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Abstract

During spatial navigation, the frequency and timing of spikes from spatial neurons including

place cells in hippocampus and grid cells in medial entorhinal cortex are temporally orga-

nized by continuous theta oscillations (6–11 Hz). The theta rhythm is regulated by subcorti-

cal structures including the medial septum, but it is unclear how spatial information from

place cells may reciprocally organize subcortical theta-rhythmic activity. Here we recorded

single-unit spiking from a constellation of subcortical and hippocampal sites to study spatial

modulation of rhythmic spike timing in rats freely exploring an open environment. Our analy-

sis revealed a novel class of neurons that we termed ‘phaser cells,’ characterized by a sym-

metric coupling between firing rate and spike theta-phase. Phaser cells encoded space by

assigning distinct phases to allocentric isocontour levels of each cell’s spatial firing pattern.

In our dataset, phaser cells were predominantly located in the lateral septum, but also the

hippocampus, anteroventral thalamus, lateral hypothalamus, and nucleus accumbens.

Unlike the unidirectional late-to-early phase precession of place cells, bidirectional phase

modulation acted to return phaser cells to the same theta-phase along a given spatial iso-

contour, including cells that characteristically shifted to later phases at higher firing rates.

Our dynamical models of intrinsic theta-bursting neurons demonstrated that experience-

independent temporal coding mechanisms can qualitatively explain (1) the spatial rate-

phase relationships of phaser cells and (2) the observed temporal segregation of phaser

cells according to phase-shift direction. In open-field phaser cell simulations, competitive

learning embedded phase-code entrainment maps into the weights of downstream targets,

including path integration networks. Bayesian phase decoding revealed error correction

capable of resetting path integration at subsecond timescales. Our findings suggest that

phaser cells may instantiate a subcortical theta-rhythmic loop of spatial feedback. We out-

line a framework in which location-dependent synchrony reconciles internal idiothetic pro-

cesses with the allothetic reference points of sensory experience.
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Author summary

Spatial cognition in mammals depends on position-related activity in the hippocampus

and entorhinal cortex. Hippocampal place cells and entorhinal grid cells carry distinct

maps as rodents move around. The grid cell map is thought to measure angles and dis-

tances from previous locations using path integration, a strategy of internally tracking self

motion. However, path integration accumulates errors and must be ‘reset’ by external sen-

sory cues. Allowing rats to explore an open arena, we recorded spiking neurons from

areas interconnected with the entorhinal cortex, including subcortical structures and the

hippocampus. Many of these subcortical regions help coordinate the hippocampal theta

rhythm. Thus, we looked for spatial information in theta-rhythmic spiking and discovered

‘phaser cells’ in the lateral septum, which receives dense hippocampal input. Phaser cells

encoded the rat’s position by shifting spike timing in symmetry with spatial changes in fir-

ing rate. We theorized that symmetric rate-phase coupling allows downstream networks

to flexibly learn spatial patterns of synchrony. Using dynamical models and simulations,

we showed that phaser cells may collectively transmit a fast, oscillatory reset signal. Our

findings develop a new perspective on the temporal coding of space that may help disen-

tangle competing models of path integration and cross-species differences in navigation.

Introduction

A prominent temporal code of neural activity [1–3] is the phase precession of rodent place cell

and grid cell activity relative to the septal-hippocampal theta rhythm (6–11 Hz) [4, 5], in

which firing begins late in the theta cycle and advances to earlier phases as the animal moves

across a spatial firing field. Theta-phase precession is strictly unidirectional, which ensures

that phase unambiguously encodes the distance traveled through a place field [6]. This unidir-

ectionality may follow from mechanisms such as neuronal adaptation that halts firing before

the peak of dendritic excitation [7], place-cell network plasticity that learns an asymmetric

ramp of depolarizing input through experience [8], or temporal interference between a

somatic theta oscillation and a speed-tuned [4, 9] or spatial [7, 10–12] dendritic oscillation. In

open-field foraging, these mechanisms may lock the phase-distance code of phase precession

to trajectory details (that is, the speed, running direction, and path) of individual passes

through a spatial firing field [13, 14], thus preventing a direct mapping of phase to spatial loca-

tions. It is unclear whether phase codes with different properties (for example, bidirectionality,

spatial symmetry, or trajectory independence) operate in other brain areas to process spatial

information.

Temporal interference models theorized that multiple velocity-controlled oscillators

(VCOs) [15, 16] perform path integration to collectively synthesize the hexagonally periodic

spatial firing of grid cells [17]. Electrotonic soma-dendrite coupling ruled out dendritic imple-

mentations of VCOs [18], leading to models of neuronal oscillators that project path-integrat-

ing phase codes to the grid cell network [19–21]. Experimental evidence for neuronal VCOs

includes our previous report of thalamic theta-bursting neurons with the theoretically required

burst-frequency tuning of direction [22] and observations of full phase precession at the

periphery of grid cell fields as predicted by temporal interference but not continuous attractor

networks or ramp depolarization models [14, 23–25]. Organizing VCOs into ring attractor

networks provides some internal stability [26, 27], but biological variance in spike timing and

local theta cycle periods limits the temporal precision of VCO phase computations [28, 29].
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Likewise, continuous attractor models of grid-cell path integration accumulate position errors,

even before considering sources of biological variance. In open environments that allow rota-

tions, and particularly at low speeds, bounded network topologies cause error-inducing ‘rip-

ples’ that perturb an otherwise flat energy landscape [30].

To counter the accumulation of position errors, path integrators must reset to the

current position based on environmental cues [31, 32]. Models combining the continuous

attractor and VCO frameworks have proposed resetting VCOs via descending grid cell feed-

back [27, 33, 34]. However, for mice in complete darkness, grid cell patterns are rapidly dis-

rupted [35] while path integration is sufficiently preserved to maintain a global heading

angle [36]. Thus, grid cell networks in different species may not have the spatial stability to

support a feedback role (as in the combined attractor/oscillator models) and may not

directly compute the spatial vector maintained by path integration (as in continuous

attractor models).

Subcortical targets of the hippocampal formation, typically studied as regulators of the

theta rhythm (cf. [37, 38]), may additionally contribute to neural computations of space. In

rats, the lateral septum (LS), but not the medial septum, has revealed spatial modulation of fir-

ing rates in open environments [39, 40] that diverged with respect to hippocampal remapping

over time [41]. However, LS neurons have also been reported to carry a phase code for one-

dimensional (1D) tracks that precisely reflected hippocampal phase precession [42]. The

degree to which LS or other spatially-modulated subcortical neurons are computationally

dependent on hippocampal activity is unclear, especially in open two-dimensional (2D)

environments.

In this study, we asked two questions: (1) Can spatial theta-phase codes be found in subcor-

tical theta-rhythmic structures? (2) What computational function might such phase codes

serve in downstream circuits related to spatial cognition? Our approach integrated, respec-

tively, single-unit recordings in rats during open-field foraging, and computational modeling

of spatial phase-coding networks and their downstream targets. We found a class of LS and

hippocampal neurons with 2D spatial phase codes for which we analyzed the relationship

between rate and phase, stability of rate and phase coding, temporal organization by theta, spa-

tial firing patterns, and spatial vs. trajectory-related selectivity. Our analysis was consistent

with an absolute, allocentric representation of space, thus we studied models of temporal cod-

ing mechanisms distinct from those hypothesized for the relative, field-centered representa-

tion of hippocampal phase precession. We suggest the theory that intrinsic neuronal and

network processing of convergent hippocampal inputs form an independent and collective

encoding of the animal’s current (not prospective) position. This spatial transformation may

enable rapid and flexible phase-resetting of path integration.

Results

We will first describe recordings of subcortical and hippocampal theta-modulated neurons in

freely behaving rats. By setting criteria for spatial phase coding, we analyzed a subset of these

neurons that we termed ‘phaser cells’ to reveal how spatial information was carried in the

phase alignment of firing with the hippocampal theta oscillation observed in local field poten-

tials (LFPs). We posit a theoretical account of the relationship between firing rate, shifts in

spike phase, and ongoing theta oscillations that is supported by generalized linear models

(GLMs) trained across a spatial partition of the recording arena. Lastly, we demonstrate mod-

els of intrinsic theta-bursting and spike synchronization in both artificial 1D and realistic 2D

simulations of phaser cells that collectively corrected phase-position errors in downstream

path-integration networks.
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Modulation of firing rate and phase by position

We obtained tetrode recordings from 8 rats as they foraged in an 80-cm cylindrical arena dur-

ing sessions lasting an average of 2.1 hours. Long sessions helped to ensure sufficient sampling

of phase differences across the environment. Hippocampal LFP signals were recorded from an

electrode located in the hippocampal stratum oriens, referenced to animal ground. Across 110

sessions, LFPs were collected concurrently with 1,073 single-unit recordings (we use ‘record-

ing’ to refer to a unit’s data from one session) of 671 uniquely identified neurons (some of

which were observed in multiple recordings) from sites including the LS and medial septum,

hippocampus, thalamus, midbrain, and other subcortical areas (Table 1; Methods).

In some recordings, units exhibited spatial tuning of firing rate as well as spatial tuning of

spike phase with respect to the LFP theta oscillation. Fig 1 shows one such cell from LS that

fired preferentially in the west/southwest of the arena (Fig 1A) and was moderately theta-

rhythmic (index: 0.392; Fig 1A, inset, top; Methods) and theta-modulated (index: 0.288; Fig

1A, inset, bottom; Methods). Across space, the cell’s mean firing rate (‘ratemap’; Fig 1B; Meth-

ods) revealed a single-peaked firing field that broadly covered much of the arena. Surprisingly,

the spatial distribution of the mean theta-phase of spikes (‘mean-phase map’; Fig 1C, left;

Methods) varied in a pattern of spatial modulation that qualitatively matched the ratemap in

Fig 1B. The cell fired at LFP theta peaks (0 radians) in locations corresponding to low firing

rates (Fig 1C, left, green regions) and during example low-firing-rate time intervals (Fig 1D,

top). Conversely, the cell fired near LFP theta troughs (−π or π radians) in locations corre-

sponding to high firing rates (Fig 1C, left, pink regions) and example high-firing-rate intervals

(Fig 1D, bottom). To quantify phase reliability during a recording, we computed at every loca-

tion the mean resultant vector length (MVL) of spike phase, which varies from 0 (uniformly

random) to 1 (perfectly reliable). Thus, we display the full effect of spatial modulation on spike

phase with a ‘phase-vector map’ (or simply ‘phase map’) where mean phase is indicated by

color hue (as in Fig 1C, left) and maximum-normalized MVL by color saturation (Fig 1C,

right; Methods). The example cell had typical phase MVL around 0.2 except for a high-vari-

ance region along the westward wall (Fig 1C, right, dark pixels) and a high-reliability region

>0.3 near the center of the arena (Fig 1C, right, bright pixels).

Quantifying selection criteria for spatial phase coding

To study the characteristic phase relationships in our data, we examined spiking activity over

individual traversals of the arena and whole-session spatial maps. A 15-s trajectory segment

illustrates a series of bursts emitted by the example LS neuron (Fig 1E, left). The cell initially

Table 1. Identified cell counts from single-unit recordings by brain area and spatial phase-coding subtype.

Recording Area Negative Positive Mixed None Total

Lateral septum 31 (9.7%) 17 (5.3%) 2 (0.6%) 287 (84.4%) 321

Medial septum – – – 16 (100.0%) 16

Hippocampus 11 (12.4%) 4 (4.5%) – 74 (83.1%) 89

Thalamus 1 (2.2%) – – 45 (97.8%) 46

Midbrain 1 (0.7%) – – 134 (99.3%) 135

Other 1 (1.6%) – 1 (1.6%) 62 (96.8%) 64

Total 45 (6.7%) 21 (3.1%) 3 (0.4%) 602 (89.7%) 671

Columns: ‘Negative’/‘Positive’, cells with at least one negative/positive phaser-classified recording and none of the other subtype; ‘Mixed’, cells with at least one negative

and at least one positive phaser-classified recording; ‘None’, cells with no phaser-classified recordings.

https://doi.org/10.1371/journal.pcbi.1006741.t001
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burst around theta peak in a low-rate region in the northeast of the arena, precessed to earlier

phases in the high-rate region as the animal moved to the southwest, and then shifted back to

later phases when the animal returned to a low-rate region (Fig 1E). Burst phase during this

short trajectory was noisy, but the activity symmetrically followed the rate-phase regression

line in both directions (Fig 1E, right), corresponding first to phase advance and then to phase

delay. To measure this phase modulation over the 2.2-h session, we regressed the mean-phase

map (Fig 1C, left) onto the ratemap (Fig 1B), revealing a negatively sloped rate-phase relation-

ship (circular-linear correlation: n = 3,190 map pixels, estimated r̂ ¼ � 0:836, p̂ � 0; Methods)

around which the cell’s spatial data was narrowly distributed (Fig 1F). For this cell, spike phase

was symmetrically and bidirectionally coupled to firing rate over multiple timescales.

By inspecting our dataset for this phenomenon, we defined ‘phaser cells’ as neurons whose

spike phase coded for position and was strongly coupled to firing rate. To classify phaser cell

recordings, we imposed criteria on three measures of phase, rate, and space (Methods): (1)

Spatial phase information Iphase quantified the spatial content of spike alignment to LFP theta

oscillations as the Shannon mutual information between spike phase and position; (2) Total

phase shift captured the depth of phase modulation as the regressed phase difference from the

minimum to maximum rate; (3) The rate-phase correlation indicated the strength of rate-

phase coupling based on a recording’s ratemap and mean-phase map.

To determine the criteria, we asked how recordings that carried spatial information in

spike theta-phase differed from others. Significant phase-coding recordings (Iphase shuffled
phase test, p< 0.02; n = 156 cells; S1 Fig, panel D) exhibited less variable theta-burst frequency

(variance ratio, 0.624; Iphase-significance bootstrap test, p = 0.001; Methods) than non-

Fig 1. An example LS neuron with spatially correlated rate and phase. Recording data for a 2.2-h session in an 80-cm diameter arena. Sinusoids

aligned to phase axes indicate theta waves, with peaks oriented to the top (horizontal axes) or left (vertical axes). (A) Spike-trajectory plot. Red dots:

animal position at time of spike; gray line: trajectory. Inset: spike train autocorrelogram (top) and spike theta-phase distribution (bottom). (B+C)

Spatial maps computed with an adaptive Gaussian kernel (Methods). (B) Firing ratemap. (C) Spike mean-phase map (left) and phase-vector map (right)

with normalized MVL indicated by color saturation (color wheel; Methods). (D) Example 1-s traces of hippocampal LFP theta waves and spikes during

periods of low (top) or high (bottom) firing rate. Highlights show theta cycles. (E) Example 15-s trajectory segment (line) showing bursts (circles)

emitted as the rat traveled from a low-rate region to a high-rate location (blue-to-red bursts) and back to a low-rate region (red-to-green bursts; left).

Likewise, plotted against firing rate, burst phase first advanced (blue-to-red bursts) and then delayed (red-to-green bursts; right). Left background:

ratemap from (B). (F) Mean-phase (C) distributions (grayscale) conditioned on mean rate (B). Red lines: circular-linear regressions; multiple theta

cycles shown (y-axis) for clarity.

https://doi.org/10.1371/journal.pcbi.1006741.g001
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significant recordings (n = 570 cells; S1 Fig, panel B), suggesting that phase-coding cells were

more reliably periodic. Furthermore, significant phase-coding recordings exhibited more vari-

able rate-phase correlation coefficients (variance ratio, 3.87; p = 0.001) and more broadly dis-

tributed total phase shifts (interquartile range ratio, 1.96; p = 0.001) than non-significant

recordings (S1 Fig, panel E). Thus, we classified phaser cell recordings as unit-session data that

met each of several criteria:

1. Spatial phase information Iphase must be significant (p< 0.02) and� 0.1 bits;

2. The magnitude of the total phase shift must be� π/4 radians;

3. The estimated rate-phase correlation coefficient must be significant (p̂ < 0:02) with abso-

lute value jr̂j � 0:2; and

4. The maximal firing rate of the ratemap must be� 3.5 spikes/s.

The fourth criterion ensured sufficient levels of spatial activation, at least one spike every

other theta cycle, to convey rate and phase relationships. A total of 101 recordings from 5 rats

satisfied the phaser cell criteria. Phaser cell recordings revealed moderate firing rates, corre-

sponding to 1 or 2 spikes per theta cycle in preferred regions, and similar theta rhythmicity to

other significant phase-coding recordings (S2 Fig, panel A). By analyzing which recordings fol-

lowed the same neuron across multiple sessions (Methods), we determined that 69 unique

phaser cells were observed by the 101 recordings: 50 phaser cells were located in the lateral sep-

tum, 15 in the hippocampal formation, and 4 in other subcortical structures (Table 1).

Mapping high-rate regions with timing advance or delay

The validity of the above criteria for phaser cells depended on whether they selected a mean-

ingful subset of our data. Fig 2A visualizes the measures tested by the first two criteria (Iphase
and total phase shift) with respect to their thresholds; the third measure (rate-phase coupling

strength) is indicated by the size of the plot markers. In Fig 2A, significant phase-coding

recordings (n = 233) are shown with individual data points, the distribution of non-significant

recordings (n = 840) is represented by contours in the background, and phaser cell criteria (1)

and (2) above are overlaid as red lines that cross out the region excluded by the criteria. Non-

significant recordings (Fig 2A, contours) displayed a wide range of Iphase values that failed to
achieve statistical significance (S1 Fig, panel D) and no relationship with total phase shifts that

were narrowly distributed around zero (S1 Fig, panel E, right). However, significant phase-

coding recordings (Fig 2A, circles) fell into roughly three clusters: (1) low Iphase, total phase
shift near zero, and minimal rate-phase coupling; (2) moderate Iphase, large positive phase
shifts, and moderate coupling; (3) high Iphase, large negative phase shifts, and strong coupling.
The first cluster was excluded, and the latter two clusters were selected as phaser cell record-

ings. Due to the striking division of the direction of phase shifts between the selected clusters,

we labeled them as ‘positive’ and ‘negative’ subtypes. That is, negative phaser cells advanced to

earlier phases, like hippocampal phase precession, and positive phaser cells delayed to later

phases, unlike previously described spatial phase codes.

To verify that differences in the direction of phase shifts were not artifacts of the recording

configuration, we inspected our dataset for colocation, stability, and simultaneous observation

of the two subtypes. Phaser cells were predominantly recorded from LS (Table 1; S3 Fig, panel

A). Two-thirds of phaser cells (48/69) were negative and one-third (24/69) were positive. For

19 phaser cells with multiple recordings, all but 3 preserved the sign of phase shift across their

phaser-classified recordings (S2 Fig, panel B, right). In some cases, negative and positive pha-

ser cells were recorded simultaneously against the same LFP reference electrode and/or

Spatial phase codes in lateral septum
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Fig 2. Phaser cells encode space with positive or negative phase shifts. (A) Selection of phase-coding recordings based on spatial phase information

(Iphase, x-axis), total phase shift (y-axis), and rate-phase coupling strength (circle diameter). Phaser cell recordings were divided into ‘negative’/‘positive’

subtypes according to the bottom-right/top-right regions selected by the criteria. Circles: significant Iphase recordings; contours: kernel density-estimate

of non-significant recordings; red hatch lines: region excluded by the first two phaser cell criteria (see numbered listing of criteria above in Results). (B)

Spatial uncertainty is related to the magnitude of phase shift for negative and positive phaser cell recordings. (C) Spatial distributions of mean resultant

vector length (MVL) across phase maps (mean ± 90% empirical c.i.). (D+E) Pair-wise comparisons of early vs. late (<1 h) session activity (D) or

between days (E). Within-cell spatial correlations were higher (left) and absolute changes in total phase shift were lower (right) than baseline

comparisons between cells. Histograms: normalized by pair count, bin size from the Freedman-Diaconis rule. (F+G) Spatial comparison of MVL (x-
axis) and within-session change in the phase code (y-axis) at every location in the phase map. (F) Example LS cell from Fig 1. Inset: mean-phase maps

(top) and whole-session MVL (bottom; black, 0; white, maximumMVL). (G) Average density of all negative (left) and positive (right) phaser cell

recordings.

https://doi.org/10.1371/journal.pcbi.1006741.g002
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observed on the same tetrode. These observations, together with the fact that the LFP signal

was always recorded from the hippocampal stratum oriens, indicate that the direction of rate-

phase coupling was a stable property of individual phaser cells and not an artifact of variations

in LFP signal polarity.

Accuracy and reliability of the phaser cell code

To quantify phaser cell accuracy and reliability, we examined, respectively, a measure of spatial

uncertainty and the spatial distribution of spike-phase MVL. We computed spatial uncertainty

as R=
ffiffiffiffiffiffiffiffiffiffi
2Iphase
p

for arena radius R = 40 cm. Increasing magnitude of total phase shift was associ-

ated with lower spatial uncertainty for negative (n = 65 recordings; mean ± s.e.m., 33.5 ± 0.378

cm; linear regression, r = 0.363, p = 0.00292) and positive (n = 36; 35.4 ± 0.349 cm; r = −0.441,
p = 0.00707) phaser cells (Fig 2B). Across spatial locations, MVL was distributed from nearly

zero up to a typical maximum value of 0.414 (median, n = 101 recordings; Fig 2C). In order to

statistically test for differences between subtypes, we averaged values across recordings for

unique cells with multiple recordings. Negative phaser cells demonstrated both lower spatial

uncertainty (n = 48/24 negative/positive cells; post hocWelch’s t = −2.32, p = 0.0236) and

higher phase-code reliability (mean MVL; t = 2.68, p = 0.010) than positive phaser cells. Thus,

phaser cells exhibited spatial accuracy on the order of body length based on a reliable mapping

of spike phase to position in certain locations.

Stability of spatial modulation and phase coding

If phaser cells contribute to navigation or other spatial functions, then they must stably reflect

a given context or environment. Cell-specific spatial modulation and rate-phase coupling

should be preserved over both long experiences and multiple days. To analyze spatial stability

of phase coding in phaser cells, we compared early vs. late portions (<1 h) of each recording to

a baseline of pair-wise measurements between different cells (Methods). For spatial stability,

the distributions of spatial correlations between ratemaps revealed significant similarity above

baseline across the multiple-hour recording sessions (median, 0.502; within-cell (n = 101) vs.

between-cell (n = 9, 986) early-late pairs; Kolmogorov-Smirnov D = 0.694, p = 2.07e−43; Fig
2D, left). For phase-coding stability, changes in total phase shift were distributed narrowly

around zero, significantly lower than baseline (1.07 radians; D = 0.371, p = 1.00e−12; Fig 2D,
right). Likewise, for the 19 phaser cells with multiple recordings, spatial correlations between

different recording days were significantly higher than baseline (0.345; within-cell (n = 57) vs.

across-cell (n = 4, 986) day pairs; D = 0.431, p = 7.52e−10; Fig 2E, left) and changes in total

phase shift were distributed close to zero, significantly lower than baseline (1.30 radians;

D = 0.399, p = 1.66e−8; Fig 2E, right). Further, all but 3 of these phaser cells maintained similar

Iphase values and total phase shifts across days (S2 Fig, panel B), suggesting a global stability of
the phase code beyond the pair-wise stability implied by Fig 2E.

The stability of Iphase and total phase shift is necessary for phase-code stability, but those are
spatially averaged measurements and relative phase shifts remain constant even if phase-code

angles systematically drifted. Thus, we addressed the relationship between specific locations

and the magnitude of changes in mean-phase angles. We calculated absolute phase differences

between the early and late mean-phase maps from the analyses in Fig 2D. To relate these phase

differences to spatial variation of phase reliability (Fig 2C), we display them according to

spike-phase MVL. Low/high MVL locations would be expected to show larger/smaller phase

differences over time. Fig 2F shows MVL and absolute early-late phase differences for the LS

cell from Fig 1; the wedge shape reflects the expected relationship, but the placement of the

bulk of the data distribution revealed that typical MVL values coincided with phase differences

Spatial phase codes in lateral septum
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of<π/4 radians (that is, 1/8th of a theta cycle or*17 ms). Averaging across phaser cell record-

ings revealed a similar pattern in which the region of highest spatial density corresponded to

absolute phase-code changes of<1/8th of a theta cycle (Fig 2G). As in Fig 2B+2C, positive

phaser cells demonstrated weaker phase-coding than negative phaser cells, as shown by the rel-

atively higher density of the ‘tail’ leading up to maximal phase difference (|Δ| = π) at low MVL

(Fig 2G, right). Thus, phase reliability (Fig 2C) implied location-dependent phase-code stabil-

ity over multiple hours (Fig 2G). The spatial and phase-coding stability of phaser cells across

hours and days was consistent with functional contributions to the spatial computations of the

hippocampal formation.

Experience-independent phase coding of spatial isocontours

We asked what theoretical mechanism could support our observations of the spatial phase

code carried by phaser cells. We considered the crucial feature that spatial data points, such as

the conditional spike-phase distributions in Fig 1F, were tightly coupled to the rate-phase

regression. Strong rate-phase coupling suggested that the rate-phase relationship was main-

tained across spatial locations and that rate and phase did not systematically diverge over

short or long timescales. We surmised that, on average, rate and phase deflected together on

approaches to a preferred location (that is, a high mean firing-rate region), and then symmetri-

cally retraced those deflections on leaving the preferred location (Fig 3A). Thus, we theorized

that the phaser cell code was a spatially homogeneous coupling of rate and phase that was sym-

metric and, because they deflect and retrace, bidirectional.

In contrast, Souza & Tort (2017) [43] examined hippocampal place-cell theta-phase at low

firing rates and revealed a distinct angle-shaped rate-phase relationship across place fields. The

resulting curve (adapted in Fig 3B) reflects the combination of two effects that progress from

entry to exit of hippocampal place fields: (1) the strict unidirectionality of spike theta-phase

precession [4], and (2) the single-peaked rise and fall of firing rate, which may be symmetric or

skewed with respect to the field center [12, 44]. To reconcile these differences, we suggest that

symmetric, bidirectional phaser cell coding (Fig 3A) and asymmetric, unidirectional hippo-

campal phase precession (Fig 3B) reflect experience-independent vs. experience-dependent

models of temporal coding, respectively. Mehta et al. (2002) [8] proposed that theta-rhythmic

inhibition combines with spatially asymmetric input learned from the place-cell network to

monotonically shift spike phase across place fields. However, absent learning, that mechanism

generates a symmetric rate-phase relationship mediated by the rise and fall of external input

(Fig 3C). Thus, theta-rhythmic inhibition combined with depolarization by external inputs

may explain the rate-phase relationship of negative phaser cells (Figs 1F and 3A). As noted in

Mehta et al. (2002) [8], coupling phase to rate precludes a precise mapping between phase and

specific locations within a place field. Instead, a rate-coupled phase signal in a 2D environment

is restricted to encoding isocontours of the depolarizing spatial input (Fig 3D; Discussion).

Temporal segregation by direction of rate-phase coupling

Our observations of positive phaser cells, which modulated timing in the opposite direction

to negative phaser cells, presented a conundrum. In models described below, we suggest a

network mechanism to account for this difference, but the key prediction is that positive mod-

ulation requires theta-rhythmic excitation instead of inhibition. A consequence of theta excita-

tion is that positive cells would fire at theta peak (0 radians) at low firing rates, and then delay

to later phases at higher rates. Negative phaser cells based on a symmetric ramp mechanism

(Fig 3C) would fire following the minimal inhibition of the theta trough (−π or π radians) at

low firing rates, and then advance to earlier phases at higher rates. This distinction implies a

Spatial phase codes in lateral septum
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temporal segregation of phaser cell activity. To assess this temporal organization, we show

rate-phase regressions for every phaser cell recording according to subtype (Fig 3E). Negative

and positive phaser cells fired during the rising phase [−π, 0] at low firing rates, and, with

increasing firing rate, followed opposing paths to the falling phase [0, π], thus complementarily

spanning the theta cycle (Fig 3E). Positive phaser cell activity clustered before theta peak at low

rates (Fig 3E) as predicted by theta excitation and a high threshold. Distributions of typical

spike phases, computed as the spatial average of mean-phase maps to avoid the sampling biases

of time averages, show that the subtypes were segregated by theta phase: negative/positive

Fig 3. Mechanisms and temporal organization of the phaser cell code.Our thesis is that phaser cell activity is distinct from hippocampal phase

precession and encodes spatial isocontours, not specific locations. (A) Schematic of symmetric rate-phase coupling (cf. Fig 1E, right) that deflects

in one direction and then retraces in the opposite direction as the animal moves through a high-activity region. Inset from Fig 1E for illustration.

(B) Mean rate-phase relationship across normalized traversals of 1,071 place fields from Souza & Tort (2017) [43]. Arrow: unidirectionality of

phase precession. (C) Schematic of ramp-depolarization model with symmetric inputs, as is the case prior to learning [8]. Sinusoid: theta

inhibition; green line: depolarizing input. (D) Schematic of a spatial phase code modeled on the LS cell in Fig 1 in which theta phase (left) maps to

an isocontour level of underlying spatial inputs reflected by mean firing rate (right). (E+F) Negative and positive phaser cell recordings were

segregated by theta phase. Multiple theta cycles shown for clarity. (E) Rate-phase regressions across normalized mean firing-rates. Line width:

thin, |r|< 1/3; medium, 1/3� |r|< 2/3; thick, |r|> 2/3. (F) Distributions of typical spike theta-phases computed as spatial averages. Histograms:

positive composited over negative; lines: density estimates using a circular π/4 bandwidth Gaussian kernel. Panel (B) was adapted from figure 5B

of Souza & Tort (2017) [43] as permitted by the CC-BY 4.0 International License (creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1371/journal.pcbi.1006741.g003
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phaser cells typically fired at theta trough/peak (Fig 3F). Thus, temporal segregation by subtype

may reflect underlying differences in theta drive.

Patterns of spatial modulation in phaser cells

Negative phaser cell ratemaps revealed diverse spatial representations including place-like

fields, broad gradient-like fields, and boundary (including on/off) responses along the arena

wall (Fig 4A; recordings #444 and #768 produced remarkably similar rate and phase maps

from different rats). Maximal firing rates (Fig 4A, top) corresponded to pre-theta-trough

Fig 4. Example phaser cells illustrate the diversity of spatial phase codes. For example recordings of negative (A) and positive (B) phaser cells, we

show the ratemap (top), phase-vector map (middle), and conditional spike-phase distribution with rate-phase regression lines (bottom, as in Fig 1F).

Maximal firing rates (top rows, color bar axes) were consistent with the moderate range of phaser cell firing rates (S2 Fig, panel A, left). Negative phaser

cells demonstrated visibly stronger spatial modulation and rate-phase coupling compared to positive phaser cells, consistent with analyses of spatial

uncertainty (Fig 2B), phase reliability (Fig 2C), and location-specific phase-code stability (Fig 2G).

https://doi.org/10.1371/journal.pcbi.1006741.g004
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timing (Fig 4A, middle, blue/pink). Conditional spike-phase distributions (Fig 4A, bottom)

revealed a tendency for phase modulation to halt after approximately one-half theta cycle, per-

haps indicating a minimum latency to spike following theta-peak inhibition; this nonlinearity

means that some rate-phase regression lines (Fig 3E) overestimated the total phase shifts. Posi-

tive phaser cells likewise showed diverse spatial modulation, but the responses were more sub-

tle, involving higher baseline firing rates and heterogeneous compositions of boundary-like

and place-like selectivity (Fig 4B, top). Maximal firing rates typically mapped to post-theta-

peak timing (Fig 4B, middle, green/blue) and the rate-phase relationships were weaker (n = 24

cells; median, rate-phase correlation r̂ ¼ 0:42; Fig 4B, bottom) than those of negative phaser

cells (n = 48; r̂ ¼ � 0:54; Fig 4A, bottom; absolute values, post hocWelch’s t = 2.053, p =
0.0442). Thus, subtype differences in patterns of spatial modulation reinforced our analysis

showing higher spatial uncertainty and weaker phase stability in positive phaser cell recordings

(Fig 2B+2C and 2G).

To quantify spatial modulation, we calculated spatial rate information Irate using a standard
measure of position coding in place cells [45] and determined its statistical significance in pha-

ser cell recordings with a spike-train shift test (criterion p< 0.02; Methods); 47/48 negative

and 24/24 positive phaser cells attained significance. As expected from prior analyses, negative

phaser cell spikes carried significantly higher Irate (n = 47 significant cells, p< 0.02; 0.381 ±
0.06 bits/spike, mean ± s.e.m.) than positive phaser cell spikes (n = 24, 0.111 ± 0.048; log values,

post hocWelch’s t = −3.92, p = 0.0002). The least-squares optimized slope between Irate and
Iphase was 0.640 (n = 101 recordings; S3 Fig, panel B, left), indicating that spike phase contrib-

uted substantial spatial information (*56.3%) in excess of firing rate alone. Most of the phaser

cell recordings (10/16) with the highest Irate values (>0.6 bits/spike) were from hippocampal

sites (S3 Fig, panel B, left) and most of those (9/10) were negative phaser cells, consistent with

place cells that may have reflected phaser cell activity (Discussion). However, our hippocampal

sample was too small to draw clear conclusions. Thus, negative and positive phaser cells may

represent diverse spatiotemporal relationships resulting from circuits combining theta-rhyth-

mic inhibition or excitation with varied patterns of spatial drive.

Statistical models of allocentric factors of spatial activity

Our thesis that phaser cells map spike phase to spatial isocontours (Fig 3D) requires that

spiking is predominantly driven by allocentric spatial factors (that is, external cues in a world-

centered reference frame). To compare allocentric spatial modulation with other factors, we

calculated the spike information content of speed (an idiothetic self-motion signal) and move-

ment direction (an allocentric, but not spatial, signal; Methods). In contrast to the Irate com-

parison, the least-squares optimized slopes between Iphase and directional (0.086; n = 101

recordings) or speed information (0.023; S3 Fig, panel B) indicated minimal coding overlap

between Iphase and other trajectory-based factors. However, it is possible that the spatial modu-

lation apparent in ratemaps (Fig 4) was a spurious by-product of trajectory-based factors and

biased spatial sampling of the arena. Firing-rate modulation indices (Methods) for direction

(median, 0.379; n = 101 recordings) and speed (0.318; S3 Fig, panel C) were suggestive of pos-

sible trajectory dependence. Such a confound can result from directionally biased visits to par-

ticular locations for which a recorded cell happened to have a similar directional preference.

For example, a cell responding to clockwise movement around the arena may produce a spatial

‘wall’ representation if the rat only moved clockwise when contacting the wall.

To isolate spatial-behavioral confounds, we studied a Poisson-distributed generalized linear

model (GLM) of spatial (allocentric) and trajectory-based (idiothetic speed, and allocentric

non-spatial direction) variables. GLMs have been shown to learn independent spatial and
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directional contributions to firing that avoid trajectory-driven biases [46, 47]. To capture inho-

mogeneous changes in spatial or trajectory-dependent selectivity, we fitted GLMs indepen-

dently to every phaser cell recording for data restricted to sections of a 3 × 3 spatial grid

spanning the arena (Methods). The model was trained to predict the spike count for any

300-ms interval i

Ŷ i ¼ b̂0 þ b̂LLi þ b̂QQi þ b̂WWi þ b̂SSi þ b̂DDi ð1Þ

where L and Q are linear and quadratic spatial variables,W is a sigmoidal wall-proximity sig-

nal, S is linear speed, and D is movement direction. L, Q, andW are purely spatial whereas S
and D capture the rat’s trajectory as a velocity vector. Thus, we termed this spatial family of

GLMs the ‘LQW-SD’ model. To train LQW-SD, we standardized the position and trajectory

data from our recordings, but several properties of the data needed to be addressed: (1) statisti-

cal dependence among the predictors contributed to an ill-posed problem; (2) spatial predic-

tors had more reliable short-timescale correlations than the trajectory-based predictors; and

(3) variable data density across spatial grid segments reduced the validity of model compari-

sons across the arena. To mitigate these issues, we imposed constraints on model coefficients

by training LQW-SD as a ridge regression with ℓ2- regularization [48]. Further, to maximally

expose the spatially inhomogeneous directionality that could have produced behavioral con-

founds, we chose the regularization penalty that optimized the trade-off between maximizing

model directionality and minimizing spike-prediction errors (S4 Fig, panel B+C; Eq (14);

Methods). While we did not cross-validate spike-count predictions from the model, our analy-

sis goal was not prediction but to statistically isolate consistent drivers of phaser cell spiking

versus spurious factors that may have arisen due to behavioral biases. However, training the

model independently within the 3 × 3 grid sections effectively performed a 9-fold cross-valida-

tion in space.

We asked whether phaser cell recordings demonstrated directional selectivity that could

produce spurious spatial modulation. To quantify directionality, we computed a directional

homogeneity index (DHI) on [0, 1] measuring alignment of the 9 βD vectors (Eq (1)) across

the 3 × 3 grid; additionally, we computed a directional strength index (DSI) on [0, 1]

measuring the magnitude of βD relative to the other predictors (Methods). The DHI of

phaser cells (median, 0.265; n = 69 unique cells with at least one phaser-classified recording)

revealed higher homogeneity than nonphaser cells (0.213; n = 602; post hocMann-Whitney

U = 15, 423, p = 0.0005). The DSI of phaser cells (median, 0.0248) and nonphaser cells (0.0127)

indicated low overall directionality (U = 15, 268, p = 0.0003), but it was more widely distrib-

uted for nonphaser cells (range, [0, 0.199]) than phaser cells ([0.003, 0.105]). Thus, phaser cells

excluded both homogeneous (high DHI, high DSI) and inhomogeneous (low DHI, high DSI)

directionality.

Our analysis was predicated on the ability of the model to explain firing patterns. To verify

that LQW-SD could reproduce patterns of spatial modulation, we generated spike-count pre-

dictions across the 3 × 3 grid to reconstruct firing ratemaps (Methods). Quantifying accuracy

as the vector cosine similarity between ratemaps, we found phaser cells (median, 0.986; n = 69

unique cells with at least one phaser-classified recording) and nonphaser cells (0.908; n = 602)

to have highly accurate reconstructions (post hocMann-Whitney U = 16, 960, p = 0.012).

Actual and LQW-SD-predicted ratemaps are shown in Fig 5A for the negative phaser cells in

Fig 4A with overlaid arrows representing the modeled directionality (βD) of each grid section.
To verify that LQW-SD also captured strong directional (high DSI) cells accurately, examples

of homogeneous (high DHI) and inhomogeneous (low DHI) directionality are shown in
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S5 Fig. Thus, LQW-SD provided a high-fidelity account of single-unit firing in our dataset,

including spatial and directional cells.

What does the LQW-SD model reveal about spatial vs. trajectory-based predictors? Like

DSI for directionality, we computed the relative strength of each model variable (Eq (15);

Methods). Box plots (Fig 5B) show the distribution of variable weights for phaser cells (n = 69

unique cells with at least one phaser-classified recording) and nonphaser cells (n = 602). Both

cell types had similar central tendencies with nonphaser cells exhibiting wider ranges of vari-

able strengths. The second-order spatial variables (L and Q) overwhelmed the wall and trajec-

tory variables, constituting approximately 30% and 60% of the model weight, respectively.

Wall/boundary cells were (by inspection) a small number within the dataset, but we consid-

ered that the trajectory-based factors (S and D) might be non-normally distributed, leading to

artificially low coefficients. Thus, we computed the importance of model variables by their

maximal contribution to predictions over the length of the recording. For variable X, we

Fig 5. Space–trajectory GLM reproduced allocentric spatial modulation. (A) Actual firing ratemaps (top) and LQW-SD-predicted

ratemaps (bottom) for the negative phaser cell examples in Fig 4A. Reconstructions were built from spike-count predictions in each

3 × 3 grid section (Methods). White lines: grid section boundaries; arrows: normalized GLM directional (D) weights; Strength: DSI;
Homogeneity: DHI. (B+C) GLM spike-count predictions for phaser cells were driven by allocentric spatial variables. The GLM coefficients

(B) and maximal contributions (C; Eq (2)) from the spatial (L, Q,W) and trajectory-based (S,D) variables for phaser and nonphaser cells are
shown in 95% box-and-whisker plots with outliers (× markers). For phaser cells, the purely allocentric, second-order spatial predictors (L
andQ) dominated the GLM.

https://doi.org/10.1371/journal.pcbi.1006741.g005
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computed its maximal contribution

ContributionðXÞ ¼ max
i
j b̂XXi j ð2Þ

across time intervals i and sum-normalized the variables (Methods). The contribution profile

(Fig 5C) was also dominated by L and Q, but theW, S, and D contributions were enhanced rel-

ative to the strength profile in Fig 5B. Wall and direction variables each constituted*8% of

the total contribution and nonphaser cells revealed a wide range of speed contributions (Fig

5C, S, gray) consistent with the availability of speed signals throughout space-related brain
areas [49, 50]. Sorted recording data confirmed this pattern by showing an inverse relationship

between spatial and speed-based contributions for phaser cells (S6 Fig); this relationship held

for both negative and positive phaser cells (S6 Fig, panel E). Thus, LQW-SD revealed a trade-

off between allocentric spatial coding and idiothetic speed modulation, and that phaser cells

were overwhelmingly spatial, not directional.

Approach to modeling LS phaser cells and networks

To gain insight into the possible mechanisms and functions of phaser cell populations, we

developed computational models based on minimal dynamics for intrinsic processing of spa-

tial and theta-rhythmic inputs. Crucially, our models assumed that postsynaptic averaging of

convergent hippocampal-LS projections produces input to phaser cells that is independent of

hippocampus-specific coding (Discussion). Our modeling approach balanced two goals: (1)

qualitatively capture salient neurocomputational features of the data, and (2) minimize

degrees-of-freedom to avoid model complexity and parameter fine-tuning. Our neuron and

network models were broadly tuned to recapitulate several phenomena: (1) theta-bursting

rhythmicity (Fig 1A+1D; S2 Fig, panel A, right), (2) symmetric and bidirectional rate-phase

coupling (Figs 1E+1F and 3A; S1 Fig, panel E, left), (3) negative/positive phase-shift subtypes

(Figs 2A–2C, 3E and 4), (4) temporal segregation of subtypes (Figs 3E+3F and 4), and (5) allo-

centric phase coding of spatial isocontours (Figs 1B+1C and 2E; S2 Fig, panel B, right; Figs 3D

and 5B+5C). Thus, to ensure rhythmicity and realistic spike timing, we based our neuron

models on two-variable dynamical systems (Eq (5); Methods) featuring intrinsic bursting

dynamics and spike initiation tuned to the activity of hippocampal low-threshold bursters [51,

p. 310].

To outline the computational role of phaser cells, our simulations focused on feedforward

models in which phasers project to targets that ‘read out’ the phaser cell code. (We will refer to

model phaser units as ‘phasers,’ ‘negative phasers,’ or ‘positive phasers’ to distinguish them

from our observed ‘phaser cells.’) In the following sections, we present model simulations in

several stages: (1) single-neuron phaser models with 1D external inputs, (2) a demonstration

model of a small phaser network with artificial 1D spatial inputs and a downstream target cell,

and (3) a realistic model of a large phaser network with 2D spatial inputs and several down-

stream target networks.

Single-neuron models of negative and positive phasers

Model negative phasers combined inhibitory theta input and excitatory external input (Eq (6))

with parameters (Tables 2 and 3) that enabled theta-bursting (Methods). Fig 6 shows phaser

simulations in which the external input varied up and down over its full range (Eq (8)). For

low levels of excitatory input, the negative phaser (Fig 6A+6B, Low1 and Low2) emitted single

spikes near theta peak every few theta cycles. For high excitatory input (Fig 6A+6B,High), the
negative phaser burst with spike triplets near the theta trough on alternating theta cycles. This
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Table 3. Input and conductance parameters for model phaser units.

Subtype ge gθ dinh Einh τinh

Negative 21.0 –5.0 – – –

Positive – 25.0 3.0 –80.0 (mV) 100 ms

Parameters: ge is external input gain (Eqs (8) and (4)); gθ is theta input gain (Eq (7)); dinh, Einh, and τinh are the
synaptic efficacy, reversal potential, and time constant, respectively, of the negative-to-positive inhibitory

conductance (Eqs (9) and (10)).

https://doi.org/10.1371/journal.pcbi.1006741.t003

Table 2. Parameters for dynamical theta-bursting neuron models.

Model a b c d Vt τ

Phaser model 0.02 0.2 –50.0 4.0 30.0 7.0 ms

Target burster model 0.02 0.2 –50.0 5.0 30.0 3.0 ms

Parameters (Eq (5); [51]): a is an adaptation time-constant; b is voltage coupling; c is reset voltage; d is spike
adaptation strength; Vt is the voltage nonlinearity threshold; and τ is the membrane time-constant.

https://doi.org/10.1371/journal.pcbi.1006741.t002

Fig 6. Dynamical models of theta-bursting negative and positive phasers. Amodel theta-burster (blue, ‘Negative’) with inhibitory theta and

excitatory external input (green) provided feedforward inhibition to another theta-burster (orange, ‘Positive’). (A-C) A 20-s simulation. (A) A triangle-

wave input (top) produced spiking (Low1, Low2) and bursting (High) in the negative phaser (middle) and a complementary pattern in the positive

phaser (bottom). (B) Expanded intervals from the highlights in (A). Sinusoid: the reference theta wave of the simulation. (C) Negative vs. positive

phaser spike phase across external input levels. Lines: circular-linear input-phase regressions. (D+E) Rate-phase coupling for the negative (D) and

positive (E) phasers. A 1-hr simulation of 10-s to 62-s triangle-wave cycles sampled mean firing rates and mean spike phases for 512 input-level bins.

Grayscale: conditional phase distributions; red line: circular-linear rate-phase regressions.

https://doi.org/10.1371/journal.pcbi.1006741.g006
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cycle-skipping rhythmicity is reminiscent of observations in medial entorhinal cortex and the

head direction system [52, 53], but this model has no relationship to those phenomena: cycle

skipping was a side-effect of the particular theta-bursting parameters (Table 2) that we chose

to qualitatively match phaser cell characteristics, which do not include skipping. (The skipped

cycles entailed that the resultant spike phase signal was perhaps weaker than if the units had

fired every cycle.) Expanded time intervals (Fig 6B) clearly show that the negative phaser

shifted to earlier phases of the reference theta wave at high input levels. The model’s rate-phase

correlation (n = 399/512 nonzero input-level bins; r̂ ¼ � 0:809, p̂ � 0; Fig 6D) revealed strong,

consistent phase modulation from peak (0 radians) to trough (−π). That is, spike-phase
advanced during rising inputs (Fig 6A; 0–10 s) and then delayed to later timing during falling

inputs (10–20 s). The simulated rate-phase coupling is symmetric and bidirectional as pre-

dicted (Fig 3C) and it advances to the theta trough as observed for negative phaser cells

(Fig 3E).

To model positive phaser cells, we proposed a circuit mechanism whereby a bursting unit

driven by excitatory theta input is suppressed by a negative phaser and does not directly

receive spatial inputs. We modeled the feedforward inhibition as incrementing a slow 100-ms

inhibitory conductance in the positive phaser for each presynaptic spike from the negative

phaser (Table 3; Eq (9); Methods). The positive phaser burst at the peak of every theta cycle

when disinhibited by low external input to its presynaptic negative phaser (Fig 6A+6B, Low1
and Low2). As the external input rose and fell (Fig 6A), the negative and positive phasers fired
in complementary patterns: low/high input silenced the negative/positive phasers (Fig 6C).

The model’s rate-phase correlation was indeed positive (n = 351/512 nonzero input-level bins;

r̂ ¼ 0:705, p̂ � 0; Fig 6E), but weaker and with a shallower phase modulation than both the

negative phaser (total phase shift, 0.654 vs. −2.44 radians; Fig 6D) and the positive phaser cell
data (*83% of the low end of the observed range). Positive phaser weakness in the model was

commensurate with the higher spatial uncertainty (Fig 2B), lower phase reliability (Fig 2C),

and lower phase-code stability (Fig 2G) of positive phaser cells in our dataset. Crucially, nega-

tive and positive phasers were temporally segregated according to rate-phase coupling direc-

tion (Fig 6D+6E) as in the phaser cell recordings (Fig 3E). Thus, a simple connectivity pattern

between theta-bursting models qualitatively recapitulated phaser cell temporal organization.

Demonstration of a phaser network with artificial 1D inputs

To demonstrate how a downstream target may learn to decode phaser cells, we constructed an

artificial 1D spatial paradigm with which to study a model network of 128 negative and 128

positive phasers. The top half of Fig 7 (panels A+B) presents the phaser network and its out-

puts, and the bottom half of Fig 7 (panels C-G) presents the inputs and outputs of a target neu-

ron model. To emulate the spatial diversity of phaser cells (Fig 4), we created two sets of spatial

inputs that each drive one-half of the phaser network: (1) 64 place-like tuning functions (Fig

7A, spatial information flows from the middle to the top of the network diagram), and (2)

64 inverted place-like tuning functions that we termed ‘notch’ functions (Fig 7A, spatial infor-

mation flows from the middle to the bottom of the network diagram; Methods). A notch func-

tion is equivalent to a corresponding place function that has been vertically flipped about its

middle so that it is active everywhere except for one location; it is a spatial function and not a

frequency filter as the term is used in other domains. Example joint space-phase distributions

show the spatiotemporal firing patterns (Fig 7B) that were expressed by the phasers at the spa-

tial mid-point of the network (position 0.5; Fig 7A, highlighted phasers). The four network lay-

ers represent the possible combinations of spatial input type (place vs. notch) and phaser

subtype (negative vs. positive). These space-phase patterns (Fig 7B), replicated at each of 64
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Fig 7. Demonstration of a 1D phaser network and target cell learning. (A+B)We defined a set of 64 place and 64 notch tuning functions as 1D

spatial inputs on the range [0, 1] (Methods). (A) Spatial inputs (top, ‘Place’-driven network; bottom, ‘Notch’-driven network) drive 128 pairs of negative

(blue circles) and positive (orange circles) phasers. Inputs excite the negative phasers which suppress the positive phasers (Fig 6A). Phasers at position

0.5 are highlighted. (B) A 1-hr simulation sampled spike phase for a 1-min triangle-wave trajectory traversing the space. For the highlighted phasers in

(A), joint space-phase distributions of spike timing (left) show the phaser inputs to a downstream target neuron (right). From top to bottom (input/

phaser network layer): place/positive, place/negative, notch/negative, and notch/positive. (C-G) Supervised competitive learning over presynaptic

phaser inputs trained a ‘target burster’ model (B, right) to follow a spatial phase code. (C) Supervised phase code for training with two modes: theta

trough on the left (position 0), theta peak on the right (position 1). Black: desired activity modes; white: untrained. Inset: prior to training, the target

burster randomly drifted in phase due to a stochastic input current (Eq (11); S7 Fig, panel D). (D) Competitive kWTAweights (Table 4; Methods) for

connections from each of the four input/phaser network layers in (A) to the target burster. (E) Total weighted phaser network input to the target

burster. (F+G) 1-hr simulations of a 1-min triangle-wave trajectory spanning the range [0, 1]. Target burster output (burst phase) is shown without (F)

and with (G) intrinsic noise (σ; Table 4). Arrows: phase trajectories for rightward (F, lower arrow) or leftward (F, upper arrow) movement; gray

rectangles: supervised phase code from (C); red highlight: region with minimal phaser input based on panels (D) and (E). Multiple theta cycles are

shown (y-axis) for clarity.

https://doi.org/10.1371/journal.pcbi.1006741.g007
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positions across the 1D space, were available as presynaptic inputs to a downstream theta-

bursting neuron (‘target burster’; Fig 7B, right). We next demonstrate how this downstream

target can utilize phaser activity to learn a spatial phase code.

Entraining a target cell to an artificial 1D spatial phase code

To demonstrate how phaser inputs can entrain a downstream target, we devised an artificial

1D phase code consisting of two modes: theta-trough timing to the left (position 0) and

theta-peak timing to the right (position 1) (Fig 7C). This code associated opposite ends of the

1D space with opposing theta phases. We tuned the target burster model (Table 4; Eq (11);

Methods) to emit spike doublets without cycle skipping (Fig 7C, inset; S7 Fig, panel A). Its

intrinsic burst rate approximately matched the reference theta frequency (7.5 Hz) of our sim-

ulations, but a small deviation caused the burst phase to slowly precess over time (S7 Fig,

panel B). That is, the target burster was an intrinsic theta generator independent of other

model elements. To amplify its independence, we injected a noisy current (Table 4; Eq (11);

S7 Fig, panel C) that caused its burst phase to randomly drift (0.924 angular s.d. over 30 s,

n = 36 trials; S7 Fig, panel D). To determine feedforward weights from phaser network

inputs, we computed the vector cosine similarity between the space-phase distributions of

each phaser (as in Fig 7B) and the supervised phase code (Fig 7C). Inputs with the highest

similarity were selected by k-winners-take-all (kWTA; k = 25 negative + 25 positive phasers;

Table 4; Methods). The resulting weights showed that the theta-trough mode to the left was

supported by place/negative phasers, the middle part of the space was not strongly repre-

sented, and the theta-peak mode to the right was supported by notch/positive phasers (Fig

7D). The total weighted phaser-network input revealed a qualitative match to the supervised

phase code (Fig 7C).

In a 1-h simulation without injected noise, the target burster’s phase revealed distinct ste-

reotyped phase trajectories for movement to the right or the left (Fig 7F, arrows). Importantly,

phaser network activity was not directional (Fig 7B); however, the target burster was direc-

tional because its phaser input was effectively released in the middle part of the space (Fig 7D).

Thus, in the middle, the target preserved its most recently entrained phase until the simulated

spatial trajectory approached the other phase mode. This entrainment dynamic was visibly

preserved in a simulation with injected noise (Fig 7G): moving left caused a smooth phase

advance to the theta-trough mode, while moving right slowly delayed toward the theta-peak

mode until discontinuously jumping ahead of it. The vertical extent of the burst-timing chan-

nels at either side (*π/2; Fig 7F+7G) indicated the degree of phase misalignment allowed by

this competitive phaser-target burst-synchronization mechanism. While the entrainment did

not act perfectly, it prevented the target burster from substantially drifting from the phase

code across a range of parameters (S8 Fig). Thus, a phaser network robustly entrained a noisy

target cell to a phase code in an artificial 1D space.

Table 4. Input, noise, and learning parameters for target models.

Target model Iconst σ gneg gpos kWTA

Target burster (1D) 12.65 0.3 1.0 2.0 20% (50/256)

Target burster (2D) 12.65 0.3 10.0 5.0 3.5% (70/2,000)

Parameters: Iconst and σ were constant input current and noise gain, respectively (Eq (11)); gneg and gpos were negative
and positive phaser input gains, respectively (Eq (12)).

Note: The kWTA column shows the percentage selected, number selected, and total number of competitive synapses.

https://doi.org/10.1371/journal.pcbi.1006741.t004
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Realistic phaser networks with 2D open-field spatial inputs

To model realistic phaser cell activity, we drove our model phasers (Eqs (5)–(10); Tables 2 and

3; Fig 6) with spatial input functions sampled from a generative model of the open-field spatial

modulation of phaser cells (S10 Fig, panel A). The generative sampling model was based on

the ‘LQW’ model (Eq (3)), a reduced LQW-SD model that was trained on full recording data

(that is, a 1 × 1 grid instead of the 3 × 3 grid) without the trajectory-based variables S (speed)
or D (direction). The result is a seamless model of allocentric spatial selectivity

FLQWðxðtÞÞ ¼ b̂0 þ b̂LLðxðtÞÞ þ b̂QQðxðtÞÞ þ b̂WWðxðtÞÞ ð3Þ

for any trajectory x(t) inside the 80-cm recording arena. In the same way that LQW-SD was

optimized to expose directionality (Eq (14); Methods), LQW was optimized to expose wall sig-

nals (S4 Fig, panel A) to ensure that the less prevalent boundary/wall responses were captured.

The generative model processed and randomized LQW representations to synthesize novel

patterns of spatial modulation (S10 Fig, panel A) for negative phasers (as only negative phasers

received direct spatial inputs). Given a sampled input function F�LQW, the external input current

followed

IextðtÞ ¼ geF�LQWðxðtÞÞ ð4Þ

with excitatory input gain ge (Eq (8)) and other parameters unchanged (Table 3). We simulated

1,000 pairs of negative (S9 Fig, panel A) and positive (S9 Fig, panel B) phasers, in which the

negative phaser inhibited the positive (Eq (9); Fig 6). Simulated phasers expressed place-like,

gradient-like, and boundary/wall-like responses (S9 Fig) similar to our phaser cell recordings

(Fig 4). We next demonstrate how this realistic phaser network can entrain a downstream tar-

get cell.

Constrained open-field phaser entrainment of single cells

To demonstrate realistic phaser entrainment of a single cell, we simulated a target burster neu-

ron using an actual behavioral trajectory (1 h from Fig 1A). Without phaser input, the target’s

bursting phase map illustrated the baseline spatial modulation (Fig 8A; maximumMVL,

0.486) to be expected from a randomly drifting oscillator (S7 Fig, panel D). We devised spatial

phase codes representing oscillatory path integration (Discussion) that spanned the arena and

the theta cycle. Two such codes with different phase offsets represented path integration of

movement in the 45˚ direction at the scale of the arena (Fig 8B). As in Fig 7D, we calculated

the 2D kWTA weights (k = 35 negative + 35 positive phasers; Table 4) based on spatial phase-

tuning similarity between phasers and the supervised phase code. As in Fig 7E, the total

weighted phaser-network inputs to the target burster revealed a spatial phase pattern that

approximated the desired phase code (Fig 8C). This input pattern comprised a post-theta-peak

band (π/2; Fig 8C, top, blue), due to positive phasers, alternating with a theta-trough band (π;
Fig 8C, bottom, pink), due to negative phasers; the location of these bands (Fig 8C) tracked

corresponding phase stripes in the phase codes (Fig 8B). With phaser input, the target’s phase

maps revealed two broad modes of high burst-phase reliability (Fig 8D; bright colors; maxi-

mumMVL, 0.994, top; 0.973, bottom) reflecting location-dependent phaser entrainment. The

division between the post-theta-peak and theta-trough modes was visibly sharper (Fig 8D,

dark stripe) than in the phaser input itself (Fig 8C), suggesting an attractor-like nonlinearity in

the input-output phase transformation of phaser-target burst-synchronization. Further, the

two entrainment modes were expanded and shifted in the 45˚ direction relative to phaser

input (Fig 8C+8D), analogous to the directionality and delayed onset of entrained bursting
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Fig 8. Realistic open-field phaser entrainment of path integration networks. Simulations of 1,000 pairs of negative and

positive phasers with generative 2D open-field spatial inputs (S10 Fig, panel A) entrained target cells (A-D) and networks

(E-H). (A) Bursting phase map of a target neuron without phaser input. (B) Two supervised 2D phase codes with different

phase offsets that emulate oscillatory path integration in the 45˚ direction. (C) 2D space-phase distributions of total kWTA-

weighted phaser input to the target neuron (Table 4). (D) Phase maps of the target burster with phaser input. (E-H) Bayesian

decoding of position from burst phase (Eq (13); Methods) of three collections of 64 target neurons representing path

integration networks. (E) Supervised phase codes for each unit in the target networks. (F) Decoded sequences for an example
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observed in the 1D phase trajectories (Fig 7F+7G). Thus, for a single target cell, realistic pha-

sers controlled the spatial distribution of burst timing, but the limited spatial frequency and

phase-modulation depth of phaser activity (especially positive phasers, Fig 6E) dynamically

constrained the phase-code output.

Position-coding by collectively entrained target networks

To overcome the constrained output of single target cells, we asked whether a downstream net-

work of multiple cells with phaser inputs would provide a stronger position signal. We consid-

ered target networks to be simple collections of target burster units (Eq (11); Table 4); each

unit had its own set of competitive synapses carrying input from the 2D phaser network. We

constructed three target collections of 64 units (Fig 8E; S10 Fig, panel B). By analogy with oscil-

latory ring-attractor models of path integration [26, 27], we created the ‘Ring’ collection with

identical preferred directions but a full range [0, 2π] of phase offsets (Fig 8E, top). Because a
single ring network is directionally biased, we expected that it would not support a clear open-

field position signal on its own. The remaining two collections were constructed with a full

range [0, 2π] of preferred directions but identical phase offsets across units (Fig 8E, bottom).

These collections, ‘Phase 1’ and ‘Phase 2,’ were equivalent to taking a single-phase slice across

a population of ring attractor networks (S10 Fig, panel B). For each collection, every unit’s

phase code (Fig 8E) was learned via kWTA competition and simulated with a 600-s behavioral

trajectory. Due to the feedforward phaser-target connectivity, all units were simultaneously

entrained by the same open-field phaser network (as in Fig 8C+8D). The phaser input and

unit output maps are shown as movies for the Ring (S1 Movie), Phase 1 (S2 Movie), and Phase

2 (S3 Movie) collections. Thus, realistic 2D phasers enabled functionally flexible phase-code

entrainment of many downstream targets.

To uncover the collective position signal in these collections, we applied the method of

Bayesian spike-count decoding of position [54] to the phase domain (Eq (13)) to infer esti-

mated trajectories from simulated burst timing (Methods). If this position signal were to sup-

port the resetting of path integration, then it should be quantified in terms of position-error

correction. Example 6-s trajectories with maximum a posteriori (MAP) estimates of position

revealed that, as expected, the Ring network poorly tracked the trajectory (Fig 8F, top left), but

the Phase 1 and Phase 2 collections more closely approximated the trajectory’s position and

shape (Fig 8F, top right and bottom). To quantify error correction, we decoded a benchmark

trajectory across collections and bootstrap unit samples (Methods). The mean squared error

(MSE), based on the distance between actual positions and MAP estimates (Methods), showed

that the Ring network consistently performed poorly, but the Phase 1 and Phase 2 collections’

performance substantially improved by collectively decoding larger numbers of units up to the

total of 64 (Fig 8G). Phase 1, Phase 2, and the combination of all collections exhibited average

decoding errors of 8.25, 11.6, and 8.70 cm, respectively.

Timescale of path integration error-correction

To be useful, phase resets should occur quickly. To measure the timescale of error-correction

in phaser-entrained targets, we computed temporal auto-correlations of decoding errors for

6-s trajectory for each target network (64 target units) or the combination of all three networks (192 target units). Heatmap:

composited sequential posteriors; magenta line/circles: sequential MAP position estimates; blue line: actual trajectory. (G+H)

Path-integration error-correction performance was quantified by decoding a benchmark 60-s trajectory from network

activity and 100 bootstrapped unit samples of network activity. Plus symbols: network performance; curves: bootstrap mean;

error bars: bootstrap s.e.m. (G) or 95% c.i. (H). (G) Decoded position error according to the number of decoded units. (H)

The timescale of error-correction was measured as the HWHM of temporal auto-correlations of decoding error (Methods).

https://doi.org/10.1371/journal.pcbi.1006741.g008
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the benchmark trajectory (S10 Fig, panel C). We quantified the typical timescale of error-cor-

rection as the correlation’s half-width at half-maximum (HWHM; Methods). Across target

collections, the HWHM timescale (Fig 8H) revealed subsecond correction in the Phase 1

(0.667 s) and Phase 2 (0.267 s) collections and 1-second correction in the combined collection

(1.067 s). In our framework, correcting path integration errors depended on populations of

ring networks (as represented by the Phase collections) or other structures with diverse pre-

ferred directions. As expected, a single ring network (or other directionally homogeneous inte-

grator) would be insufficient to support a 2D position signal. Further, our target units were

not performing path integration: they were noisy, intrinsic theta-bursters. Thus, error-correc-

tion performance in our models provided a lower bound: presumably, a path-integrating tar-

get would have fewer errors to correct than randomly drifting oscillators.

Discussion

We recorded single-units from freely exploring rats in septal, hippocampal, thalamic, mid-

brain, and other brain areas and found neurons in LS and the hippocampus whose spiking

theta-phase was symmetrically and bidirectionally coupled to spatial modulations of firing

rate. Tight rate-phase coupling entailed that spike phase mapped to isocontour levels of spa-

tial inputs. We theorized that phaser cells serve to transform spatial information into the

temporal-phase domain for downstream spatial computations. Phaser cells exhibited nega-

tive (phase advance) or positive (phase delay) modulation for increasing firing rates. Tempo-

ral segregation of negative and positive phaser cell activity was consistent with experience-

independent phase-coding mechanisms and our models’ assumptions of inhibitory/excit-

atory theta input to negative/positive phaser cells. We trained space–trajectory GLMs to ver-

ify that phaser cell spiking was overwhelmingly driven by allocentric spatial factors and not

spatially inhomogeneous modulation by speed or movement direction. We asked what

mechanisms could explain the spatiotemporal organization of phaser cells and what func-

tions they could serve in LS output targets. We demonstrated minimal circuit models of

bursting neurons that qualitatively accounted for our main observations. In artificial 1D and

realistic 2D open-field spatial simulations, we showed that phaser networks collectively

entrained target neurons and networks to spatial phase codes using a competitive learning

rule. Moreover, Bayesian position decoding of simulated burst phase in phaser-entrained

targets revealed a strong, error-correcting spatial signal organized by location-dependent

synchrony. Our results suggest a framework in which LS spatial phase representations enable

flexible computations of spatial synchrony in subcortical networks interconnected with the

hippocampal formation.

Spatial phase codes in the hippocampus and lateral septum

Hippocampal place fields [55] were studied extensively as a spatial firing-rate code prior to the

characterization of spike theta-phase precession [4, 6, 56]. Theoretical models and in vivo

manipulations have explored how interacting oscillations, ramp currents, or intrinsic dynam-

ics may account for the link between phase precession and firing rate [7–12]. An analysis of

pooled hippocampal activity highlighted the asymmetry of phase precession (Fig 3B) by find-

ing clear theta coupling before the animal entered the classical rate-based place field [43]. This

extended oscillatory coupling may reflect a critical role for phase precession in compressing

place cell activity [57] into the timescale of synaptic plasticity [58, 59]. If phase precession is

primarily involved in the internal temporal organization of place cell activity, then spatial and

theta-rhythmic input from the hippocampus may be transformed for other functions by other

brain areas.
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Our analysis characterized the rate-coupled phase code of phaser cells as distinct from

hippocampal phase precession. Most phaser cells in our dataset were located in LS (Table 1), a

primary subcortical target of dense, convergent hippocampal efferents [42, 60] that had previ-

ously been shown to carry a degraded spatial rate code [39–41]. Tingley & Buzsáki (2018) [42]

reported that many LS neurons recorded during track running carried spatial phase codes that

were similar to phase precession except for rate independence and larger spatial extents than

typical place fields. Their analysis [42] indicated that the LS phase code depended specifically

on hippocampal phase precession coordinating theta sequences in CA3 and CA1 inputs. How-

ever, this leaves open the questions of what LS phase codes in the open field look like and

whether previously described LS rate-coding neurons also carry a phase code. Examining a

single open-field behavioral condition, we found that 15.6% (50/321) of LS neurons yielded

phaser-classified recordings according to our criteria (16 medial septal cells were not phaser

cells; Table 1). Unlike the Tingley & Buzsáki [42] phase code on tracks, LS phaser cells had

strongly rate-coupled phase modulation and a wide range of spatial patterns including wall/

boundary responses [61–63] that may be available to the LS via subicular afferents [60]. LS

phaser cells demonstrated a symmetric and bidirectional code for allocentric space (Fig 3A),

whereas hippocampal phase precession is an asymmetric and unidirectional code for distance

relative to the boundaries of a place field (Fig 3B). Thus, rate-coupled phaser cells and rate-

independent precession may represent distinct neuronal populations or distinct operating

modes within LS and/or other structures, possibly mediated by heterogeneous connectivity

patterns.

Delay-based phase codes as in our positive phaser cells have not, to our knowledge, been

previously demonstrated. Three of our positive phaser cells were located in the dentate gyrus,

which receives input from a LS-supramammillary pathway [60], suggesting possible hippo-

campal entrainment by LS phaser cell activity. Hippocampal negative phaser cells with strong

spatial rate codes (and place-like selectivity) additionally demonstrated stronger directional

and speed coding (S3 Fig, panel B), thus contributing to the trajectory component of the

space–trajectory trade-off observed in our GLM analysis (S6 Fig). Our sample of hippocampal

cells was too small to draw conclusions, but that relationship suggests that some hippocampal

phaser cells may have been place cells reflecting phaser-entrainment signals from subcortical

pathways. Our positive phaser model was based on theta excitation and negative-phaser inhi-

bition (Fig 7), consistent with the prevalence of GABAergic neurons and recurrent collaterals

in LS [60]. Our bursting models showed that, given convergent spatial and theta-rhythmic

input, phaser cells could operate intrinsically without inheriting phase relationships from CA3

or CA1. Convergent inputs allow the possibility that the longitudinal-to-vertical-band topog-

raphy of the hippocampus-LS projection [60] averages over the spatial and theta-rhythmic

activity of many place cells, effectively displacing hippocampal tuning specificity so phaser

cells can exploit hippocampal input while computing distinct codes. Thus, both extrinsic and

intrinsic phase transformations of hippocampal spatial information may arise in the LS and/or

other structures depending on contextual and behavioral requirements.

Theta oscillations for the future and the present

Early theoretical models suggested that hippocampal sequences, learned via phase precession

and/or temporally asymmetric synaptic plasticity, enabled context-dependent predictions of

future positions [64–68]. Experimental studies revealed theta-rhythmic forward-sweeping

sequences during active locomotion [69, 70] that mentally probed paths ahead of the animal’s

current position to guide navigational decisions [71, 72]. This research suggests a major func-

tion of theta-rhythmic information processing along the trisynaptic circuit of the hippocampal
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formation is to generate memory-guided predictions of future states given the current state.

The current state may be reflected in CA3 or CA1 activity at the trough of local theta waves

[56], but it could also be directly encoded by other theta-rhythmic structures. Specifically, if

recurrent network plasticity and phase precession enable future-oriented sequences, then

phase codes in extrahippocampal circuits without those elements may be more likely to encode

the current state by default. Such phase codes would be symmetric and bidirectional, similar to

phaser cells as well as hippocampal place fields during initial exposure to a novel environment

[8, 44, 73]. Thus, phaser cells may provide an experience-independent temporal code for the

current state.

The phaser cell spatial transformation is inherently less precise than phase precession. Its

bidirectionality assigns the same phase to different locations: for example, a single phase

would map to opposite edges of a 1D place field on a track (Fig 3C) or a concentric ring (iso-

contour) of a 2D place field (Fig 3D). In contrast, the unidirectionality of phase precession

enhances the rate-coded position signal of a place cell by contributing unambiguous informa-

tion about distance traveled through its place field [4, 6]. Phase precession constructively adds

to coding precision, but the phaser cell code may serve to directly transform spatial informa-

tion. We showed that the phaser cell code was stable across hours and days, suggesting that it

may contribute to the context-dependent spatial computations of hippocampal/entorhinal cir-

cuits. LS spatial modulation has been previously shown to exhibit distinct responses to context

changes compared to hippocampal place cell remapping [41]. Our study did not address con-

text-dependence, but it did reveal spatial heterogeneity across phaser cells (for example, Fig 4),

thus supporting our theoretical notion that phaser cell responses provide a basis for flexible

spatial learning across contexts.

One benefit of a bidirectional phase code is that positive phase modulation can coexist with

negative phase modulation in the same network. To illustrate the spatiotemporal activation of

symmetric rate-coupled phase codes, we could imagine layers of negative and positive phaser

cells with 2D bell-shaped spatial tuning and uniformly distributed fields. At the trough of a

theta wave, negative phaser cells representing the current location fire first and strongest, fol-

lowed by their neighbors in all directions. Activation continues in a radial wave extending out-

ward and dissipating by theta peak. Positive phaser cells, conversely, follow a reverse radial

wave that begins with a wide concentric circle of weak firing at theta peak and collapses onto

the current location with strong firing before theta trough. This expansion and contraction of

radial waves would collectively span the theta cycle as a consequence of the theta-segregation

of negative and positive phaser cells (Fig 3E). Thus, phaser cells may form a spatiotemporal

cursor marking the present.

Path integration reset by subcortical entrainment

The neural mechanisms of path integration are not well understood. In rats, experimental

inactivation of the medial septum has been shown to reduce the theta rhythm and disrupt grid

cell firing [74, 75], but preserve the spatial firing of hippocampal place cells [76] except in con-

ditions such as large environments (or wheel running) in which performance would be

expected to rely more on path (or time) integration than external cues [77]. Similarly, septal

inactivation of theta using gabazine (but not muscimol or tetracaine) was demonstrated to pre-

serve hippocampal spatial activity while impairing navigation to a hidden goal [78]. In mice,

path integrating behavior is preserved in the dark (cf. the control animals tested by [36]) even

though spatial grid cell activity has been shown to require visual input [35]. These findings

suggest the theta rhythm is critical to path integration independent of place field maps or grid
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cell periodicity, raising the question whether it plays a direct computational role or a support-

ing role (such as phase reset), or contributes to both.

The temporal interference models based on VCO units [19–21] posited a direct role in

which relative phases between oscillators constitute a spatial vector anchored to a previous ref-

erence point. We previously showed that a generalized VCOmodel could be effectively cali-

brated by extended sensory cue interactions that mediated phase-code feedback [31], although

that study was agnostic to the feedback mechanism. Here, we demonstrated burst-synchro-

nized entrainment of target neurons that learned VCO-like activity patterns (Fig 8). However,

detecting collective synchrony among a population of phaser cells is a general decoding mech-

anism that could theoretically support a continuous attractor network of grid cell activity [30].

In that case, temporal coordination within the theta cycle might act as a signal boost for spatial

feedback to reset the location of the activity bump (cf. [32]). Additionally, a main criticism of

VCO theories followed from the finding of grid cells in bats without continuous theta oscilla-

tions [79]. However, like VCO-based path integration (see discussion in [25]), a phaser-based

reset does not necessarily require rhythmic periodicity: synchrony could arise from structured

latencies due to shared arrythmic inputs. Indeed, phase locking and phase coding by hippo-

campal and medial entorhinal neurons in crawling bats has been reported to be organized by

nonoscillatory LFP fluctuations [80]. While our phaser models required theta rhythmicity, the

mechanism of spatial synchrony that they demonstrated could be generalized to nonoscillatory

systems. Despite widely varying navigational and perceptual requirements across species, syn-

chronous (but not necessarily oscillatory) neural activation may be organized by allocentric

features. The main requirement is that path integration reset must be linked to the current

state of the world. Thus, LS phaser cells in rats may operate a present-focused reset mechanism

parallel to future-focused hippocampal dynamics.

Learning to reset internal states with external cues

The phaser models assumed that temporal contiguity, as measured by spatial phase-tuning

similarity, promotes associative synaptic weights [58, 59] between phaser cells and their tar-

gets. The supervised competitive mechanism was not realistic, but our modeling goal was to

demonstrate the functional implications of having competitively weighted phaser inputs.

The simplified learning mechanism represented the end result of an animal’s familiarization

with a given environment. During exploration, we supposed that path integration produces a

‘teacher’ signal that associates internal states with external cues represented in phaser cell

inputs. This would be a noisy signal in novel environments or disoriented animals, but investi-

gatory behaviors in those situations emphasize incremental exploration and active manage-

ment of path integration [81]: shorter excursions, direct returns to home base, and more visual

fixations and/or head scanning [82]. These behaviors may stabilize the teacher signal to allow

the path integrator to learn new weights from phaser cells (or other inputs). For example, in a

VCO-based path integrator, relative phases between ring networks would coherently advance

and delay relative to idiothetic motion signals [26, 27]. As long as those phase modulations

were relatively continuous between sensory fixations, then any resulting spatial structure in

the relative phase pattern would serve to reinforce itself by enhancing co-active inputs from

phaser cells with similar spatial phase tuning. Our supervised phase codes (Figs 7C and

8B+8E) temporally collapsed the process of learning a teacher signal into a single pattern.

An additional complication for VCO-based path integration is that learning requires theta-

rhythmic coupling between the target and its phaser inputs. However, the burst frequency of

VCOs increases with movement in the preferred direction [19, 22]. Thus, phase-coupled syn-

aptic modification would be restricted to the subset of VCOs with preferred directions
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orthogonal to the animal’s current direction. This limitation would be mitigated by ring

attractor organization of VCO cells [26, 27], in which learning would be continuous because

every orthogonal direction would be represented by a cell in the network. For continuous

attractor-based path integration in grid cells, phaser cells and grid cells would be phase coupled

via the shared hippocampal-entorhinal theta rhythm [83], but phase locking of layer III grid

cells to the local theta trough [5] could restrict learning to negative phaser cell inputs. Future

studies are needed to determine biologically plausible learning mechanisms.

The continuous activity of phaser cells further raises the question of how a path integrator

would switch from internally integrating self-motion to receiving phase-code feedback to reset

errors. Presumably, both processes could not occur concurrently. Our models (including [31])

suggest that resetting to stabilize the spatial representation of a familiar environment requires

theta-phase coupling (similarly to learning) but it only needs to punctuate path integration

briefly enough to achieve burst synchronization (Fig 8H; S7 Fig). Punctuated resets could be

adaptively driven by investigatory behaviors like head scanning [82] or boundary visits [84], or

by error signals mediated by grid cells [27, 85]. Ring attractor organization of VCOs could

enhance the robustness of phase-code resets by propagating updated phase offsets via intrinsic

connectivity. Furthermore, our examination of LS phase codes may be biased by our sample of

recording sites. Tingley & Buzsáki (2018) [42] found a dorsal-ventral dissociation in LS phase

coding properties, including evidence that local theta is a traveling wave in the dorsal-ventral

and medial-lateral directions. Thus, the theta-phase diversity of phaser cells is potentially

much broader than our sample, enabling additional entrainment or switching mechanisms in

downstream targets.

Concluding remarks

Theories of the neural circuits of spatial cognition should go beyond representations to

describe how target brain areas read, decode, and translate signals along the path to decisions

and behavior. We presented exploratory single-unit data revealing a rate-coupled spatial phase

code in neurons found in the LS, hippocampus, and other subcortical areas. Dynamical burst-

ing models helped to explain observations in the data, but they also demonstrated how collec-

tive synchronization codes among phaser cells could be learned and decoded by target cells

and networks. Our data and models suggest a subcortical phase-code feedback loop for allo-

centric space may be mediated by phaser cells in LS and/or other regions. Future studies of the

role of theta oscillations in spatial navigation may consider the phaser cell mechanism or our

theorized feedback pathway to provide a useful perspective. Further research is needed to

determine which pathways might support this feedback, but the LS is ideally positioned to

translate hippocampal spatial and theta-rhythmic output to downstream subcortical areas [60,

86] that regulate the theta rhythm [37, 38] and theta-bursting thalamic nuclei [22, 87, 88]

including the nucleus reuniens with hippocampal and entorhinal projections [60, 89, 90]. Spa-

tial synchronization codes may resonate through limbic loops to reconcile internal maps with

external sensory experience.

Methods

Ethics statement

Rats were chronically implanted with recording devices under deep isoflurane anesthesia.

All experiments were conducted in accordance with the U.S. National Institute of Health

Guide for the Care and Use of Laboratory Animals (NIH Publications No. 90-23), and were

approved in advance by the animal subjects review committee at the University of California,

Los Angeles.
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Bursting models

We define a quadratic integrate-and-fire model [51] of intrinsic bursting with a fast variable

for the spiking limit cycle (V) and a slow adaptive variable for terminating bursts (u). The
dynamics follow

t _V ¼ FðVÞ � uþ IðtÞ

t _u ¼ aðbV � uÞ
ð5Þ

where I(t) is a cell-specific time-varying input, F(V) = 0.04V2 + 5V + 140 is a quadratic nonlin-

earity for spike initiation, a and b control adaptive feedback, and τ sets a shared time-scale for

spiking and bursting (in addition to the time constants implicit inF(V) and a). Whenever

V> Vt, a spike is recorded, V is reset to c, and u is incremented by d. Bursting parameters are

listed in Table 2. While V is approximately millivolt scale, we treat this system as a qualitative,

not biophysical, model for which the parameters are in arbitrary units. For theta-rhythmic

inputs and recording theta phase, simulations tracked a reference theta wave at frequency

fθ = 7.5 Hz, matching the typical burst rate in our single-unit recordings.

For negative phasers, we set the time-varying input (Eq (5)) to the combination

IðtÞ ¼ IyðtÞ þ IextðtÞ ð6Þ

of sinusoidal theta inhibition (for inhibitory gain gθ< 0)

IyðtÞ ¼ gy ½0:5 ð cos ð2pfytÞ þ 1Þ� ð7Þ

and external excitatory input (for excitatory gain ge)

IextðtÞ ¼ geFextðtÞ ð8Þ

where the external input function Fext(t) had range [0, 1].
The positive phasers had theta gain gθ> 0 and followed Eq (5) with negative-phaser input

IðtÞ ¼ Ineg ¼ � ginhðV � EinhÞ ð9Þ

where ginh was a slow inhibitory conductance

tinh _g inh ¼ � ginh ð10Þ

that was incremented by dinh with every pre-synaptic spike (Table 3).
The target bursters had a shorter time-constant (#τ) and lower burst excitability ("d;

Table 2). In place of Eq (5), the fast variable followed

t
dV
dt
¼ FðVÞ � uþ IsynðtÞ þ Iconst þ sx

t
ffiffiffiffiffi
dt
p ð11Þ

where normalized white noise ξ was controlled by gain σ, and Isyn(t) was the total synaptic
drive from the phaser network

IsynðtÞ ¼
X

k2fneg;posg

gk

Xnp

j¼1

Wj
kdðt � tjkÞ

" #

ð12Þ

where np was the number of phasers in each subtype layer, gneg and gpos were subtype-specific
feedback gains (Table 4),Wneg andWpos were the phaser weight vectors (for example, Fig 7B),

and tneg and tpos were most-recent-spike vectors. Constant input current was tuned (Iconst,
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Table 4) so that the intrinsic burst rate, without noise or synaptic input, was close to reference

theta frequency (7.519 s−1 compared to fθ = 7.5 Hz).

Spiking simulations

Spiking neuron and network models were implemented in the equation-based Brian simulator

[91]. Simulations were integrated in 1-ms timesteps. Phaser layers and the target burster with-

out noise were evolved with Runge-Kutta 4th-order integration; the target burster with noise

used the Euler-Maruyama method. Burst timing in simulations was determined as spike times

following interspike intervals� 25 ms.

For 1D spatial simulations, place tuning functions were Gaussian functions with bandwidth

1/64 normalized to the range [0, 1] and centered at 64 evenly-spaced positions from 0 to 1.

Each notch tuning function was 1 minus a place tuning function. The gain of phaser input

onto the target burster (Table 4) was manually tuned for visually matched ‘middle of the road’

synchronization at both fixed points.

For 2D spatial simulations, phase code gratings had 80-cm spatial periods so that one cycle

covered the environment. Phaser gain onto the target burster (Table 4) was manually tuned to

roughly equalize the size of negative and positive synchronization modes across different refer-

ence phases.

Competitive learning

Based on 1-hr training simulations, we generated joint space-phase distributions from phaser

spikes: 15 × 36 (x × ϕ) bins for 1D simulations; 15 × 15 × 36 (x × y × ϕ) bins for 2D simulations.

The supervised phase code was either directly specified as a binary array for 1D simulations or

binned from a spatial grating function for 2D simulations. We computed the vector cosine

similarity between the space-phase distributions of the phasers and the supervised phase code

as the basis for feedforward synaptic weights from the phaser layers to the target burster. To

determine competitive weights, we chose the kWTA negative and kWTA positive phasers

(Table 4) with the highest similarities and normalized those similarities to the range [0, 1] via

[(similarity − min)/(max − min)]. Inactive weights were set to 0. Total phaser input (Figs 7E

and 8C) was computed as the product-sum of the weight vector and an array of all space-phase

distributions.

Bayesian phase decoding

We simulated target networks with 64 bursting units that each learned different ranges of

phase offsets and preferred directions (Fig 8E). Burst timing was decoded in 267-ms sliding

windows (2 theta cycles) that were incremented in 133-ms steps (1 theta cycle). For each unit,

the average burst phase was computed in each window; the previous average was used if no

bursts occurred in the window. Analogous to methods for decoding spike counts [54], we cal-

culated the posterior probability distribution of spatial position P(x|ϕ) for an array of phase

values ϕ as

Pðxj�Þ ¼ Pðxtj�; x̂t� 1Þ ¼ Cðt; �Þ exp
� jjx̂t� 1 � xtjj

2s2
c

� �
Yn

i¼1

exp ð cos ð�i � Fx;iÞÞ ð13Þ

where xt was the position for the current window, x̂t� 1 was the MAP position estimate for the

previous window, C was a normalization factor based on ϕ and window-size τ that ensured
∑x P(x|ϕ) = 1, σc = 15 cm was the Gaussian width of a spatial contiguity prior, n was the
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number of units, and Fx,i was the phase value at position x of the 2D spatial phase code that

was used to train unit i.
Decoding MSE was computed as the mean squared Euclidean distance between the MAP

position and the average of recorded trajectory samples within each window across a 60-s tra-

jectory segment used as a performance benchmark. We decoded the activity from three target-

burster networks with 64 units (Fig 8E; S10 Fig, panel B) and the combination of all three net-

works with 192 units. Each network condition was bootstrapped by sampling (or subsampling

to smaller network sizes as in Fig 8G) with replacement the units in the network and then

decoding the sample’s activity and computing the MSE as described. Temporal autocorrela-

tions (S10 Fig, panel C) were computed using full-size networks (64 or 192 units) by correlat-

ing each bootstrap MSE time-series with itself and normalizing the minimum and maximum

of the mean bootstrap correlations to [0, 1]. HWHMs were calculated as the time lag of the ear-

liest window with normalized correlation<0.5 for each bootstrap; data are shown (Fig 8H) as

means and empirical 95% confidence intervals of bootstrap HWHMs.

Subjects and surgery

Male Long-Evans rats (350–400 g) were individually housed and kept at 85% of ad libitum

weight. They were trained over 5 d to forage for food pellets in an enclosed environment.

Under deep isoflurane anesthesia, rats were chronically implanted with tetrode arrays target-

ing (across rats) the medial and lateral septum, dorsal hippocampus, anterior thalamus, mid-

brain, and/or other subcortical areas. Each rat was implanted with 16 tetrodes (64 electrode

channels) that were grouped into four independently drivable bundles of four tetrodes each.

Single-unit recordings

Data collection methods including conduct of recording sessions, video tracking analysis, and

single-unit acquisition have been described previously [22]. Spike trains recorded during dif-

ferent sessions were considered to be from the same cell if (1) they were obtained from the

same tetrode, (2) the tetrode had been advanced<80 μm between recordings, and (3) cluster

boundaries and waveform shapes were visually similar on all tetrode channels for both ses-

sions. The phase of the septal-hippocampal theta oscillation was quantified from the LFP signal

on a reference electrode in the hippocampal stratum oriens. In one subject (rat 11), a strong

theta-rhythmic cell was used as phase reference instead of the LFP signal and was not included

in data analysis. All analysis data was filtered for linear movement speeds>5 cm/s.

Adaptive Gaussian-kernel spatial maps

To handle large variance in spatial data density from long recordings, we computed spatial

maps with adaptive scaling kernels. We used a KD-tree algorithm to generate a nearest-neigh-

bor model of the data points for the map. For every pixel to evaluate, we found the enclosing

radius of the nearest 4% of data points. If the radius was<8% or>30% of the arena diameter,

then it was fixed at 8% or 30%, respectively. A Gaussian kernel set weights for each data point

in this evaluation radius. For ratemaps, we computed weighted averages of trajectory data and

spike data to create occupancy and spike density maps; dividing the spike density by the occu-

pancy map produced the ratemap. For phase maps, we computed weighted mean resultant

phase vectors from which we retrieved the mean phase and MVL. The mean phase across pix-

els produced the mean-phase maps; otherwise, the MVL was maximum-normalized and

composited as a color saturation overlay onto the mean-phase map to produce the phase-vec-

tor map. Phase maps used colors drawn from the CIELUV color space to maintain perceptual

uniformity of intensity across hues.
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Theta-rhythmic analysis

The rhythmicity index and burst-frequency estimates were derived from spike-timing autocor-

relations. We adaptively smoothed 128-bin 0.5-s correlograms to find stable estimates of the

first trough and first (non-central) peak of the correlograms. Rhythmicity was calculated as the

ratio [(peak − trough)/peak]. Burst-frequency was calculated as the average of the first-peak

mode estimate and an estimate based on a weighted-average of the first-to-second-trough

correlations.

The theta modulation index was computed from a 10˚ binned phase histogram on [−π, π].
We circularly convolved the histogram with a 10˚ bandwidth Gaussian kernel for smoothing.

Theta modulation was calculated as the ratio [(max − min)/max] of the smoothed histogram.

Rate-phase regressions

We implemented the method of Kempter et al. (2012) [92] for computing circular-linear

regressions with stable estimates of the correlation coefficient and p-value. This method was

used for all rate-phase regression lines and rate-phase correlation values. For a given unit

recording, the input data consisted of the common trajectory-sampled pixels from the

64 × 64-pixel ratemap and mean-phase map computed (as described above) from the unit’s

spike data, LFP theta signal, and spatial trajectory. To compute the total phase shift, we multi-

plied the estimated rate-phase regression slope by the range of firing rates [max − min] in the

ratemap.

Stability analysis

We calculated spatial correlations as the mean-adjusted cosine vector similarity between the

common trajectory-sampled pixels in 64 × 64-pixel ratemaps computed with the adaptive ker-

nel (as described above). We calculated changes in total phase shift as the absolute difference

between total phase shifts computed from rate-phase regressions on 64 × 64-pixel ratemaps

and mean-phase maps. For the early-late within-session comparisons, the early portion con-

sisted of up to 1-h after the start or the first half of the recording session data (whichever was

shorter); the late portion consisted of up to 1-h before the end or the last half of the recording

session data (whichever was shorter). The across-cell baseline consisted of each recording’s

early portion paired with the late portion from every recording of all other identified cells. For

the multiple-day comparisons, spatial correlations and changes in total phase shift were com-

puted using the ratemaps and mean-phase maps based on the full recording session data (as in

every analysis apart from the early-late comparisons). The within-cell comparison consisted of

all unique pairs of a given cell’s recordings for all cells with multiple recordings. The across-

cell baseline consisted of each recording from a cell with multiple recordings paired with every

recording of all other identified cells.

Information-theoretic measures

We computed spatial phase information Iphase as the mutual information between phase (ϕ)
and position (x)

Ið�; xÞ ¼
X

x

X

�

pð�; xÞ log 2

pð�; xÞ
pð�Þ pðxÞ

� �

based on joint space-phase distributions of spikes binned into 15 × 15 × 36 (x × y × ϕ) arrays.
This measure yielded information in units of bits. We permuted spike phases 1,000 times to

calculate p-values.
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We computed spike information content based on Skaggs’ formulation [45]

IK ¼
1

F

X

k2K
pðkÞ f ðkÞ log 2

f ðkÞ
F

� �

where K was position, direction, or speed of the trajectory; p was the occupancy density; f was
a firing-rate function; and F was the mean firing rate. Position was binned into 15 × 15 arrays

on [0, 80] cm along the x and y axes; direction into 36 bins on [0, 2π]; and speed into 18 bins
on [5, 50] cm/s excluding bins with<3 s occupancy. These measures yielded information rates

in units of bits/spike. We randomly shift-wrapped spike trains with 20-s minimum offsets and

re-interpolated trajectory data 1,000 times to calculate p-values.

Trajectory modulation

The direction modulation index was computed as the ratio [(max − min)/max] of a

smoothed firing-rate function of movement direction. Average firing rates in 36 direction

bins on [0, 2π] were circularly convolved with a 10˚ bandwidth Gaussian kernel. The speed

modulation index was computed as the ratio [(max − min)/max] of a firing-rate function of

speed. Average firing rates were calculated for 14 bins on [5, 40] cm/s excluding bins with

<8 s occupancy.

GLM training

Ridge regression models were trained on 9 scalar predictors representing the vector compo-

nents of the 5 model variables: L = (x, y), Q = (x2, y2, xy),W (scalar), S (scalar), and D = (ux,
uy). The wall predictorW was a sigmoid proximity signal [1/(1 + exp(−k(r − w0)))] for radius r
from arena center, k = 0.5, and w0 = 30 cm. S was linear trajectory speed. D was the unit vector

along the movement direction. Training samples were 300-ms bins and predictors were inter-

polated at the midpoint of each bin. Each predictor was standardized by subtracting its sample

mean and dividing by its sample standard deviation. The response variable was the log spike-

count Y for each bin, as in a Poisson-distributed GLM. The trajectory was divided into equal-

sized 2 × 2 or 3 × 3 grids based on data limits. For each grid section, the GLM was trained on

all data samples inside the section according to interpolated (x, y) position. Estimated model

intercepts and coefficients for each recording and grid section were stored for analysis (or for

the reduced LQW generative model). To regularize the model, tuning parameter α determined

the ℓ2- norm penalty for least-squares optimization

b̂ ¼ arg min
b

Xnt

i¼1

ðYi � Ŷ iÞ
2
þ a kbk2

2

" #

where nt was the number of training samples. We maximized model directionality (or, simi-

larly, the wall responseW in the LQW generative model) by choosing

â ¼ arg min
a

1

nr

Xnr

k¼1

ekbD;kk2 � nt;k
P

j2fLQWSDge
kbj;kk2

P
i Ki;k � K̂ i;k

� �2

2

4

3

5 ð14Þ

which maximizes (over nr = 1, 073 single-unit recordings) the softmax directional coefficients

while minimizing spike-count (K = exp(Y)) prediction errors (MSE; S4 Fig). The value α =

1.2496 from the 2 × 2 model was used for analysis because of higher likelihood, lower MSE,

lower penalty, and complete wall contact across grid sections compared to the 3 × 3 model.
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GLM analysis

The relative strengths of GLM variables were computed as normalized vector norms

StrengthðXÞ ¼
Pg

i¼1 kb
i
Xk

2
2P

j2fLQWSDg

Pg
i¼1 kb

i
jk

2
2

ð15Þ

for variable X 2 {L, Q,W, S, D} across g grid sections. Thus DSI was computed as Strength(D)
and DHI was computed as 1 minus the angular s.d. of the βD vectors across the grid. The maxi-

mal contributions of GLM variables were computed similarly to Eq (15) but with maximum

linear predictors (Eq (2)) instead of coefficient vector norms. The sum across variables for

both relative strength and maximal contribution was normalized within recordings and then

averaged by unique cell (Fig 5). Grid matrix plots (S6 Fig, panel A+C) show these values prior

to the grid summations (Eq (15)).

To reconstruct ratemaps, we used the midpoints of grid-specific training samples to predict

spike counts from the model for each grid section. We collated the counts and sample posi-

tions across grid sections to reconstitute a complete dataset for generating the ratemap.

To create the LQW generative model, we used a COBYLA search to find the arena-bounded

minimum and maximum of the linear predictor for each recording. We normalized the LQW

parameters to [0, 1] and applied a clipping sigmoid [1/(1 + exp(−10(f − 0.5)))] to smoothly

enforce the range of the resulting spatial function. To sample the generative model, we ran-

domly selected a negative phaser’s spatial function, added 20% Gaussian noise to its LQW

parameters, and rotated the function about the center by a random angle.

Software

Data analysis and modeling were conducted using custom python packages that depend on

libraries from the open-source ecosystem: numpy, scipy, matplotlib, seaborn, pandas, scikit-

learn, pytables, Brian2, and others. The source code, including a complete specification of the

python environment, is available at doi.org/10.6084/m9.figshare.6072317.

Supporting information

S1 Fig. Spatial phase-coding cells were theta-modulated and theta-rhythmic.We show

distributions of single-unit recordings with non-significant spatial phase information Iphase
(‘non-phase-coding’, n.s., orange; n = 840) or significant Iphase (‘phase-coding’, p< 0.02, blue;

n = 233; Methods). Violin plots show Gaussian kernel-density estimates (using Scott’s band-

width rule) normalized by group size for each split; long-dash lines, medians; short-dash lines,

1st/3rd quartiles. (A) Phase-coding recordings had maximal spatial firing rates (median, 7.35

spikes/s) that were distributed higher than non-phase-coding recordings. (B) Autocorrelo-

gram-based estimates of burst frequency (Methods) were similar (median: phase-coding, 7.66

s−1; non-phase-coding, 7.65), but phase-coding recordings were more narrowly distributed

(interquartile range: 0.524) than non-phase-coding recordings (1.031). (C) Theta modulation

and rhythmicity indices (Methods) show that phase-coding recordings were distributed

higher, but this is likely due to the substantial low-rhythmicity subpopulation evident in non-

phase-coding recordings. Jittered strip plots show every phase-coding data point. (D+E) Spa-

tial phase-coding cells had broadly distributed rate-phase correlations. (D) Iphase for phase-
coding cells (median, 0.36 bits) was positively skewed across a wide range ([0.012, 3.67]bits).

(E) Circular-linear regressions of mean phase onto mean rate based on spatial map pixels.

Non-phase-coding recordings were distributed around zero. Correlation coefficient (left) and

total phase shift (right; Methods) showed broader distributions for phase-coding than non-
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phase-coding cells: Compare quartiles (short-dash lines) and fatter tails reflecting excess nega-

tive and positive correlations. Total phase shift (right) was computed by rate-normalizing the

regression slope (middle).

(PDF)

S2 Fig. Phaser cells: Moderate firing rates and stable spatial phase coding. (A) Violin plots

show distributions comparing spatial phase-coding recordings (with significant Iphase) that
were not selected (‘nonphaser’; n = 233) or were selected (‘phaser’; n = 101) by the phaser cell

criteria (see numbered listing of criteria preceding Fig 2 in Results). (Left) Maximal spatial fir-

ing rates for phaser cell recordings had a substantially restricted range (interquartile interval,

[5.34, 9.86] s−1) compared to nonphaser recordings ([2.94, 20.4]). Note, a minimum firing rate

of 3.5 spikes/s was one of the phaser cell criteria, and the y-axis truncates, for clarity, nonpha-
ser data that is shown in S1 Fig, panel A. The observed range is commensurate with activity

that, on average, consists of 1 or 2 spikes per theta cycle at theta frequencies from 5–12 Hz.

Theoretically, having fewer spikes per theta cycle decreases the lower bound of spike-phase

variance, which may enhance the effectiveness of temporal coding by oscillatory phase. (Right)

Theta rhythmicity of phaser cell recordings was distributed similarly, but slightly lower than

nonphaser cell recordings. (B) Phaser cells recorded across multiple days (n = 19) demon-

strated substantial stability in day-to-day measurements of phase-coding quantities: spatial

phase information (left) and total phase shift (right). Large jumps (or sign-changing for phase

shifts) were relatively rare (3/19 cells). The phase shift data (right) is the basis for the within-

cell pair-wise phase-coding histogram in Fig 2E. Only phaser-classified recordings for each cell

are shown. Lines are color-coded to unique cells.

(PDF)

S3 Fig. Anatomical distribution and space–trajectory coding of phaser cell recordings. (A)

Counts of uniquely identified cells with at least one negative or positive phaser-classified

recording. (Left) Distributions of recorded phaser cell locations across brain areas. Hipp. =

hippocampus; Thal. = thalamus; Other includes nucleus accumbens, caudate nucleus, and

putamen. (Right) Distribution across septal recording sites. IG = indusium griseum; LS = lat-

eral septum; LSD = dorsal nucleus of the lateral septum; LSI = intermediate nucleus of the lat-

eral septum; Ld = lambdoid septal zone; SHi = septal-hippocampal nucleus; UNK = unknown;

gcc = genu of the corpus callosum. (B) Comparison of spatial phase information Iphase with
spike information content (Methods; [45]) for position (‘spatial rate information’; left), direc-

tion (middle), and speed (right). Most phaser cells carried strong spatial rate information (left)

and a minority carried relatively low direction (middle) or speed (right) information. Stars:

hippocampal (hipp.) recordings; circles: non-hippocampal (not hipp.) recordings; dashed

lines: parity; solid lines: least-squares optimized slopes. (C) Trajectory-based firing-rate modu-

lation indices (Methods) revealed potential source of bias in spatial recordings. Histograms:

modulation indices for direction (left) and speed (right), positive data composited over nega-

tive. Gray line: kernel-density estimate (0.05 bandwidth Gaussian) of nonphaser cell record-

ings (arbitrary scale for visual comparison).

(PDF)

S4 Fig. Regularization and shrinkage curves used for training GLMmodels.We trained

GLMs to predict spike counts in 300-ms intervals based on spatial (L, Q,W) and/or trajectory-

based (S, D) variables (Methods). For the analysis (Fig 5B+5C; S6 Fig), the model was trained

and tested on a 3 × 3 spatial grid (C); however, the penalty parameter used for training was

derived by optimizing the model on a 2 × 2 grid (B). Both values were similar, but the 2 × 2

value (B, bottom) was used because the directional likelihood was strongly peaked and the
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model better captured wall responses because the center grid of the 3 × 3 model was isolated

from the walls. The GLM that we used to generate spatial inputs for the realistic 2D open-field

phaser simulations was trained only on the spatial variables (A, 1 × 1 grid). (Top) Absolute

model weights for each variable. (Second row) Softmax normalization of absolute model

weights. (Third row) Spike-count prediction errors. (Last row) Model likelihood is the softmax

W (A) or D (B+C) divided by the prediction error (Eq (14); Methods). The maximum likeli-

hood α parameter (red circle) was chosen as the ℓ2- regularization penalty for the ridge regres-

sions.

(PDF)

S5 Fig. GLM ratemap reconstructions for example directional cells. To show that the

LQW-SD 3 × 3 model could accurately reconstruct ratemaps of directional cells, we show

example cells with homogeneous (A) and inhomogeneous (B) directionality. (A) The high

maximal firing rates and crescent-like spatial modulation indicate that these may have been

head-direction cells or cells with head-direction inputs. The GLM’s directional predictors

(arrows) were consistently large and well-aligned across grid sections. (B) Recordings with

inhomogeneous directionality showed minimal spatial modulation but included center-facing

(left) and clockwise (middle) or anti-clockwise (right) directionality.

(PDF)

S6 Fig. GLM weights and contributions for every phaser cell recording. GLM weights

(A+B) and maximal contributions (C-E) for phaser cell recordings are shown in pseudocolor

matrix plots. For visualization, recordings are presented in the same order in every grid section

and grid average according to the expected value of the cell’s grid-averaged model weights to

the left (toward L, i.e., more spatial) or right (toward D, i.e., more trajectory-related). To reveal

model structure, each variable row in a grid section was sum-normalized and the paired grid

plots (A+B, C+D) share color scales. (E) The contribution averages from (D) are displayed by

phaser cell subtype: negative (left) and positive (right). The two subtypes demonstrated quali-

tatively similar inverse patterns of spatial (L, Q) vs. speed-related (S) contributions to firing.
(PDF)

S7 Fig. Noisy theta-bursting target neuron model: Pulse synchronization. An intrinsic

bursting model (Eq (11); [51]) was tuned with constant input (Table 4) to fire doublet bursts

(A) close to the reference theta frequency, 7.5 Hz. The deviation between the reference fre-

quency and the resulting burst rate, 7.519 bursts/s, meant that the unit’s theta phase (B) slowly

drifted (precessed) over time (gray line). To test whether this unit could be phase-synchro-

nized by periodic stimulation, we simulated an instantaneous pulse (V V+ 15mV) every

other theta cycle at theta peak (0 radians). This pulse-synchronized unit (B, orange line) mono-

tonically delayed toward theta peak and then (around 5 s into the simulation) discontinuously

jumped past theta peak before slowly precessing to just before the peak. This dynamic, of

jumping forward and precessing back, repeated (around 9 s) and continued stereotypically.

This sawtooth pattern encapsulated the model’s theta-synchronization dynamics. For simula-

tions with phaser network input, we added a stochastic input current to this ‘target burster’

model (Eq (11)). We chose a noise level (Table 4) that preserved theta bursting (C, same as Fig

7C, inset) but caused its burst phase to randomly drift over a 30-s simulation (D, gray dots, 36

trials). With noise, the pulse stimulation was able to reproduce the sawtooth pattern of syn-

chronization (D, orange line).

(PDF)

S8 Fig. 1D phaser-target entrainment across noise and phaser input levels.We show addi-

tional 1-hr simulations of the 1D phaser-target network shown in Fig 7F+7G. (A) With the

Spatial phase codes in lateral septum

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006741 January 25, 2019 35 / 42

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006741.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006741.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006741.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006741.s008
https://doi.org/10.1371/journal.pcbi.1006741


input gain from the phasers fixed (Table 4), simulations with 0.0σ, 0.1σ, 0.3σ, and 0.5σ noise
levels demonstrated that the supervised modes of the artificial phase-code remained functional

across different levels of noise. (B) With the noise level fixed at 0.3σ, the effect of zero phaser
input gain (top left) can be compared to weaker (top right) and stronger (bottom right) levels

of phaser input. Weak phaser input (top right) entrained the target burster, but the phase tra-

jectories were extended due to the slower development of phase locking on approaches toward

positions 0 or 1.

(PDF)

S9 Fig. Generative samples of model LQW-phasers in open-field simulations. (A) Rate-

map/phase-map pairs are shown for 50/1,000 negative phasers from the realistic 2D open-field

simulations (Fig 8). The rate and phase response of each phaser was driven by a randomly sam-

pled spatial function from the LQW generative input model (S10 Fig, panel A). In the phase

maps, note that the phasers advanced from pre-theta-peak (green; see phase-vector color

wheel at bottom) to theta-trough (pink) from low- to high-rate regions. Missing phase map

pixels reflect insufficient numbers of nearby spikes for spatial averaging. (B) Ratemap/phase-

map pairs are shown for 50/1,000 positive phasers. The rate and phase response of each phaser

was driven by theta excitation and feedforward inhibition from a negative phaser with an

LQW-generated spatial input (A). In the phase maps, note that the phasers delayed from theta

peak (green) to halfway through the falling phase (blue/green; π/2 radians). Like the 1D model

(Fig 6) and phaser cell recordings (Fig 4), the positive rate-phase coupling was weaker than the

negative.

(PDF)

S10 Fig. Bayesian decoding of target burst phase from open-field simulations. Realistic 2D

simulations of phasers and target neurons were simulated and the bursting activity of the tar-

get neurons was decoded to assess position-error correction (Methods). (A) The steps to sam-

ple spatial input functions from the generative model for negative phasers are illustrated

(Methods). From left to right: Phaser cell recordings (examples from Fig 4A) were learned by

the 1 × 1 LQWmodel (Eq (3)) and their linear predictor functions were normalized to [0, 1]

with a sigmoid nonlinearity. To generate a novel spatial input, we randomly selected one of

these normalized spatial functions, added 20% Gaussian noise to the LQW parameters, and

randomly center-rotated the coordinate frame. (B) Target networks were simple collections of

target burster units. The Ring collection of target bursters varied across phase offsets (orange);

the Phase 1 and Phase 2 collections varied across preferred direction at opposing phase offsets

(blue and green). (C) Normalized temporal autocorrelograms of decoding error for full-sized

collections (64 units in each collection; 192 units for the combination of all collections). The

correlation width indicates the timescale of error correction, which was quantified as the

HWHM timescale in Fig 8H (Methods).

(PDF)

S1 Movie. Competitive 2D open-field phaser entrainment across spatial phase offsets. The

spatial phase codes in Fig 8B differed by the reference phase offset of the VCO-like phase

code. Here we show a movie in which the frames iterate through 64 units in the Ring collec-

tion of target bursters (S10 Fig, panel B, orange) that were simulated with a 600-s behavioral

trajectory. The supervised phase code (top left) moves smoothly along the 45˚ diagonal for a

complete cycle, allowing the video to be looped. The broad negative/positive (pink/blue) syn-

chronization regions competed to encode the environment for each of the different target

bursters in the collection. (top right) Space-phase distribution of the total phaser network
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input to the target burster. (bottom left) Burst phase map of target burster output.

(MP4)

S2 Movie. Competitive 2D open-field phaser entrainment across preferred direction:

Phase 1. The spatial phase codes in Fig 8B have a 45˚ preferred direction, which determines

the angular orientation of the VCO-like phase code. Here we show a movie in which the

frames iterate through 64 units in the Phase 1 collection of target bursters (S10 Fig, panel B,

blue) that were simulated with a 600-s behavioral trajectory. The supervised phase code (top

left) rotates smoothly for a complete cycle, allowing the video to be looped. With this phase

offset (0.0, at the center of the arena), the negative phasers synchronized a boundary region

(oranges/pinks) along the preferred direction. (top right) Space-phase distribution of the total

phaser network input to the target burster. (bottom left) Burst phase map of target burster out-

put.

(MP4)

S3 Movie. Competitive 2D open-field phaser entrainment across preferred direction:

Phase 2. The spatial phase codes in Fig 8B have a 45˚ preferred direction, which determines

the angular orientation of the VCO-like phase code. Here we show a movie in which the

frames iterate through 64 units in the Phase 2 collection of target bursters (S10 Fig, panel B,

green) that were simulated with a 600-s behavioral trajectory. The supervised phase code (top

left) rotates smoothly for a complete cycle, allowing the video to be looped. With this phase

offset (π, at the center of the arena), the positive phasers synchronized a boundary region

(blue/green) along the preferred direction. (top right) Space-phase distribution of the total

phaser network input to the target burster. (bottom left) Burst phase map of target burster

output.

(MP4)
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