here, we also examine these two factors. Figure 9(a)
gives some typical trajectories of MPs in the height direction of
the channel. It is found that MPs move with the bulk flow at
the beginning. Then they may abruptly marginate from the RBC-
rich layer to CFL. This phenomenon is named “waterfall" phe-
nomenon24. Once MPs enter the CFL, their trajectories are paral-
lel to the wall but with fluctuations (c.f. inserted zoom-in figure in
Figure 9(a)). The fluctuation is led by the collisions between MPs
and RBCs. The MPs in the edge of CFL region approximately expe-
rience the same collision motions with those locating within CFL,
because only pair collision happens for those two cases. Then we
use the trajectory of MP within CFL to calculate the collision fre-
quency. As shown in the insert of Figure 9(a), the power spectral
density analysis is employed to estimate the collision frequency.
The result is provided in Figure 9(b). Under different shear rates,
we find that the collision frequency increases with the increment
of shear rate. It should be noted that the magnitude of collision
frequency has the same order of that given in Vahidkhah et al.’s
work24, which confirms that this approximation is reasonable.
The dependency of collision frequency on shear rate is attributed
to the structure of RBCs in the blood flow. When the shear rate

is low, the RBCs aggregate together, and form the rouleaux. Void
space exists not only in the center of channel, but also in the edge
of CFL. Thus, the collision frequency is small. While for the blood
flow under high shear rate, the distribution of RBCs along edge of
CFL is rather uniform, hence the collision between MPs and RBCs
is more frequent.

The pair collision between a single RBC and a single MP is fur-
ther investigated. The collision model is displayed in Figure 9(c).
Because the shear gradient of near-wall flow is almost zero, we
use the simple shear flow to represent it. The positions of RBC
and MP are set as the same as those in the blood flow. RBC is
placed in the RBC-rich layer and MP is in the edge of CFL. The
center distance between them is set to be σ = 1 µm along height
direction and 10σ along flow direction. Here, we also show the
collision model of MPs with different shapes. The major axis
is placed along the flow direction and other parameters are the
same as the sphere MP. After the shear flow is applied, we obtain
the collision displacements along the height direction. They are
shown in the Figure 9(d) for the sphere MP under different shear
rates. Because the size of RBC is much larger (about 8 times) than
MP, its collision displacement is negligible compared to the MP.
The trajectories of MPs under different shear rates have the same
trend. The first approaching between RBC and MP makes the MP
abruptly migrate towards the wall. After collision ends, it can
partially restore towards its initial position. It locates in a specific
equilibrium place between the initial and maximum migration po-
sitions. We denote the distance between this equilibrium position
and initial position as the collision displacement, which is based
on the definition in Refs.56,61,63. From the Figure 9(d), we find
that the collision displacement is monotonic to the shear rate. It
increases with the increment of shear rate.

Combining these two factors: collision frequency and collision
displacement of each individual collision, it is clear that under
low shear rate, the collision frequency is the lowest and the col-
lision displacement is the smallest. Therefore, the margination
probability should be the lowest. Under high shear rate, the colli-
sion frequency is high, and the collision displacement is large, so
the margination probability is high. Recalling the margination re-
sults in Figure 6(a), we find it has the same trend as the collision
frequency result. And the relationship between collision displace-
ment and shear rate is almost monotonic. Therefore, we believe
the margination of sphere MP is dominated by the collision fre-
quency between MP and RBC. We plot the relationship between
collision frequency and margination probability of sphere MP un-
der different shear rates in ESI†Fig. S3. They have the approxi-
mately linear relationship. This also explains why the structure of
RBCs is responsible for the shear rate dependent margination of
MPs.

3.3 Shape effect of MPs on their margination behavior

3.3.1 Comparison of MP margination with different shapes

To investigate the shape effect of MPs on their margination behav-
iors, 8 different shapes listed in Figure 1(b) are examined under
different shear rates. We take two typical shear rates γ̇ω = 350 s−1

(low) and γ̇ω = 1400 s−1 (high). The averaged margination prob-
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Fig. 10 Comparison of margination probability of different shaped MPs under shear rate (a) γ̇ω = 350s−1 and (b) γ̇ω = 1400s−1.

abilities of these MPs are shown in Figure 10. We find when the
shear rate is low (γ̇ω = 350 s−1), the cubic MP demonstrates the
strongest margination behavior, followed by the oblate MP with
aspect ratio AR = 2. The sphere, disc and rod MPs are closely
behind. And we find the prolate MP performs the worst as well

as oblate MP with aspect ratio AR = 3. When the shear rate in-
creases, it is found that the margination probabilities of all differ-
ent shaped particles increase, but with different amplifications.
And the difference of margination probabilities among different
shaped particles are not significant compared to that under low
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shear rate. The sphere, rod, oblate with AR = 2 and prolate with
AR = 2 are the best and almost the same. What followed are
cubic, oblate with AR = 3 and prolate with AR = 3. The disc par-
ticle shows the worst margination. From the direct comparison,
another finding is that as for the ellipsoidal particles, including
oblate and prolate, particles with low aspect ratio outperform
those with high aspect ratio for both of the two shear rates.

Then we vary the shear rate of blood flow to exploit more de-
tails of the shape dependency under different shear rates. To
make a good comparison, we split these MPs into 3 classes based
on their configuration similarity. They are sphere-like, oblate-like
and prolate-like MPs. Sphere-like MPs include sphere and cubic;
Oblate-like MPs contain disc and oblate; and prolate-like have rod
and prolate. It should be noted that the aspect ratio of disc and
rod particles are also AR = 3. The performance of these MPs un-
der different shear rates are presented in Figure 11(a), (b) and
(c). As for the sphere-like particles (c.f. Figure 11(a)), when
γ̇ω < 800 s−1, the cubic is better than sphere, while further in-
crease of shear rate results in stronger margination of sphere than
that of cubic. This means there exists a critical shear rate mak-
ing sphere and cubic demonstrate the same margination. Under
this critical value, the cubic is better, and above it, the sphere
outperforms cubic. It is also true for the oblate-like particles (c.f.
Figure 11(b)). When the shear rate is no more than 800 s−1,
the disc performs better than oblate (AR = 3). And further in-
crease of shear rate makes the oblate (AR = 3) outperform the
disc. However, although there is also a critical shear rate in which
the margination probabilities of rod and prolate (AR = 3) are the
same, the rod always performs better than the prolate (AR = 3)
(c.f. Figure 11(c)). Then we choose one case from each of these
three classes to make a comparison in the Figure 11(d). It is
found that the sphere-like particle performs the best, and there is
no obvious trend for the difference of margination between the
oblate-like and prolate-like particles.

Further comparison is conducted for the ellipsoidal particles
with different aspect ratios. Figure 12 shows the comparison
of margination behaviors of ellipsoidal particles with different
aspect ratios, including oblate and prolate MPs. In the Fig-
ure 12(a), the margination probability of oblate with low AR is
always higher than that with high AR. And it is also true for the
prolate particles. These two comparisons indicate that the lower
the aspect ratio, the higher the margination probability. Consid-
ering the shape configuration, it reveals that the more it is close
to sphere, the higher the margination probability will be.

3.3.2 Physical mechanism of MP margination in blood flow

To gain a better insight into the above results, we also calcu-
late the individual collision displacements of different shaped MPs
and their collision frequencies with RBCs. Here, for simplicity, we
also choose the two typical cases: γ̇ω = 350 s−1 and γ̇ω = 1400 s−1.
They are shown in the Figure 13. When γ̇ω = 350 s−1, it is found
that the prolate-like particles demonstrate the largest individual
collision displacement, oblate-like particles follow and the sphere-
particles perform the worst. As for the collision frequency, we
find that sphere-like particles are the highest, the prolate-like par-
ticles are close behind and oblate-like particles are the lowest.

Furthermore, we find that under high shear rate γ̇ω = 1400 s−1,
the collision displacement and collision frequency have the same
trend compared to those under low shear rate γ̇ω = 350 s−1. It
means that the shape dependent margination of MPs is shear rate
independent when only considering the hydrodynamic collision.
This can not explain the phenomena we discuss above. For exam-
ple, for the sphere-like particles: sphere and cubic, the collision
displacement and collision frequency of sphere are smaller than
those of cubic. Thus, the margination probabilities of sphere un-
der γ̇ω = 350 s−1 and γ̇ω = 1400 s−1 should be both lower than
those of cubic. However, Figure 11(a) shows that under high
shear rate, the sphere outperforms the cubic. From this perspec-
tive, the shape dependency should be relevant to the shear rate.
Under this circumstance, other factors affecting the margination
behavior of MPs should be considered.

Because margination describes the near wall accumulation of
MPs, the near wall dynamics of MPs should play a crucial role.
When only considering the sphere MP, since the flow is nearly
Stokes flow, there is no net transverse migration of rigid sphere
when moving near the vessel wall. But the near wall dynamics of
non-spherical particles is dependent on the shear rate due to the
asymmetry of the flow around MPs15.

Here the near wall dynamics of MPs with different shapes are
investigated. Figure 14(a) shows the simplified near wall dynam-
ics model. We place the MP near the wall with major axis parallel
to the wall and with minimum distance 5 µm away from the wall.
Also, we apply the simple shear flow. We track the center trajecto-
ries of different shaped MPs under γ̇ω = 350 s−1 and γ̇ω = 1400 s−1

in Figure 14(b) and (c), respectively. From these trajectories, we
find that MPs tumble in the flow, but with different tumbling fre-
quencies. Specifically, MPs are split into two classes: one moves
towards the wall and the other migrates away from the wall. For
example, under low shear rate (γ̇ω = 350 s−1), the cubic, oblate
(AR = 2) and prolate (AR = 2) move towards the wall, while the
rod, disc, prolate (AR = 3) and oblate (AR = 3) gradually migrate
away from the wall. When increasing the shear rate of the flow
(γ̇ω = 1400 s−1), we find MPs are still split into two classes as the
same as that under low shear rate. Only the cubic changes to
migrate away from the wall.

To make a direct comparison of the migration displacement of
MPs, we take the averaged value over the last 50 dimension-
less time intervals. We provide the results in Figure 15. Noted
that we put the case of sphere MP in the figures as comparison.
The migration displacement is zero with no dependence on the
shear rate of flow as discussed above. In these figures, positive
value means moving towards the wall and negative value de-
notes the migration away from the wall. Under low shear rate
(γ̇ω = 350 s−1), the migration away from the wall of rod MP
is significant and followed by disc, oblate (AR = 3) and prolate
(AR = 3). The moving towards the wall of cubic, oblate (AR = 2)
and prolate (AR = 2) are comparative. When the shear rate is
high (γ̇ω = 1400 s−1), the migration away from the wall of disc
becomes stronger, while rod, oblate (AR= 3) and prolate (AR= 3)
have no obvious change compared to those under low shear rate.
The moving towards the wall of oblate (AR = 2) and prolate
(AR = 2) decreases. Note that the cubic starts to migrate away
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from the wall under high shear rate, comparing with that moving
towards the wall under the low shear rate.

Together with the near wall dynamics of MPs, we use the col-

lision frequency and collision displacement results in Figure 13
to further discuss margination behaviors shown in Figure 11 and
Figure 12.
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Fig. 13 Hydrodynamic collision between different shaped MPs and RBCs. (a) Collision displacement of individual collision and (b) collision frequency
under γ̇ω = 350 s−1. (c) and (d) are corresponding collision displacement and collision frequency respectively under γ̇ω = 1400 s−1.

• Sphere-like: Under low shear rate (γ̇ω = 350 s−1), the colli-
sion displacement and collision frequency of sphere are both
smaller than those of cubic. Furthermore, sphere has no
transverse migration near wall, while the cubic moves to-
wards the wall. Hence, the margination probability of cu-
bic is higher than that of sphere. Under high shear rate
(γ̇ω = 1400 s−1), though the cubic still outperforms sphere
on the collision displacement and collision frequency, it has
a large migration displacement away from the wall when
considering the near wall dynamics. Then, the margination
probability of sphere starts to exceed that of cubic.

• Oblate-like: when the shear rate is low (γ̇ω = 350 s−1),
though the collision displacement of disc is smaller than
that of oblate (AR = 3), the disc outperforms the oblate
(AR = 3) on the collision frequency. Together with near wall
dynamics results that disc migrates away from the wall more
than oblate (AR = 3), thus, the disc outperforms the oblate
(AR = 3) on the margination. When the shear rate is high
(γ̇ω = 1400 s−1), both of collision displacement and collision
frequency of disc are smaller than that of the oblate (AR= 3).
Additionally, the migration displacement away from the wall
for the disc is significant compared to that of oblate (AR= 3).
Hence, the oblate (AR= 3) demonstrates higher margination
probability than that of disc under high shear rate.

• Prolate-like: we can see that both of the collision displace-
ment and frequency of rod are higher than those of pro-
late (AR = 3) under low and high shear rates. In addition,
though the rod demonstrates larger migration displacement
away from the wall than that of prolate (AR = 3), the migra-
tion displacement of both are independent on the shear rate.
Hence, the rod always performs better than prolate (AR= 3).

• Ellipsoid with different aspect ratios: From Figure 12, we
can see that the ellipsoidal particles with small aspect ra-
tio (AR = 2) always outperform those with large aspect ratio
(AR = 3). Indeed, it is supported by both of the hydrody-
namic collision and near wall dynamics results. First, from
Figure 13, we can find in both of the shear rates, the ellip-
soidal particles with small AR outperform those with large
AR on either collision displacement or collision frequency.
Second, in the results of near wall dynamics (c.f. Figure 15),
the ellipsoidal particles with small AR manifest moving to-
wards the wall, while those with large AR show the migra-
tion away from the wall. Thus the ellipsoidal particles with
small AR have higher margination probability than those
with large AR under the current shear rate regime we con-
sider here.

As for the difference of margination probabilities among three
kinds of MPs: sphere-like, oblate-like and prolate-like shown in
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Fig. 14 (a) Near wall motion of MP. O represents the center of the MP. (b) and (c) are the trajectories of MPs under γ̇ω = 350 s−1 and γ̇ω = 1400 s−1.
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Fig. 15 Migration displacement of MPs under (a) γ̇ω = 350 s−1 and (b) γ̇ω = 1400 s−1. Positive value represents the moving towards the wall and
negative value denotes the migration away from the wall.

Figure 11(d), we can only conclude that the sphere-like MP per-
forms the best. No trend is found for the oblate-like and prolate-
like MPs. We believe this is mainly induced by the larger collision
frequency of sphere-like MPs. Though this finding is not consis-
tent with some previous works5,24, other numerical26 and ex-
perimental23 works confirmed our findings. For example, Vahid-
khah et al.24 presented that oblate particle showed the highest
margination, and sphere was close behind, while the prolate per-
formed the worst. This discrepancy may be induced by the hema-
tocrit and size of the particles. The hematocrit in Vahidkhah et
al.’s24 work is about 24%, while in current work, it is 29%, which

is larger. And current study has smaller size compared to that
in Vahidkhah et al.’s24 work (volume 7.238 µm3 vs. 0.52 µm3).
Furthermore, they only consider one shear rate. This inconsis-
tence further indicates the flow condition plays an important role
in the margination of MPs. However, our findings are supported
by the numerical results of Muller et al.26. They found that under
the same shear rate, volume and hematocrit, the sphere parti-
cle outperforms the prolate particle on the margination behavior.
Also, in experiments conducted by Thompson et al.23, they found
that under hematocrit 30%, the sphere with diameter 1 µm had
higher accumulation near the wall than that of prolate particle

Journal Name, [year], [vol.],1–18 | 15



with AR = 11 under wall shear rate 1000 s−1. One thing should
be noted that in Thompson et al.’s23 work, they also found that
when increasing the size of the particle from 1 µm to 2 µm in di-
ameter, though the sphere outperformed the prolate with AR = 4,
the prolate with AR = 9 can exceed the sphere on the accumu-
lation near the wall. This reveals that the margination of MPs
also depends on the size of MPs, which confirms the inconsistence
between current work and Vahidkhah et al.’s24 work is partially
attributed to the size of MPs.

To have an overall illustration of the interplay of shear rate
and shape effects on the margination behavior of MPs, we plot
all the results together and show them in Figure 16(a). For all
of these different shaped MPs, the margination probabilities in-
crease first and then keep approximately constant with the incre-
ment of shear rate. Thus, there exists a transitional shear rate
region about 700 s−1 < γ̇ω < 900 s−1. If the shear rate is under
this region, the margination strongly depends on the shear rate of
the flow, and monotonically increases as the shear rate increases.
While above it, the margination probability approaches plateau
regime.

Although the margination behaviors of different shaped MPs
have the same dependency on the shear rate, there is obvious dif-
ference among them. To reflect the shape effect, we compare the
margination probabilities of MPs under different shear rates by
introducing the surface area to volume ratio (SVR) to distinguish
them. SVR is a more generic parameter to represent the shape
of MPs. Figure 16(b) plots the margination probability contour
on shear rate-SVR plane. We find that for blood flow with the
same shear rate, the margination probability is not monotonic to
SVR. While approximately there are two peaks at about SVR=6.4
µm−1 and SVR=7.1 µm−1 within regions of this study. Utilizing
this contour map, we can predict the margination performance of
particle with specific SVR. For example, the particle with SVR =
6.7 µm−1 under shear rate γ̇ω = 400 s−1 is not considered here.
But we can obtain the approximate margination probability which
is about 0.56∼ 0.67.

However, the difference of margination probabilities for differ-
ent shaped particles in current study is not very large. It reveals
that changing the shape of particles under specific conditions such
as hematocrit, size and shear rate, cannot significantly influence
the margination. The findings in previous studies22 accounting
for the localization of particle on the wall should rely on the adhe-
sion behavior like the adhesion frequency and contact area. Nev-
ertheless, these simulation results can be potentially applied to
guide the design of micro-drug carriers for biomedical applica-
tions.

4 Conclusion
In present work, we study the margination behaviors of differ-
ent shaped MPs by developing an efficient multiscale numerical
model. We calculate the margination probability of MPs with
a statistically reliable method, upon obtaining the thickness of
CFL under different shear rates. First, the shear rate dependent
margination of sphere MP is investigated. It is found that when
γ̇ω < 800 s−1, the margination probability dramatically increases
with the increment of shear rate; while its growth rate decreases

abruptly after γ̇ω exceeds 800 s−1. This phenomenon is consid-
ered to be related with RBC structures in the blood flow. We
find under low shear rate, RBCs aggregate together and rouleaux
forms. This RBC structure results in large void spaces in the blood
flow. Hence, the collision frequency of MPs with RBCs is small.
However, with high shear rate, RBCs distribute more uniformly
in the blood flow, the collision between MPs and RBCs becomes
more frequent compared to that under low shear rate. Further-
more, the individual collision between a single RBC and a MP is
examined. And we find that the collision displacement increases
with the increment of the shear rate. Combining these two fac-
tors, MPs under high shear rate demonstrates stronger margina-
tion behavior due to higher collision frequency and larger colli-
sion displacement.

Further, the margination behaviors of sphere-like, oblate-like
and prolate-like MPs under different shear rates are systemati-
cally investigated. We find that in addition to collision between
RBCs and MPs, the near wall dynamics of MPs also plays a crucial
role during MP margination. It should be noted that MPs that
demonstrate poor performance at one process may stands out in
another process. For example, under the low shear rate, the cu-
bic marginates more readily than sphere, due to the high collision
frequency and large collision displacement, and large migration
displcement toward the wall. Nevertheless, under the high shear
rate, the significant migration away from the wall for cubic MP
results in lower margination than that of sphere, regardless of the
better performance in collision process. In addition, we find that
ellipsoidal MPs (oblate and prolate) with small AR have higher
margination probabilities than those with large AR, regardless of
the shear rate. It is attributed to their better performance in both
the collision with RBCs and near wall dynamics. We should em-
phasize that the difference of margination probabilities for dif-
ferent shaped particles is not very large. It indicates that only
changing shape of particles under specified conditions cannot ef-
fectively optimize drug carriers in terms of margination.

In conclusion, there exists a transition shear rate region
700 s−1 < γ̇ω < 900 s−1 for different shaped MPs. Under it, the
margination probabilities dramatically increase with the incre-
ment of shear rate; above it, the margination probabilities slowly
increases, even keeps constant regardless of the change of shear
rate. Finally, we plot a margination probability contour on the
shear rate-SVR plane. It confirms the existence of transition shear
rate and above results. The most important thing is that this con-
tour can predict the margination probability of MPs under differ-
ent shear rates, which are not considered in this work. Thus, it
can offer the guidance to design MP-based drug carriers for differ-
ent biomedical applications, where different margination behav-
iors are needed.
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