
NODOZE: Combatting Threat Alert Fatigue with
Automated Provenance Triage

Wajih Ul Hassan�, Shengjian Guo‡, Ding Li∗, Zhengzhang Chen∗, Kangkook Jee∗, Zhichun Li∗, Adam Bates�

� University of Illinois at Urbana-Champaign
{whassan3,batesa}@illinois.edu

‡ Virginia Tech
guosj@vt.edu

∗ NEC Laboratories America, Inc.
{dingli,zchen,kjee,zhichun}@nec-labs.com

Abstract—Large enterprises are increasingly relying on threat
detection softwares (e.g., Intrusion Detection Systems) to allow
them to spot suspicious activities. These softwares generate alerts
which must be investigated by cyber analysts to figure out if
they are true attacks. Unfortunately, in practice, there are more
alerts than cyber analysts can properly investigate. This leads to
a “threat alert fatigue” or information overload problem where
cyber analysts miss true attack alerts in the noise of false alarms.

In this paper, we present NODOZE to combat this challenge
using contextual and historical information of generated threat
alert. NODOZE first generates a causal dependency graph of
an alert event. Then, it assigns an anomaly score to each
edge in the dependency graph based on the frequency with
which related events have happened before in the enterprise.
NODOZE then propagates those scores along the neighboring
edges of the graph using a novel network diffusion algorithm
and generates an aggregate anomaly score which is used for
triaging. We deployed and evaluated NODOZE at NEC Labs
America. Evaluation on our dataset of 364 threat alerts shows that
NODOZE consistently ranked the true alerts higher than the false
alerts based on aggregate anomaly scores. Further, through the
introduction of a cutoff threshold for anomaly scores, we estimate
that our system decreases the volume of false alarms by 84%,
saving analysts’ more than 90 hours of investigation time per
week. NODOZE generates alert dependency graphs that are two
orders of magnitude smaller than those generated by traditional
tools without sacrificing the vital information needed for the
investigation. Our system has a low average runtime overhead
and can be deployed with any threat detection software.

I. INTRODUCTION

Large enterprises are increasingly being targeted by Ad-
vanced Persistent Threats (APTs). To combat these threats,
enterprises are deploying threat detection softwares (TDS)
such as intrusion detection system and security information and
event management (SIEM) tools. These softwares constantly
monitor the enterprise-wide activities and generate a threat
alert if a suspicious activity happens. Cyber analysts then
manually sift through these alerts to find a signal that indicates
a true attack.
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Fig. 1: Growth of alerts in an enterprise during a given month.

Unfortunately, these automated systems are notorious for
generating high rates of false alarms [59], [2], [6]. According
to a recent study conducted by FireEye, most organizations
receive 17,000 alerts per week where more than 51% of the
alerts are false positives and only 4% of the alerts get properly
investigated [4]. Due to an enormous number of alerts, cyber
analyst face “threat alert fatigue”1 problem and important alerts
get lost in the noise of unimportant alerts, allowing attacks to
breach the security of the enterprise. One example of this is
Target’s disastrous 2013 data breach [15], when 40 million
card records were stolen. Despite numerous alerts, the staff at
Target did not react to this threat in time because similar alerts
were commonplace and the security team incorrectly classified
them as false positives. In Fig. 1, we demonstrate the growth
of alerts generated by a commercial TDS [8] at NEC Labs
America comprising 191 hosts.

The threat alert fatigue problem is, at least partially, caused
by the fact that existing academic [43], [29] and commer-
cial [3], [5] TDS use heuristics or approaches based on single
event matching such as an anomalous process execution event
to generate an alert. Unfortunately, in many cases, a false alert
may look very similar to true alert if the investigator only
checks a single event. For example, since both ransomware
and ZIP programs read and write many files in a short pe-
riod of time, a simple ransomware detector that only checks
the behavior of a single process can easily classify ZIP as
ransomware [40]. Even though contextual alerting has proven
to be most effective in the alert triage process [27], existing
TDS usually do not provide enough contextual information
about alerts (e.g., entry point of invasion) which also increases
investigators’ mean-time-to-know.2

1A phenomenon when cyber analysts do not respond to threat alerts because
they receive so many each day.

2Mean-time-to-know measures how fast cyber analysts can sort true threats
from noise when they get threat alerts.
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Data provenance analysis [41], [26] is one possible remedy
for the threat alert fatigue problem. Data provenance can
provide the contextual information about the generated alert
through reconstructing the chain of events that lead to an alert
event (backward tracing) and the ramifications of the alert
event (forward tracing). Such knowledge can better separate
a benign system event from a malicious event even though
they may look very similar when viewed in isolation. For
example, by considering the provenance of an alert event, it is
possible to distinguish ransomware from ZIP: the entry point
of ransomware (e.g., email attachment) is different from the
ZIP program.

Although a provenance-based approach sounds promising,
leveraging data provenance for triaging alerts suffers from
two critical limitations: 1) labor intensive – using existing
techniques still require a cyber analyst to manually evaluate
provenance data of each alert in order to eliminate false alarms,
and 2) dependency explosion problem – due to the complexity
of modern system, current provenance tracking techniques will
include false dependencies because an output event is assumed
to be causally dependent on all preceding input events [46].
In our scenario, due to this problem, a dependency graph of a
true attack alert will include dependencies with benign events
which might not be causally related to the attack. This problem
makes the graph very huge (with thousands or even millions of
nodes). Such a huge graph is very hard for security experts to
understand [36], making the diagnosis of attacks prohibitively
difficult.

In this paper, we propose NODOZE, an automatic alert
triage and investigation system based on provenance graph
analysis. NODOZE leverages the historical context to auto-
matically reduce the false alert rate of existing TDS. NODOZE
achieves this by addressing the aforementioned two limitations
of existing provenance analysis techniques: it is fully auto-
mated and can substantially reduce the size of the dependency
graphs while keeping the true attack scenarios. Such concise
dependency graphs enable security experts to better understand
the attacks, discover vulnerabilities quickly, accelerating inci-
dent response.

Our approach is based on the insight that the suspiciousness
of each event in the provenance graph should be adjusted
based on the suspiciousness of neighboring events in the
graph. A process created by another suspicious process is
more suspicious than a process created by a benign process.
To this end, our anomaly score assignment algorithm is an
unsupervised algorithm with no training phase. To assign
anomaly scores to the events, NODOZE builds an Event Fre-
quency Database which stores the frequencies of all the events
that have happened before in the enterprise. After anomaly
score assignment, NODOZE uses a novel network diffusion
algorithm to efficiently propagate and aggregate the scores
along the neighboring edges (events) of the alert dependency
graph. Finally, it generates an aggregate anomaly score for the
candidate alert which is used for triaging.

To tackle the dependency explosion problem in the alert
investigation process, we propose the notion of behavioural
execution partitioning. The idea is to partition a program
execution based on normal and anomalous behaviour and
generate most anomalous dependency graph of a true alert.
This allows cyber analyst to focus on most anomalous events

which are causally related to the true alert which accelerates
the alert investigation process.

We implement NODOZE and event frequency database in
9K and 4K lines of Java code respectively. We deployed and
evaluated our system at NEC Labs America. For evaluation we
used 1 billion system events spanning 5 days which generated
364 alerts using an exemplar TDS [8]. These alerts include
10 APT attack cases and 40 recent malware simulation while
all the other alerts are false alarms. Experimental results
show that NODOZE improves the accuracy of existing TDS
by reducing the false alarms by 84%. Moreover, NODOZE
generates dependency graphs for true alerts that are two orders
of magnitude smaller than those generated by traditional tools.

In summary, this paper makes the following contributions:

• We propose NODOZE, an automated threat alert triage
system for enterprise settings.

• We present a novel network diffusion algorithm to prop-
agate anomaly scores in dependency graphs enabling the
calculation of aggregate anomaly scores for threat alerts.

• We introduce the notion of behavioural execution par-
titioning, a new technique for combating dependency
explosion in provenance graph that is applicable to threat
alerts.

• We present a concrete implementation and thorough
evaluation of NODOZE. The results show that NODOZE
consistently ranked the true alerts higher than false alarms
and generates concise dependency graphs for true alerts.

II. BACKGROUND & MOTIVATION

In this section, we use an attack example to illustrate the
effectiveness and utility of NODOZE as an alert triage system
with two aspects: 1) filtering out false alarms to reduce alert
fatigue, and 2) concise explanation of the true alerts using
dependency graphs to accelerate alert investigation process. We
will use the example of a WannaCry ransomware attack [18] in
an enterprise environment. This attack was simulated as a live
exercise at NEC Labs America; we describe the experimental
setup used for the simulation in §VIII.

A. Motivating Attack Example

WannaCry ransomware is a popular attack that affected
around 0.2 million systems across 150 countries in May
2017 [12]. It is essentially a cryptoworm which targets com-
puters running the Microsoft Windows OS with vulnerable
EternalBlue [14]. It exploits this vulnerability to gain access
to the machines and encrypts data on those machines.

Scenario. Consider a front desk person in an enterprise
who one day visits several websites using Internet Explorer
to search for pdf reader software. After visiting several links,
the front desk person accidentally downloads a malware
(springs.7zip) from a malicious website and then runs the
malware thinking of it as pdf reader software. This malware
opens a backdoor to the attacker’s server and then searches for
EternalBlue vulnerable machines in the front desk’s enterprise
network. Once vulnerable machines are found the attacker
downloads the file encryptor and starts to encrypt files on those
vulnerable machines. After some time the front desk person’s
PC starts to run very slow so front desk person calls technical
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Fig. 2: WannaCry attack scenario described in §II-A. (a) Part of the threat alerts’ dependency graph generated by prior approaches [26], [41].
Some edges have been omitted for clarity. (b) Concise dependency graph generated by NODOZE.

support. The technical support person downloads and executes
a diagnostic tool (collect-info.ps1) on front desk person’s
PC from an internal software repository, which runs some
diagnostic commands including Tasklist and Ipconfig. All of
the output is copied to a file sys-report.txt, which is then
transferred to a remote machine for further investigation. On
the remote machine, the technical support person runs several
bash commands to check the file contents and figure out the
issue with the front desk person’s computer.

Alerts Investigation. During the above attack scenario, two
threat alerts were generated by the underlying TDS while
over 100 total threat alerts were generated over the course
of the day. The first alert event E1, was generated when
malware made several connections to remote machines in the
enterprise. The second alert event E2 was generated when
technical support diagnostic tool initiated a remote connection
to a secure machine. Note that, at a single event level, both
alert events E1 and E2 look very similar; both processes making
an unusual connection to a remote machine in the network.

To investigate the alerts and prepare a response, the cy-
ber analyst performs a causality analysis. Provenance-based
tools [41], [26] process individual events between system
objects (e.g.,, files and network sockets) and subjects (e.g.,,
processes) to construct a causal dependency graph. Note that
cyber analysts can use these graphs to understand the context
of the alert by using a backward tracing query which starts
from the given symptom event (alert) and then identifies all the
subjects and objects that the symptom directly and indirectly
depends on. Using a forward tracing query, the analyst can
then identifies all the effects induced by the root cause of the
alert. Fig. 2a shows the simplified dependency graph generated
by existing tools for alert events E1 and E2. In this graph and
also the rest of the paper, we use diamonds, ovals, boxes, and
dashed arrows to represent sockets, files, processes, and alert
events respectively.

B. Existing Tools Limitations

Existing provenance trackers when combined with TDS
for alert triage and investigation process suffer from following
limitations:

Alert Explosion & Manual Labor. Even if the TDS
identifies an anomalous event related to the attack, cyber
analysts are barraged with alerts on a daily basis and face
the problem of finding a “needle in a haystack”. Existing
automated TDS are notorious for generating a high amount
of false alarms [59], [2], [6], [34], [21]. Cyber analysts are in
short supply, so organizations face a key challenge in managing
the enormous volume of alerts they receive using the limited
time of analysts [4]. Many heuristic- and rule-based static
approaches have been proposed to mitigate this problem [68],
[22], [45], [32]. However, there are still too many threat alerts
for the analysts to manually investigate in sufficient depth
using alerts’ dependency graphs which are also usually very
complex. During the day of the attack, the TDS generated
over 100 threat alerts with an average of 2K vertices in each
alert’s dependency graph; and only 1 threat alert was related
to WannaCry attack while all other were false alarms.

Dependency Explosion. Most existing provenance trackers
suffer from the dependency explosion problem, generating
graphs similar to Fig. 2a. The dependency inaccuracy is mainly
caused by long running processes that interact with many
subjects/objects during their lifetime. Existing approaches
consider the entire process execution as a single node so
that all input/output interactions become edges to/from the
process node. This results in considerably large and inac-
curate graphs. Consider the Internet Explorer IExplorer.exe
vertex in our example dependency graph which is shown in
Fig. 2a. When cyber analysts try to find the ancestry of the
downloaded malware file (springs.7zip) and diagnostic tool
file (collect-info.ps1), they will unable to determine which
incoming IP/socket connection vertex is related to the malware
file and which one belongs to the diagnostic tool file.
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Fig. 3: Overview of NODOZE. Alerts generated by threat detector are provided to NODOZE, which ranks the alerts based on their aggregate
anomaly scores and produces concise alert dependency graphs for investigation.

Prior solutions to the dependency explosion problem [46],
[51], [50], [44] propose to partition the execution of a long
running process into autonomous “units” in order to provide
more precise causal dependency between input and output
events. However, these systems require end-user involvement
and system changes through source code instrumentation,
training runs of application with typical workloads, and mod-
ifying the kernel. Due to proprietary software and licensing
agreements, code instrumentation is not often possible in an
enterprise. Furthermore, these systems are only implemented
for Linux, and their designs are inapplicable to commodity-off-
the-shelf operating systems like Microsoft Windows. Finally,
acquiring typical application workloads in a heterogeneous
large enterprise is not practically feasible.

C. Goals

The aforementioned limitations motivate the following de-
sign goals for the NODOZE system:

• Alert Reduction. NODOZE should reduce false positives,
false negatives and non-actionable items as compared to
existing TDS.

• Concise Contextual Alerting. NODOZE-generated depen-
dency graphs of threat alerts should be concise and com-
plete.

• Generality. NODOZE design and techniques should be in-
dependent of underlying platforms (e.g. OS, VM, etc.),
applications, and TDS.

• Applicability. NODOZE should not require any end system
change and should be deployable on any existing TDS.

III. NODOZE OVERVIEW & APPROACH

The overall workflow of NODOZE system to triage alerts
based on anomaly scores is shown in Fig. 3. NODOZE acts as
an add-on to an existing TDS in order to reduce false alarms
and provide contextual explanations of generated threat alerts.
To triage alerts, NODOZE first assigns an anomaly score to
each event in the generated alerts provenance graph. Anomaly
scores are calculated using frequencies with which related
events have happened before in the enterprise. NODOZE then
uses a novel network diffusion algorithm to propagate and
aggregate anomaly scores along the neighboring events. Fi-
nally, it generates an aggregate anomaly score for the generated
alert which is used for triaging – escalating the most critical
incidents for remediation and response.

As mentioned previously, existing execution partitioning
techniques [46], [51], [50], [44] for precise dependencies
are not feasible in an enterprise. In the case of true alerts,
NODOZE solves this problem by leveraging the observation

that the attack’s dependencies will be readily apparent because
the true path will have much higher anomaly score. We call
this approach as behavioural execution partitioning for alert
investigation. In our attack example, since IExplorer.exe has
only two socket connections from anomalous websites (one
of them is a malicious website from which malware was
downloaded) while all the other socket connections were to
websites common (normal) in the enterprise. Hence, we can get
rid of all the common IP connection vertices and partition the
execution of IExplorer.exe based on its abnormal behaviour.

Fig. 2b shows the dependency graph generated by
NODOZE for our motivating example. It concisely captures
the minimal causal path between the root cause (initial socket
connection to IExplorer.exe) the threat alert (dropper.exe
socket connection to another host), and all other ramifications
(encryptor.exe encrypting several files). Observe that in Fig. 2a
there are two threat alert events annotated by E1 and E2 shown
with dashed arrows. Looking at these alert events in isolation,
they look similar (both make socket connection to important
internal hosts). However, when we consider the ancestry and
progeny of each these alert events using backward and forward
tracing, we can see that the behaviour of each of them is
markedly different.

In order to identify if a threat alert is a true attack or a
false alarm, NODOZE uses anomaly scores which quantify
the “rareness”, or transition probability, of relevant events that
have happened in the past. For example, the progeny of alert
event E1 i.e. dropper.exe → y.y.y.y:445 consists of several
events that are more rare i.e., have low transition probability.
For example, in the progeny of Spoolsv.exe (print service),
spawning another process that reads/writes several files hap-
pened 0 times in the organization earning this behaviour a
high anomaly score. Similarly, in the ancestry of E1, a chain
of events in which an executable is downloaded using Internet
Explorer and then connects to a large number of hosts in a
short period of times is very rare and thus has a high anomaly
score. As a result, when we combine the ancestry and progeny
behaviours of E1, we get a high aggregate anomaly score for
the alert.

In contrast, when we consider the progeny of alert event
E2 i.e. Powershell→ z.z.z.z:445, we see a chain of events that
are quite common in an enterprise because these behaviours
are exhibited by common Linux utilities (e.g. diff and cut).
Moreover, the ancestry of alert event E2 contains diagnostic
events such as Tasklist and Ipconfig which are regularly
performed to check the health of computers in the enterprise.
Therefore, the aggregate anomaly score of E2 will be quite
lower than the anomaly score of E2.

Once NODOZE has assigned an aggregate anomaly score to
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the alert event, it extracts the subgraph from the dependency
graph that has the highest anomaly score. The dependency
graph for true alert E1 is shown in Fig. 2b. Observe that in
Fig. 2a, Spoolsv.exe has created many other socket connections
(total 130 sockets); however, the NODOZE generated graph
has only encrypt.exe process since this behaviour was more
anomalous than the other events. Similarly, while IExplorer.exe
received several socket connections, NODOZE only picked rare
IP addresses a.a.a.a (malicious website from which malware
was downloaded) and b.b.b.b since these have higher anomaly
scores than the other normal socket connections.

IV. THREAT MODEL & ASSUMPTIONS

Our threat model is similar to existing provenance-based
systems [56], [26], [54], [49], [63], [24], [51], [36] i.e., the
underlying OS; and provenance tracker are in our trusted
computing base (TCB). In this work, we consider an attacker
whose goal is to exfiltrate sensitive data, manipulate informa-
tion present on a system, or to move laterally to other hosts
on the network. To achieve this goal the attacker may install
malware on the targeted system, exploit a running process, or
inject a backdoor.

We make the following assumptions about our system.
We assume that the attacker cannot manipulate or delete the
provenance record i.e., log integrity is maintained all the time.
While log integrity is an important goal, it is orthogonal to
the aims of this system and can be ensured by using existing
secure provenance systems [35], [25]. We also do not consider
the attacks performed using implicit flows (side channels) that
do not go through the syscall interface and thus cannot be
captured by the underlying provenance tracker. Finally, we do
not track attacks exploiting kernel vulnerabilities.

The only underlying TDS’s feature that NODOZE relies on
is threat alerts. We assume that underlying TDS’s detection
rate is complete i.e. threats related to true attacks are always
detected. We also assume that there is at least one event that is
anomalous in the ancestry or progeny of alert to categorize it as
a true attack. We do not consider Mimicry attacks [62] where
attacker evades detection using a sequence of events which
are normal in an enterprise. While mimicry is an important
consideration, it is out of scope for this work because their
detection is actually a limitation of the underlying TDS.

V. PROBLEM DEFINITION

In this section, we first introduce several formal definitions
which are required to understand NODOZE’s anomaly propa-
gation algorithm and then we formulate the problem statement
for NODOZE.

A. Definitions

Dependency Event. OS-level system logs refer to two
kinds of entities: subjects and objects. Subjects are pro-
cesses, while objects correspond to files, socket connections,
IPC etc. A dependency (causal) event E is defined as a 3-
tuple < SRC,DST,REL > where SRC ∈ {process}
entity that initiates the information flow whereas DST ∈
{process, file, socket} entities which receive information
flow, while REL represents information flow relationship. The

TABLE I: Dependency Event Relationships

SRC DST REL

Process
Process Pro Start; Pro End

File File Write; File Read; File Execute
Socket IP Write; IP Read

P1 P1 F1 S1 P2

F2

P1: Powershell
P2: smbd 

P3: check-file

P1 P3

P1 P1 F1 S1 P2P2

P1 P1 P2

P1 P1 F2

PCD1
PDD1

F1: collect-info.ps1
F2: out.txt 

S1: z.z.z.z:445

Fig. 4: Example dependency paths of length 5 for alert event E2 from
the motivating example (§II).

various kinds of dependency event relationships we consider
in this work are shown in Table I. For example, in Fig. 2a a de-
pendency event E1 is represented as <dropper.exe, y.y.y.y:445,
IP Write>.

Dependency Path. A dependency path P of a dependency
event Ea represents a chain of events that led to Ea and
chain of events induced by Ea. It is an ordered sequence
of dependency events and represented as P := {E1, Ei, ...
, Ea, ... En } of length n. Each dependency event can have
multiple dependency paths where each path represents one
possible flow of information through Ea. Dependency path may
contain overlapping events, making it possible to represent any
dependency graph as a set of dependency paths.

We further divide dependency paths into two categories:

– A control dependency path (CD) of an event ε is a de-
pendency path PCD = {ε1, ε2, ..., εn} such that ∀ REL ∈
{Pro Start, Pro End}.

– A data dependency path (DD) of an an event ε is a de-
pendency path PDD = {ε1, ε2, ..., εn} such that ∀ REL /∈
{Pro Start, Pro End}.

From the motivating attack example, two possible depen-
dency paths {P1, P2} of length 5, one control dependency path
PCD1 and one data dependency path PDD1 for the alert event
E2 are shown in Fig. 4.

Dependency Graph. All the dependency paths of an event
when merged together constitute one single dependency graph.
For example, the dependency graph of alert events E1 and E2
is shown in Fig. 2a.

True Alert Dependency Graph. As we discussed in §II, due
to long running programs there are false dependency events in
the dependency graph. Due to false dependencies, there will be
unrelated benign events in the dependency graph of a true alert
event which might not be causally related to the attack. So we
partition the long running programs based on their normal and
anomalous behaviour. We call this technique as behavioural
execution partitioning. This technique will generate a true
alert dependency graph, which will contain most anomalous
dependency paths. True alert dependency graphs are concise
as compared to complete dependency graphs and accelerate
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the investigation process without losing vital contextual infor-
mation about the attack.

B. Problem Statement

Given a list of n alert events {E1, E2, ..., En} and user-
specified threshold parameters τl and τd, we aim to rank these
alerts based on their anomaly scores and filter out all the
alerts whose anomaly score is less than τd as false alarms.
Furthermore, we also aim to generate true alert dependency
graphs with dependency paths of atmost τl length.

There are two key challenges in this problem: 1) assigning
anomaly scores to dependency paths of different lengths using
historical and contextual information and 2) generating true
alert dependency graphs that completely capture attack behav-
iors. In the next section, we will present a concrete algorithm to
assign scores to threat alerts and generate true alert dependency
graphs.

VI. ALGORITHM

In this section, we present a concrete network diffusion
algorithm to assign anomaly score to each event in an alert
dependency path using historical information, then generate a
true alert dependency graph.

A. Roadmap

An anomaly score quantifies the degree of suspiciousness
of an event in a dependency path. A naı̈ve way to assign
anomaly score is to use frequency of the system events that
have happened in the past such that events that are rare in
the organization are considered more anomalous. However,
sometimes this assumption may not hold since attacks may
involve events that happen a lot. From the motivating attack
(§II), unzipping a file (springs.7zip) is a common event in an
organization; however, it was one of the events that led to the
attack. Thus, simple frequency-based approach to find anomaly
cannot catch such attacks. However, if we consider the chain
of events that were informed by springs.7zip file, such as
initiating a large number of IP connections in a short period of
time, we can find out that this is not common behaviour after
someone unzips the springs.7zip file. Therefore, our objective
is to define the anomaly score not just based on a single
event in the dependency path but based on the whole path.
Next, we discuss how to calculate the anomaly scores for each
dependency path based on the whole path.

B. Anomaly Score Propagation

In order to calculate a dependency path’s anomaly score,
we first need to find dependency paths of an alert event. Given
a complete dependency graph G of an alert event Eα, we find
all the dependency paths of length τl for the Eα. To do so,
we run depth-first traversal in a backward and forward fashion
from the alert event and then we combine those backward and
forward paths to generate unified paths such that each unified
path contains both the ancestry and progeny causal events of
alert. In Algorithm 1, Lines 2 to Lines 6 show the dependency
path search algorithm. Function GETDEPENDENCYGRAPH
generates a complete dependency graph of an input event,
functions GETSRCVERTEX and GETDSTVERTEX return SRC

and DST entities of input event respectively, functions DFS-
TRAVERSALBACKWARD and DFSTRAVERSALFORWARD re-
turn backward and forward dependency paths for input event
respectively, and function COMBINEPATHS combine backward
and forward paths.

After generation of dependency paths for candidate alert
event, NODOZE assigns anomaly scores to each event in
the dependency paths. In Algorithm 1, Lines 7 to Lines 10
show this process. To calculate the anomaly scores, we first
construct a N × N transition probability matrix M for the
given dependency graph G of alert event, where N is the total
number of vertices in G. Each matrix entry Mε is computed
by the following equation:

Mε = probability(ε) =
|Freq(ε)|

|Freqsrc rel(ε)|
(1)

Here, Freq(ε) represents how many times the causal
event ε has happened in the historic time window with all
3-tuple of ε exactly same, while Freqsrc rel(ε) represents
how many times event ε where only SRC and REL from
3-tuple are exactly same. Hence, Mε means the happening
probability of this specific event. If ε event never happened
before in historical information, then its value is 0. On the
other hand, if ε is the only event between SRC and any other
entity with REL in our historical information then its value
1. Note that this anomaly score assignment algorithm is an
unsupervised algorithm with no training phase. To count the
frequency of events that have happened in the past we built an
Event Frequency Database that periodically stores and updates
events frequency in the whole enterprise. A detailed discussion
regarding the construction of such database will be provided
in §VII.

Let’s consider an alert event E1 :=<dropper.exe,
y.y.y.y:445, IP Write> from Fig. 2a. We first calculate
Freq(E1) by counting the number of events that have
happened in our frequency event database where SRC ∈
dropper.exe , DST ∈ y.y.y.y:445 and REL is IP Write. Then,
we will calculate Freqsrc rel(E1) by counting the number of
events where SRC ∈ dropper.exe and REL is IP Write while
DST could be any entity node. Details regarding how these
functions are implemented will be provided in §VII.

Transition probability for a given event tells us the fre-
quency with which a particular source flows to a particular
destination; however, we are ultimately going to propagate
this value through the graph, but when we do so we want to
account for the total amount of data flowing out of the source,
and the total amount of data flowing into the destination.
For this, we calculate IN and OUT score vectors for each
entity in the dependency graph G. The IN and OUT scores
represent the importance of an entity as an information receiver
and sender respectively. In other words, IN and OUT scores
measure the degree of fanout in either direction for each entity
in the graph. For example, in the motivating attack (§II), the
IExplorer.exe process entity has both high IN and OUT scores,
as it frequently reads and writes to socket connections. On the
other hand, dropper.exe process entity has a high OUT score as
it frequently writes to socket connections but has low IN since
it does not read anything. We provide a detailed algorithm to
calculate these vectors in §VI-C.
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Algorithm 1: GETPATHANOMALYSCORE

Inputs : Alert Event Eα;
Max Path Length Threshold τl

Output: List L<P,AS> of dependency path and score pairs.

1 Gα = GETDEPENDENCYGRAPH(Eα)
2 Vsrc ← GETSRCVERTEX(Eα)
3 Vdst ← GETDSTVERTEX(Eα)
4 Lb ← DFSTRAVERSALBACKWARD(Gα,Vsrc,τl)
5 Lf ← DFSTRAVERSALFORWARD(Gα,Vdst,τl)

/* Combine Backward and Forward Dependency Paths */
6 Lp ← COMBINEPATHS(Lb,Lf )

/* Generate a transition matrix of an input graph using Eq. 1 */
7 M = GETTRANSITIONMATRIX(G)
8 foreach P ∈ Lp do

/* Calculate Path anomaly score using Eq. 2 and Eq. 3 */
9 AS ← CALCULATESCORE(P ,M )

/* Append path and its anomaly score to a list */
10 L<P,AS> ← L<P,AS> ∪ < P,AS >
11 end
12 return L<P,AS>

Once the transition probability matrix and IN and OUT

scores calculation are done, we calculate the regularity (nor-
mal) score of each dependency path. Given a dependency path
P = (ε1, ..., εl) of length l, the regularity score RS(P ) is
calculated as follows:

RS(P ) =

l∏
i=1

IN(SRCi)×M(εi)×OUT (DSTi) (2)

where IN and OUT are the sender and receiver vectors, and
M is calculated by Equation 1. In Equation 2, IN(SRCi)×
M(εi) × OUT (DSTi) measures the regularity of the event
ε that SRCi sends information to DSTi entities. After cal-
culating regularity score, we calculate the anomaly score as
follows:

AS(P ) = 1−RS(P ) (3)

According to this equation, if any path that involves at least
one abnormal event, it will be assigned a high anomaly score as
it will be propagated to the final score. In Algorithm 1, func-
tion CALCULATESCORE generates anomaly scores of given
dependency paths.

C. IN and OUT Scores Calculation

As mentioned above, Equation 2 requires the IN and OUT

score vectors for each entity in the dependency graph. We
populate IN and OUT score for each entity, based on its type
as follows:

Process Entity Type. To assign IN and OUT score to a
candidate process entity we check the historical behaviour of
candidate process entity globally in the enterprise and calculate
its scores as follows: Let v be the candidate process entity
in the dependency graph and m is a fixed time window
length. The period from the time v is added to the dependency
graph (T0) to the current timestamp (Tn) is partitioned into a
sequence of time windows T = {T0, T1, ..., Tn}, where Ti is
a time window of length m. If there is no new edge from/to
vertex v in window Ti, then Ti is defined as a stable window.
The vertex v’s IN and OUT score is calculated using Equation 4
and Equation 5 respectively where |T ′

from| is the count of

stable windows in which no edge connects from v, |T ′
to| is the

count of stable windows in which no edge connects to v, and
|T | is the total number of windows.

IN(v) =
|T ′
to|
|T |

(4) OUT (v) =
|T ′
from|
|T |

(5)

To understand the intuition of these equations, consider an
example where a process vertex constantly have new edges
going out from it while there is no edge going in. In such
a case, the vertex has very low IN score, its OUT score will
be high. If there is suddenly an edge going in the vertex, it
is abnormal. The range of process entity IN and OUT score
∈ [0, 1], when a node has no stable window, i.e., the node
always has new edges in every window, its score is 0. If all the
windows are stable, the node stability is 1. Through repeated
experimentation, we typically set the window length 24 hours.
Hence the stability of a node is determined by the days that
the node has no new edges and the total number of days.

Data Entities. Data entity type consists of file and socket
entities. Data entities cannot be assigned global scores like
Process entity as mentioned-above because the behaviour of
data entity various from host to host in the enterprise. We
define local values in terms of low and high IN and OUT

scores for data entities. To assign IN and OUT scores for file
entity vertices, we divide the file entities into three types and
based on the type, we assign IN and OUT scores. 1) Temporary
Files: All the file entities which are only written and never
read in the dependency graph are considered as temporary files
as suggested by [47]. We give temporary files as high IN and
OUT scores since they usually do not contribute much in attack
anomaly score. 2) Executable Files: Files which are executable
(execute bit is 1) are given low IN and OUT since they are
usually used in the attack vector thus important sender and
receiver of information. 3) Known malicious extensions: We
use an online database [9] of known malicious file extensions
to assign low IN and OUT to such files since they are highly
anomalous. All the other files are given IN and OUT score
of 0.5. To assign IN and OUT scores for socket connection
entities, we use domain-knowledge. We use an online database
of malicious IP [10] address to assign low IN and OUT score.

D. Anomaly Score Normalization

For each alert causal path P , we calculate the anomaly
score using Eq. 2 and Eq. 3. However, it is easy to see that
longer paths would tend to have higher anomaly scores than
the shorter paths. To eliminate the scoring bias from the path
length, we normalize the anomaly scores so that the scores of
paths of different lengths have the same distribution.

We use a sampling-based approach to find the decay factor
which will progressively decrease the score in Equation 2.
To calculate decay factor α, we first take a large sample
of false alert events. Then, for each alert we generate the
dependency paths of different max lengths τl and generate
anomaly score for those paths. Then we generate a map M
which contains average anomaly scores for each path length.
Using this map, we calculate the ratio at which the score
increases with increasing length from the baseline length k
and use this ratio decay factor α. The complete algorithm to
calculate the decay factor α using the sampling method is
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Algorithm 2: CALCULATEDECAYFACTOR

Inputs : List of false alert causal events LE ;
Baseline length k;
Max. Path Length Threshold τl

Output: Decay Factor α

1 M = KeyValue Store of Path Length and Avg. Anomaly Score
2 foreach E ∈ LE do
3 for i← 0 to τl do

/* Use Algorithm 1 to generate anomaly score for given event and
max path length */

4 L<P,AS> = GETPATHANOMALYSCORE(E ,i)
/* Takes the average of anomaly scores for each path length and

store in map */
5 M [i] ← AVERAGESCORE(L<P,AS>,M [i])
6 end
7 end

/* Returns the ratio at which score increases with length from the baseline */
8 α ← GETDECAYFROMBASELINE(M ,k)

9 return α

shown in Algorithm 2. Once the decay factor is calculated,
the regularity score Equation 2 becomes as follows:

RS(P ) =

l∏
i=1

IN(SRCi)×M(εi)×OUT (DSTi)× α (6)

This equation returns a normalized anomaly score for a
given dependency path P of length l.

E. Paths Merge

As attacks are usually performed in multiple steps, it is
not possible to capture the complete causality of a true alert
event by returning the single dependency path that is most
anomalous. Likewise, returning the full dependency graph
(comprised of all paths) to cyber analysts is inaccurate because
it contains both anomalous paths as well as benign paths that
are unrelated to the true alert. To strike a balance between
these two extremes, we introduce a merging step that attempts
to build an accurate true alert dependency graph by including
only dependency paths with high anomaly scores.

A naı̈ve approach to this problem would be to return the
top k paths when ranked by anomaly score; this solution is not
acceptable because not all attacks contain the same number of
steps, which could lead to the admission of benign paths or
the exclusion of truly anomalous paths. Instead, we present
an algorithm that uses a best effort approach to merge paths
together in order to create an optimally anomalous subgraph.
Through experimentation with NODOZE, we found that there
is an orders of magnitude difference between the scores of
benign paths and truly anomalous paths. Because of this, we
are able to introduce a merge threshold τm which quantifies
the difference between the two. Algorithm 3 shows how to
merge dependency paths based on the merge threshold τm.
At a high level, this algorithm keeps merging high anomaly
score paths until the difference is greater than τm. In order
to calculate an acceptable value for τm, we use a training
phase to calculate the average difference between anomalous
and benign paths. While the availability of labeled training
data that features true attacks may seem prohibitive, recall that
NODOZE is designed for enterprise environments that already
employ trained cyber analysts; thus, the availability of training

Algorithm 3: DEPENDENCY PATHS MERGE

Inputs : LPS List of dependency path P and score S pairs;
Merge Threshold τm

Output: Alert Dependency Graph G

/* Sort list by anomaly scores */
1 LPS = SORTBYSCORE(LPS )

2 for i← 0 to SIZEOF(LPS)− 1 do
/* Path and its anomaly score pair */

3 < P1, S1 > ← LPS [i]
4 < P2, S2 > ← LPS [i+ 1]
5 if S1 − S2 < τm then
6 G ← G ∪ P1

7 G ← G ∪ P2

8 end
9 end

10 return G

data is a natural artifact of their work. We also note that, based
on our experience, the τm threshold only needs to be calculated
once per deployment.

F. Decision

The main goal of NODOZE is to rank all the alerts in
a given timeline. However, we can also calculate a decision
or a cut-off threshold τd, which can be used to decide if a
candidate threat alert is a true attack or a false alarm with
high confidence. If anomaly score of a threat alert is greater
than the decision threshold than it is categorized as a true
alert otherwise a false alarm. To this end, calculating τd require
training dataset with true attacks and false alarms and its value
depends on the current enterprise configuration such as the
number of hosts and system monitoring events.

G. Time Complexity of our Algorithm

The dependency paths search for an alert event is done
with D depth-bounded Depth-first search traversal. We execute
DFS twice for each alert, once forward and once backward to
generate both forward tracing and backward tracing depen-
dency paths. So time complexity is O(|bD|) where b is the
branching factor of the input dependency graph. Equation 2
runs for each path so time complexity is O(|PD|) where P is
the total number of dependency paths for the alert event.

VII. IMPLEMENTATION

We implement NODOZE for an enterprise environment.
We collected system event logs in PostgreSQL database using
Windows ETW [1] and Linux Auditd [11]. Our implementation
consists of 3 major modules: a) Event Frequency Database
Generator, b) Alert Triage & Graph Generator, and c) Visual-
ization Module.

A. Event Frequency Database

In order to calculate the transition probability matrix M ,
IN score vector, and OUT score vector for Equation 2, we
implemented Event Frequency Database in 4K lines of Java
code. For a given a time period, this module counts the number
of events that have happened in an enterprise network, then
stores these counts in an external database. During runtime,
NODOZE queries this database to calculate event frequencies.
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Users of NODOZE can periodically run this module to up-
date the enterprise-wide event frequencies. To remove non-
deterministic and instance specific information in each event’s
SRC and DST entities such as timestamp and process id, we
abstract/remove such fields before storing these events. Our
abstraction rules for each of the entity types are similar to
previous works [36], [49] with some changes to fit our analysis:

– Process Entity. We remove all the information in the process
entities except the process path, commandline arguments
and gid (group identification number).

– File Entity. We remove the inode and timestamps fields from
the file entities while abstract file paths by removing user
specific details. For example, /home/user/mediaplayer will be
changed to /home/*/mediaplayer.

– Socket Entity. Each socket connection entity has two ad-
dresses i.e. source ip and destination ip each with port
number. connection is outgoing we remove the source IP
and its port which is chosen randomly by the machine when
initiating the connection. If the connection is incoming we
the remove destination IP and its port. The end result is that
external IP of the connection is preserved while the internal
address is abstracted.

The final equations to calculate the frequencies of an event
Ei =< SRCi, DSTi, RELi > which are used in transition
probability matrix generation (Eq. 1) are as follows:

Freq(Ei) =
hosts∑
h

checkEvent(SRCi, DSTi, RELi, h, t) (7)

Freqsrc rel(Ei) =
hosts∑
h

checkEvent(SRCi, ∗, RELi, h, t) (8)

where hosts are hosts in the enterprise environment while
checkEvent function returns the number of times event Ei
has occurred on the host. We only count event Ei once in
time window t for a host to prevent poisoning attacks [42].
Note that in our experiments t is set to stable window size
(discussed in §VI-C) which is 1 day. Finally, in Eq. 8 “∗”
means any DST entity.

B. Alert Triage and Graph Generation

We implemented NODOZE’s network diffusion algorithm
and concise alert dependency graph generation in 9K lines of
Java code. We also implemented several optimizations such as
an event frequency cache to minimize the NODOZE overhead.

We implement a basic dependency graph generator that,
given an event parses the audit logs from Linux and Windows
stored in PostgreSQL and generates the dependency graph on-
the-fly. We also introduced several summarization techniques
that make a graph more suitable for NODOZE analysis without
affecting the correctness of causality analysis:

– Merge Transient Processes. There are processes in the
provenance graph whose sole purpose is to create another
process. We merge such processes into one node since
this does not affect our analysis. Consider the dependency
graph in Fig. 2a, IExplorer.exe process entity spawns an-
other IExplorer.exe process entity. We merge these two
IExplorer.exe process entities together.

– Merge Similar Sockets Connection. Socket connections go-
ing out to same address from the same process vertex
have multiple vertices in the raw dependency graphs. We
merge such socket connections into a single vertex. From
the perspective of alert event causality analysis, this does
not affect correctness but saves NODOZE’s time during
dependency path generation.

C. Visualization Module

We have built a front-end which helps cyber analysts
to visualize NODOZE’s concise dependency graphs. We use
GraphViz [33] to generate causal graph in a dot format and
then convert the dot file into html format. Cyber analysts can
use these html-based graphs to visualize the most anomalous
dependency paths with their anomaly scores.

VIII. EVALUATION

In this section, we focus on evaluating the efficacy of
NODOZE as an automatic threat alert triage and investigation
system in an enterprise setting. In particular, we investigated
the following research questions (RQs):

RQ1 How accurate is NODOZE over existing TDS? (§VIII-C)
RQ2 How much can NODOZE reduce the dependency graph

of a true alert without sacrificing the vital information
needed for investigation? (§VIII-D)

RQ3 How much of investigator’s time can NODOZE save
when used in an enterprise setting? (§VIII-E)

RQ4 What is the runtime overhead of NODOZE? (§VIII-F)

A. Experiment Setup

We monitored and collected OS-level system events and
threat alerts at NEC Labs America. In total, we monitored
191 hosts (51 Linux and 140 Windows OS) for 5 days which
were used daily for product development, research and admin-
istration at NEC Labs America. During this time span, we also
simulated 50 attacks which include 10 real-world APT attacks
and 40 recent malwares downloaded from VirusTotal [19]. A
short description of each APT attack with generated threat alert
is shown in Table II.

We deployed NODOZE on a server with Intel®Core(TM)
i7-6700 CPU @ 3.40GHz and 32 GB memory running Ubuntu
16.04 OS. We used the baseline TDS [8] to generate threat
alerts. In summary, our experiment contains 400 GB of system
monitoring data with around 1 billion OS-level log events
and 364 threat alerts. The Event Frequency Database in our
experiments was populated using 10 days of OS-level system
events. Note that our evaluation dataset of 364 labeled alert
scenarios was generated after the event frequency database was
populated.

B. Baseline TDS

The baseline TDS we used to generate threat event alerts
is a commercial tool [8]. Details regarding anomaly detection
models used in this tool can be found here [31]. At a very high
level, this TDS applies an embedding based technique to detect
anomalies. It first embeds security events as vectors. Then, it
models the likelihood of each event based on the embedding
vectors. Finally, it detects the events with low likelihood as
anomalies.
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TABLE II: Real-world attack scenarios with short descriptions and generated threat alerts by underlying TDS.

Attacks Short Description True Threat Alert

WannaCry [18] Motivating example discussed in §II See §II

Phishing Email [16] A malicious Trojan was downloaded as an Outlook attachment and the enclosed macro was triggered
by Excel to create a fake java.exe, and the malicious java.exe further SQL exploited a vulnerable
server to start cmd.exe in order to create an info-stealer

<Excel.exe, java.exe, Pro Start>

Data Theft [49] An attacker downloaded a malicious bash script on the data server and used it to exfiltrate all the
confidential documents on the server.

<ftp, y.y.y.y:21, IP Write>

ShellShock [13] An attacker utilized an Apache server to trigger the Shellshock vulnerability in Bash multiple times. <bash, nc.traditional, Pro Start>

Netcat Backdoor [17] An attack downloaded the netcat utility and used it to open a Backdoor, from which a Persistent
Netcat port scanner was then downloaded and executed using PowerShell

<nc.exe, cmd.exe, Pro Start>

Cheating Student [51] A student downloaded midterm scores from Apache and uploaded a modified version. <Apache2, /www/newscores, File Write>

Passing the Hash [7] An attack connected to Windows domain Controller using PsExec and run credential dumper (e.g.,
gsecdump.exe).

<gsecdump.exe, g64-v2b5.exe,
Pro Start>

wget-gcc [67] Malicious source files were downloaded and then compiled. <wget, x.x.x.x:80, IP Read>

passwd-gzip-scp [67] An attack stole user account information from passwd file, compressed it using gzip and transferred
the data to a remote machine

<scp, x.x.x.x:22, IP Write>

VPNFilter [20] An attacker used known vulnerabilities [13] to penetrate into an IoT device and overwrite system files
for persistence. It then connected to outside to connect to C2 host and download attack modules.

</var/vpnfiler, x.x.x.x:80, IP Read>

C. Improvement Over Existing TDS

The first research question of our evaluation is how much
NODOZE improves the accuracy of existing TDS [31], [43],
[29], [60] which are based on heuristics and single event
matching rules. To answer this question, we used NODOZE
along with the baseline TDS [8]. In our experiment, we used
the baseline TDS to monitor the system activities of the
enterprise for anomalies and generate threat alerts. We then
manually labeled these alerts as true positives and false posi-
tives and use them as the ground truth to evaluate NODOZE.
Lastly, we used NODOZE to automatically label the alerts and
compared the results with the ground truth.

In our experiments, the baseline TDS generated a total of
364 alerts (50 true alerts and 314 false alarms). The detection
accuracy of NODOZE is measured using true positive rate
(TPR) and false positive rate (FPR). Intuitively, the FPR mea-
sures the total number of false alerts that were categorized as
true attacks by NODOZE. By adjusting the decision threshold
τd, NODOZE can achieve different TPR and FPR as shown in
the ROC graph in Fig. 5. When the threshold is set to detect
100% of true positives, NODOZE has a 16% FPR. In other
words, NODOZE can reduce the number of false alerts of the
baseline TDS by more than 84% while maintaining the same
capability to detect real attacks. Fig. 6 shows the cumulative
distribution function for ranked true and false alerts based
on aggregate anomaly scores. The decision threshold (shown
with red line), when set to 100% of true positives, removes
the large portion of false alerts because the true positives are
substantially ranked higher than false alerts.

D. Accuracy of Capturing Attack Scenarios

To answer RQ2, we used NODOZE to capture the attack
scenarios of 10 APT attacks from their complex provenance
graphs. We evaluate NODOZE on the APT attacks because
we know the precise ground truth dependency graphs of the
attacks. The results are summarized in Table III. The duration
columns represent the time taken in seconds by underlying
provenance tracker to generate a complete dependency graph
and time taken by NODOZE to run its analysis and generate a
concise graph.
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Fig. 5: ROC curve for our experiments using NODOZE along with
TDS.
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Fig. 6: CDF for ranked true and false alerts based on aggregate
anomaly score.

Our experiment shows that our system accurately extracts
the APT attack scenarios from the complex provenance graphs
generated by the underlying provenance tracker. NODOZE can
reduce the size of the provenance graph by two orders of
magnitude. Such a reduction may substantially reduce the work
load of cyber analyst when investigating the threat alerts and
planning incident responses.

We also measured the completeness of the NODOZE
generated dependency graph for each attack. We measured
completeness in terms of two metrics: control dependency
(CD) and data dependency (DD) (discussed in §V) with their
true positive (TP) and false positive (FP) rates. Intuitively, the
TP means the number of truly attack related edges present
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TABLE III: Comparison of dependency graphs generated by NODOZE against prior tools [26], [41]. Completeness means how much our
graph able to capture the attack dependency graph in terms of CD and DD with their true positive (TP) and false positive (FP) rates.

Attacks
Baseline Prov. Tracker NODOZE NODOZE Completeness

Dur.(s) #Ver. #Edg. Size(KB) Dur.(s) #Ver. #Edg. Size(KB) CD(TP) CF(FP) DD(TP) DD(FP)

WannaCry 94.0 5948 8712 3,320 18.0 19 21 49 100% 0% 100% 0.03%
Phishing Email 63.0 2095 6002 3,984 10.0 17 16 48 100% 0% 100% 0%

Data Theft 73.0 5364 23825 2,208 41.0 23 24 65 100% 0% 100% 0%
ShellShock 31.0 2794 4031 3,776 8.0 15 20 36 100% 0% 100% 0%

Netcat Backdoor 62.0 2914 6158 1,968 14.0 12 11 48 88% 0% 84% 0%
Cheating Student 50.0 1217 22647 784 10.0 12 11 40 100% 0% 100% 0.07%
Passing the Hash 53.0 848 1026 560 11.0 8 8 36 100% 0% 90% 0%

wget-gcc 63.0 8323 8679 168 9.0 11 12 33 100% 0% 100% 0.01%
passwd-gzip-scp 68.0 8066 15318 5,168 8.0 10 9 36 100% 0% 100% 0%

VPNFilter 20.0 2639 9774 1,000 9.0 15 15 45 100% 0% 100% 0%
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Fig. 7: CDF of query response times for all the 364 threat alerts in our dataset.

in the concise graph generated by NODOZE. For all 10 APT
attacks, we were able to recover the alert’s expected control
dependency graph except for Netcat attack where the expected
length of control dependency path was larger than user-defined
τl. Note, this does not affect the correctness of causality anal-
ysis since cyber analysts can increase the depth of the path by
increasing τl during the alert investigation. In some cases, we
were not able to completely recover the data dependency graph
because incorporating those data dependencies required larger
merge threshold τm than set in our experiments. However,
increasing the merge threshold also increases the number of
FP in the data dependencies. Thus, finding the best possible
thresholds which strike a balance between TP and FP require
training run once before deployment in an enterprise.

Nevertheless, NODOZE decreases the size of original graph
by two orders of magnitude which accelerates the alert investi-
gation without losing vital information about attack. To further
explain how well can NODOZE capture the attack scenarios,
we will discuss two attack cases from Table II in §IX.

E. Time Saved Using NODOZE

Recent studies [2], [6] have shown that it takes around
10-40 mins to manually investigate a single threat alert in an
enterprise. This time spent on an investigation is also known as
Mean-Time-To-Know in industry. Note that these studies have
also confirmed that cyber analysts receive around 60-80% false
alarms using existing TDS, which was also the false alarm rate
of the baseline TDS used in our experiments.

If we conservatively assume cyber analysts spend 20 mins
on average on each false alarm in our experiments they would
have to waste around 104 employee-hours on investigating

those false alarms. However, NODOZE reduces false alarms
of existing TDS by 84%, which saves around 90 employee-
hours in an enterprise setting.

F. Runtime Performance of NODOZE

To answer RQ4, we measured the runtime overhead of
NODOZE for all the alerts in our dataset. NODOZE’s response
time for all the 364 alerts events is shown as a CDF in Fig. 7a.
This response time includes running anomaly propagation
algorithm and generating a concise dependency graph for given
alerts. Results show that 95% of all the alerts are responded by
NODOZE in less than 40 seconds. There are few cases where
NODOZE took a long time to respond. In these cases, most
time was spent on constructing a large transition probability
matrix for a large input dependency graph.

To further understand why NODOZE has large response
times in some cases, we also measured the dependency graph
generation query response times for all 364 alerts in our
dataset. The results are shown in Fig. 7b. Complete graph
generation also has long response times because of extra
large dependency graph construction. For these large depen-
dency graphs, NODOZE also incurs larger overhead due to
the reasons mentioned above. However, because we rarely
encountered this issue in our experiments and other provenance
tracking techniques [49], [52] also suffer from this perfor-
mance problem, we leave solving this problem for future work.
CDF for end-to-end response time starting from the time alert
is received until the alert is triaged is shown in Fig. 7c. 95%
of the threat alerts are responded in less than 200 seconds.
Note that right now NODOZE analysis framework runs on a
single machine using single thread; however, NODOZE can be
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Fig. 8: Data theft attack scenario discussed in §IX-A. (a) Part of dependency graph generated by traditional tools. (b) Concise true alert
dependency graph generated by NODOZE.

parallelized easily using existing distributed graph processing
frameworks (details in §X).

IX. CASE STUDIES

A. Data Theft Attack

Scenario. In this attack, an employee of a mobile app
development company stoles app designs that were about to be
released and posted them online. To perform this data theft at-
tack, employee downloads a malicious bash script (stealer.sh)
to the data server via HTTP. Bash script (stealer.sh) discovers
and collects all the application designs on the server. Then,
the script compresses (tar) all the design files (design1.png
and design2.png) into a single tarball, transferred the tarball
to a low-profile desktop computer via SSH, and finally uploads
it to an external FTP server under employee’s control. Since
the employee is aware of the company’s TDS, the bash script
also creates a bunch of spurious processes to create false alerts
which buys the employee enough time to complete the attack
and post the designs online.

Threat Alerts. Once the bash script is executed many threat
alerts are generated by TDS in a short period of time, which
are investigated by cyber analyst one by one. The dependency
graph of these threat alert is shown in Fig. 8a where dashed
edges show threat alert events.

Alert Investigation. Without NODOZE, an investigator will
generate a complete dependency graph for each of the threat
alerts generated by TDS and manually inspect them only to see
that just 1 of the 4 threat alerts was true attack. However, by the
time investigator has examined all the false alerts (∼1.6 hours),
all the app designs may have already been posted online.

On the other hand, NODOZE will ingest all these threat
alerts and rank them based on their anomaly score. In this

scenario, all the false alerts intentionally created by the attacker
will be ranked lower while the true alert will be ranked higher.
The threat alert events which led to data theft will be ranked
on the top because of various rare events in its progeny. For
example, using cp utility to copy data.tar to the ftp serving
directory and using ftp to make a connection outside the
organization. This chain of events has never happened in the
organization. Contrary to this, events in the progeny of all the
false threat alerts were quite common such as running g++ and
Linux utilities.

NODOZE also generates a concise dependency graph with
only data theft dependency paths, while all the benign paths
have been removed as shown in Fig. 8b. Observe that in
Fig. 8a, the progeny of the true threat alert event has various
operations such as run-parts and dpkg, which are removed in
the NODOZE generated graph because their anomaly score is
lower than the data theft dependency path. Note that NODOZE
generated graph has some socket vertices connected to chromium
and sshd which are unrelated to attack but they are included in
NODOZE’s graph because they were rare. Note that Table III
shows the FP rate higher than 0 due to these unrelated socket
connections. Nevertheless, NODOZE decreases the original
graph size by 2 orders of magnitude.

B. ShellShock Attack

Scenario. In this attack scenario, attacker targets a ShellShock
vulnerable Apache webserver to open several reverse shells and
steals sensitive files. The attacker launches the attack in two
phases. In the first phase, the attacker runs some Linux utilities
(e.g.,ls, top) without doing serious damage. In the second
phase, the attacker tries to discover sensitive data on webserver
using commands such as ‘/bin/cat /etc/passwd‘ and ‘/bin/cat
/var/log/access logs‘ . Once the sensitive files are found, the
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Fig. 9: ShellShock attack scenario discussed in §IX-B. (a) Part of dependency graph generated by traditional tools. (b) Concise true alert
dependency graph generated by NODOZE.

attacker archived (tar) and compressed (bzip2) the sensitive
files and transferred (cp) it to Apache hosting directory so
that attacker can download (wget) it from another machine.
Once this phase is done, the attacker erased the history of
bash commands by removing .bash history. Later, noises were
introduced when a normal user opened new bash terminals.
These terminals read the modified .bash history creating a
false causal link to the attack.

Threat Alerts. This attack scenario simulation generated
various threat alerts events because spawning a nc.traditional
from bash process is considered as anomalous behaviour by
TDS. These threat alert events are indicated by dashed arrows
in Fig. 9a.

Alert Investigation. The forward dependency graph of all the
threat alert events consists of bash commands which are quite
common in the enterprise such as ls and cat. However, alert
event E3 consist of other commands which are not common
in an organization such as ‘/bin/cat /etc/passwd‘ and ‘cp

data.tar.bz2 /var/www/‘. All the threat alert events will be
ranked lower than alert event E3 because the progeny graph of
alert event E3 contains most anomalous dependency paths as
compared to other alert events.

Fig. 9b shows the concise dependency graph generated by
NODOZE. NODOZE’s graph only has data exfiltration while all
the common terminal commands are excluded from this graph
because of our behavioural execution partitioning technique.
This technique chooses alert dependency paths that have data
exfiltration events over other dependency paths that launched
common terminal commands due to two reasons: 1) creation
and transfer of new files have low frequency in our event
database since these do not happen very often as compared
to running Linux utilities; 2) the dependency path for data
exfiltration also wget’s sensitive files on other machines while
benign paths do not include any more anomalous behaviour.

X. LIMITATIONS & DISCUSSIONS

We outline the limitations of NODOZE through a series
of questions. We also discuss how NODOZE can be extended
under different scenarios.

What happens if an attacker uses benign process and file
names for an attack? NODOZE is resilient to changes in

the file and process names. At first glance, it may seem
surprising; however, NODOZE inherits this from the use of
data provenance, which captures true causality, not merely
correlations. Even if the attacker starts a malware with a
benign program name such as Notepad, the causality of the
program such as how it was spawned and what changes it
induced differentiates its behaviour from the normal behaviour
of Notepad. Note that this property sets our work apart from
heuristics-based TDS (e.g., [68], [32]).

Can NODOZE be extended to incorporate distributed graph
processing frameworks for improved performance? NODOZE
uses a novel network diffusion algorithm to propagate the
anomaly scores on the edges of a large dependency graph
to generate an aggregate anomaly score. One can potentially
parallelize this algorithm using existing large-scale vertex-
centric graph processing frameworks [53]. In this work, we
do not enable distributed graph processing; however, we will
explore this option in future work.

Can NODOZE run anomaly propagation algorithm while gen-
erating the dependency graph from audit logs? Currently,
NODOZE first generates a complete dependency graph and
then it propagates the anomaly score on that dependency
graph. However, one can design a framework which propagates
the anomaly score while generating the large dependency
graph using iterative deepening depth first search and stop the
analysis if anomaly scores do not increase in next iteration.
In this way additional step of generating a large dependency
graph first can be removed completely.

What is the role of underlying TDS in NODOZE’s effec-
tiveness? NODOZE is essentially an add-on to existing TDS
for false alarm reduction. Thus, NODOZE can detect true
attack only if it was detected by the underlying TDS first.
If underlying TDS misses true attack and does not generate an
alert, then NODOZE will not be helpful. Improving the true
detection rate of underlying TDS is orthogonal to our work;
however, our findings suggest that path-based context could be
a powerful new primitive in the design of new TDS.

Does the choice of underlying TDS affect the accuracy of
NODOZE? NODOZE is independent to the choice of under-
lying TDS, we used this TDS [8] in particular because it was
licensed by our enterprise; licensing additional TDS for our
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evaluation, which was conducted on hundreds of hosts, was
prohibitively costly. However, this tool is a state-of-the-art
commercial TDS that is based on a reputable peer-reviewed
detection algorithm [31] and is similar to existing commercial
and academic TDS [3], [5], [43], [29], [21] in FPR.

XI. RELATED WORK

In §II, we described the limitations of combining TDS with
provenance tracker that NODOZE addresses, and complement
the discussion on related work here.

Threat Detection. Existing threat detection approaches can
be classified as online and offline approaches. Online detection
approaches often look for a specific sequence of syscalls to
detect malicious programs in a running system [37], [48].
While offline approaches leverage forensic analysis on audit
log to find the root cause of intrusion. Due to performance and
space constraints, online approaches do not keep audit logs to
support forensic analysis. On the other hand, existing offline
approaches are labor intensive which makes them prohibitively
impractical in an enterprise.

To improve syscall based methods, Tandon et al. [61]
considered syscall arguments in addition to syscall sequences
for malicious program detection. Sekar et al. [57] further added
more complex structures such as loops and branches in the
syscall sequences. However, all these syscall based systems
suffer from a high false alarm rate due to the lack of contextual
information. NODOZE use historical contextual information
of system activities with more domain information such as
process names and commandline arguments to achieve better
accuracy. Researchers have also proposed to automatically
detect attacks using machine learning [38], [64]. However,
these methods also have significant detection error and suffer
from generating too many false alerts [58], [34].

Threat Alert Triage. Ben-Asher et al. [27] did a study to
investigate the effects of knowledge in detecting true attacks.
They found that contextual knowledge about alert was more
helpful in detection than cyber analysts experience and prior
knowledge. Zhong et al. [68] mined past analysts’ operation
traces to generate a state machine for automated alert triage.
Chyssler et al. [32] used a static filter with aggregation to
reduce false alarm in IP network with the help of end-user
involvement to adjust filter rules. There are many other pro-
posed approaches to reduce the number of alerts such as careful
configuration and improved classification methods [22], [45];
however, there are still too many threat alerts for the analysts
to properly investigate [32]. To the best of our knowledge,
NODOZE is the first system to leverage data provenance to
automate the alert triage process in an enterprise without
analysts involvement.

Provenance Analysis. A lot of work has been done to
leverage data provenance for forensic analysis [26], [46], [56],
[63], network debugging [23], [65], and access control [55].
Jiang et al. [39] used process coloring approach to identify the
intrusion entry point and then use taint propagation approach to
reduce log entries. Xie et al. [66] used high-level dependency
information to detect malicious behaviour. However, this sys-
tem only considered one event at a time without malicious
behaviour propagation i.e. if ftp connects to some socket

address which is not in their normal event database they will
mark it as malicious. However, NODOZE considered the whole
path i.e. the creation and ramification ftp-socket event for
categorization by using anomaly score propagation algorithm.
PrioTracker [49] accelerates the forward tracing by prioritizing
abnormal events. Unlike PrioTracker, NODOZE focuses on
triaging alerts and generating a more precise provenance graph.
Furthermore, Priotracker only considers the abnormality of
single events, it is not capable to distinguish similar events
with different contexts in the dependency graph, such as E1
and E2 in our motivating example in Figure 2a.

Dependency graph compression techniques [47], [36], [30]
are proposed to reduce the space overhead of provenance
tracking. Provenance visualization [28] technique is also pro-
posed to facilitate data provenance analysis. As such, these
techniques do not remove any benign events for the efficient
alert triage and investigation; however, NODOZE can use these
techniques to further decrease the overhead of backward and
forward tracing by removing redundant event.

XII. CONCLUSION

We develop NODOZE, a threat alert triage system that
features historical and contextual information of generated
alerts to automatically triage alerts. NODOZE uses a novel
network diffusion algorithm to propagate anomaly scores in the
dependency graphs of alerts and generates aggregate anomaly
scores for each alert. These aggregate anomaly scores are then
used by NODOZE to triage alerts. Our evaluation results show
that our system substantially reduces the slog of investigating
false alarms and accelerates the incident investigation with
concise contextual alerting. NODOZE runtime overhead is low
enough to be practical and can be deployed with any threat
detection software.
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[22] D. Barbará and S. Jajodia, Applications of data mining in computer

security. Springer Science & Business Media, 2002.
[23] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN

Be Your Eyes: Secure Forensics in Data Center Networks,” in SENT,
2014.

[24] A. Bates, W. U. Hassan, K. Butler, A. Dobra, B. Reaves, P. Cable,
T. Moyer, and N. Schear, “Transparent web service auditing via network
provenance functions,” in WWW, 2017.

[25] A. Bates, B. Mood, M. Valafar, and K. Butler, “Towards secure
provenance-based access control in cloud environments,” in CODASPY,
2013.

[26] A. Bates, D. Tian, K. R. B. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in USENIX Security, 2015.

[27] N. Ben-Asher and C. Gonzalez, “Effects of cyber security knowledge
on attack detection,” Computers in Human Behavior, vol. 48, 2015.

[28] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “Vistrails: Visualization meets data management,” in
SIGMOD. ACM, 2006.

[29] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., 2009.

[30] C. Chen, H. T. Lehri, L. Kuan Loh, A. Alur, L. Jia, B. T. Loo, and
W. Zhou, “Distributed provenance compression,” in SIGMOD, 2017.

[31] T. Chen, L.-A. Tang, Y. Sun, Z. Chen, and K. Zhang, “Entity
embedding-based anomaly detection for heterogeneous categorical
events,” in IJCAI, 2016.

[32] T. Chyssler, S. Burschka, M. Semling, T. Lingvall, and K. Burbeck,
“Alarm reduction and correlation in intrusion detection systems.” in
DIMVA, 2004.

[33] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphvizopen source graph drawing tools,” in International Sympo-
sium on Graph Drawing. Springer.

[34] R. Harang and A. Kott, “Burstiness of intrusion detection process:
Empirical evidence and a modeling approach,” IEEE Transactions on
Information Forensics and Security, 2017.

[35] R. Hasan, R. Sion, and M. Winslett, “Preventing History Forgery with
Secure Provenance,” Trans. Storage.

[36] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer, “To-
wards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs,” in NDSS, 2018.

[37] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” J. Comput. Secur., 1998.

[38] W. Hu, Y. Liao, and V. R. Vemuri, “Robust anomaly detection using
support vector machines,” in ICML, 2003.

[39] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and Y.-M.
Wang, “Provenance-aware tracing ofworm break-in and contaminations:
A process coloring approach,” in ICDCS, 2006.

[40] A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda,
“Unveil: A large-scale, automated approach to detecting ransomware.”
in USENIX Security Symposium, 2016.

[41] S. T. King and P. M. Chen, “Backtracking intrusions,” in SOSP, 2003.
[42] M. Kloft and P. Laskov, “A poisoning attack against online anomaly

detection,” in NIPS Workshop on Machine Learning in Adversarial
Environments for Computer Security, 2007.

[43] C. Kruegel, Intrusion Detection and Correlation: Challenges and So-
lutions. Springer-Verlag TELOS, 2004.

[44] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie et al., “MCI: Modeling-based causality
inference in audit logging for attack investigation,” in NDSS, 2018.

[45] A. Laszka, J. Lou, and Y. Vorobeychik, “Multi-defender strategic
filtering against spear-phishing attacks.” in AAAI, 2016.

[46] K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Provenance
via Binary-based Execution Partition,” in NDSS, 2013.

[47] ——, “LogGC: garbage collecting audit log,” in CCS, 2013.
[48] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion

detection,” in USENIX Security Symposium, 1998.
[49] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,

“Towards a timely causality analysisfor enterprise security,” in NDSS,
2018.

[50] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in USENIX Security Symposium, 2017.

[51] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Provenance
Tracing by Alternating Between Logging and Tainting,” in NDSS, 2016.

[52] P. Macko and M. Seltzer, “Provenance map orbiter: Interactive explo-
ration of large provenance graphs.” in TaPP, 2011.

[53] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in ACM SIGMOD, 2010.

[54] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in ATC, 2006.

[55] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based access control
model,” in IEEE PST, 2012.

[56] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Collecting
High-Fidelity Whole-System Provenance,” in ACSAC, 2012.

[57] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in IEEE
S&P, 2001.

[58] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in IEEE Symposium
on Security and Privacy, 2010.

[59] G. P. Spathoulas and S. K. Katsikas, “Using a fuzzy inference sys-
tem to reduce false positives in intrusion detection,” in International
Conference on Systems, Signals and Image Processing, 2009.

[60] S. J. Stolfo, S. Hershkop, L. H. Bui, R. Ferster, and K. Wang,
“Anomaly detection in computer security and an application to file
system accesses,” in International Symposium on Methodologies for
Intelligent Systems. Springer, 2005.

[61] G. Tandon and P. K. Chan, “On the learning of system call attributes
for host-based anomaly detection,” International Journal on Artificial
Intelligence Tools, 2006.

[62] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in CCS, 2002.

[63] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging
in the internet of things,” in NDSS, 2018.

[64] J. Wu, D. Peng, Z. Li, L. Zhao, and H. Ling, “Network intrusion
detection based on a general regression neural network optimized by
an improved artificial immune algorithm,” PloS one, 2015.

[65] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
network repair with meta provenance,” in NSDI, 2017.

[66] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection and
forensic analysis via provenance awareness,” Future Gener. Comput.
Syst., 2016.

[67] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in CCS, 2016.

[68] C. Zhong, J. Yen, P. Liu, and R. F. Erbacher, “Automate cybersecurity
data triage by leveraging human analysts’ cognitive process,” in IEEE
BigDataSecurity, 2016.

15

https://www.nec.com/en/global/techrep/journal/g16/n01/160110.html
https://www.nec.com/en/global/techrep/journal/g16/n01/160110.html
https://www.file-extensions.org/filetype/extension/name/dangerous-malicious-files
https://www.file-extensions.org/filetype/extension/name/dangerous-malicious-files
https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/
man7.org/linux/man-pages/man8/auditd.8.html/
man7.org/linux/man-pages/man8/auditd.8.html/
https://www.statista.com/chart/9399/wannacry-cyber-attack-in-numbers/
https://www.statista.com/chart/9399/wannacry-cyber-attack-in-numbers/
https://nvd.nist.gov/vuln/detail/CVE-2014-6271
https://www.rapid7.com/db/modules/exploit/windows/smb/ms17_010_eternalblue
https://www.rapid7.com/db/modules/exploit/windows/smb/ms17_010_eternalblue
https://bloom.bg/2KjElxM
https://bloom.bg/2KjElxM
https://nvd.nist.gov/vuln/detail/CVE-2008-0081
https://www.offensive-security.com/metasploit-unleashed/persistent-netcat-backdoor/
https://www.offensive-security.com/metasploit-unleashed/persistent-netcat-backdoor/
https://symc.ly/2NSK5Rg
https://www.virustotal.com/
https://symc.ly/2IPGGVE
https://symc.ly/2IPGGVE

	Introduction
	Background & Motivation
	Motivating Attack Example
	Existing Tools Limitations
	Goals

	NoDoze Overview & Approach
	Threat Model & Assumptions
	Problem Definition
	Definitions
	Problem Statement

	Algorithm
	Roadmap
	Anomaly Score Propagation
	IN and OUT Scores Calculation
	Anomaly Score Normalization
	Paths Merge
	Decision
	Time Complexity of our Algorithm

	Implementation
	Event Frequency Database
	Alert Triage and Graph Generation
	Visualization Module

	Evaluation
	Experiment Setup
	Baseline TDS
	Improvement Over Existing TDS
	Accuracy of Capturing Attack Scenarios
	Time Saved Using NoDoze
	Runtime Performance of NoDoze

	Case Studies
	Data Theft Attack
	ShellShock Attack

	Limitations & Discussions
	Related work
	Conclusion
	References

