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ABSTRACT
Collective behavior emerges from local interactions in a

group, has been observed in many natural systems, and is of sig-
nificant interests for engineering applications. The Vicsek model
is a mathematical tool to study collective alignment in a group
of self-propelled particles based on local interaction, which has
been well-studied in the literature for its simple algorithm and
complex global behaviors. Several studies show that particles
reach alignment faster when the directionality of particle inter-
action is restricted by an optimal view angle. This result seems
counterintuitive, since each particle is expected to get more infor-
mation through omnidirectional interaction. This work seeks to
explore the possible causes of this optimal view angle by studying
interaction dynamics in Vicsek model with restricted view angle
through numerical simulation.

INTRODUCTION
When a group of individuals interact, a group-level pattern

may emerge from only local information sharing, even in the ab-
sence of any global cues. This group-level complexity is referred
as collective behavior and has been observed in many animal sys-
tems ranging from cells to humans [1–7]. Such behavior has also
been observed in non-living systems, where material particles in-
teract among each other as has been reported in vibrating rods [8]
and nematic liquid crystal [9]. Moreover, collective behavior is
exploited in the design and control of engineered systems espe-
cially in swarm robotics [10]. Therefore, understanding collec-
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tive behavior can be beneficial to a large range of scientific dis-
ciplines. A through review of the previous studies on collective
behavior and its applications is published in [11].

There are two main approaches to model collective behav-
ior. In one approach as is implemented in [12], the system is
considered as a continuous medium, while the other one is based
on defining interaction rules between individuals [13], which is
often referred to as agent-based modeling. The so-called Vicsek
model is one the most studied agent-based models of collective
behavior due to its capability to capture complex behavior using
a simple update rule [14]. In this model, self-propelled parti-
cles move in two dimensions and every particle aligns its head-
ing direction with an average of the nearby particles, subjected
to some random noise. The ability of the particles to align as a
group is investigated for different values of noise. As the value
of the noise exceeds a critical noise, the system shows a phase
transition from an aligned ordered phase to a random disordered
phase [14]. Many variations of Vicsek model can be found in
the literature, such as its extension to three dimensions [15], in-
corporation of a blind spot for interactions [13], addition of at-
traction and repulsion rules [13], changing the symmetry of the
particles [16], and applying different types of noise [17, 18].

Inspired by the restricted angular range of sensing for many
animals, collective behavior in the Vicsek model with restricted
view angle is investigated in the literature [19–23]. The study re-
ported in [19] shows that, for the two-dimensional Vicsek model
with restricted view angle, the critical noise is negligible for
view angles less than π and therefore, phase transition exists
only when each particle interacts with at least all particles in
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front of it. In another study, the nature of phase transition in a
restricted-view-angle Vicsek model is investigated as the view
angle increases in the presence of constant noise. The article
reports non-monotonicity of an order parameter for the system
with changing view angle [20]. This non-monotonicity is also
observed in [21] in which they report the existence of an optimal
view angle in which the system aligns faster in absence of noise,
as compared to when no view angle is imposed. The existence
of such an optimal angle is also reported in three-dimensional
Vicsek model in [22], even though the interaction rule reported
in the paper seems to be two-dimensional. A more recent study
adds a random head motion to the two-dimensional restricted-
view-angle Vicsek model and finds a faster convergence to the
ordered system at the optimal angle [23].

Although such an optimal view angle is reported in many
studies in the literature, its existence is counter-intuitive since it
limits the area each particle perceives by design. As a result,
each particle is expected to interact with less neighboring parti-
cles when a view angle less than a full circle or sphere is imposed.
According to the update rule of the Vicsek model, each parti-
cle moves in the averaged direction of its neighbors and there-
fore less neighboring particles should lead to less averaging and
slower alignment. Therefore, alignment should happen slower
as the view angle decreases. Moreover, one may expect adding
more randomness in terms of head motion may reduce the time
to reach alignment. These expectations, however, are in contrast
with the results of previous studies that show non-monotonic de-
pendence of convergence time on view angle. Although several
independent studies confirm these result, no study investigating
the reasons behind these observations exists to the best of our
knowledge.

In this paper, we study the two-dimensional Vicsek model
with restricted view angle and investigate the correlation between
the view angle, convergence time for collective behavior, and the
metrics of interaction dynamics between particles using numer-
ical simulation. The results of this work suggest an explanation
for the existence of the optimal view angle based on features of
the interaction network created by the restricted view angle.

MODELING
The Vicsek model with restricted view angle considers a

group of N self-propelled particles moving with constant speed
v0 inside a square of length L with periodic boundary conditions.
The heading angle of particle i, θi, is defined as the angle be-
tween its heading direction and the horizontal line. For each par-
ticle, we define the view region as a circular sector with radius R
and opening angle φ such that has the particle’s heading direc-
tion bisects its opening angle. We refer to the radius R and the
opening angle φ as the view range and view angle, respectively.
All the particles located in the view region of a specific particle
are called its neighbors. Figure 1 shows a schematic picture for
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FIGURE 1. A SCHEMATIC OF THE GEOMETRY OF THE
MODEL SHOWING THE VIEW REGION, VIEW RANGE R, VIEW
ANGLE φ HEADING DIRECTION, HEADING ANGLE θ , AND
THE NEIGHBORS OF A PARTICLE

this model.
The interaction rule between particles is based on averaging

the heading direction of neighboring particles. Particle i at time
step k has position vector xi (k) ∈ R2 and heading angle θi(k).
Then, the heading direction of this particle at time step k + 1
is set to be the average of heading directions of its neighbors,
disturbed by a noise. In other words,

θi(k+1) = arctan

( 〈
sin(θ j(k))

〉
Λi(k)〈

cos(θ j(k))
〉

Λi(k)

)
+∆θi(k). (1)

where Λi(k) is the index set of all the neighbors of particle i at
time step k, and 〈.〉A denotes the operation of averaging over the
set A. The noise ∆θi(k) is a realization of a random variable
with uniform distribution over

[
−η

2 ,
η

2

]
, where η is the noise

magnitude. Note that ∆θi(k) is sampled independently over the
particles i and time steps k.

After finding the updated heading angle, the heading direc-
tion of the particle can be computed as

Vi(k+1) = cos(θi(k+1)) i+ sin(θi(k+1)) j (2)

where i and j are respectively the unit vectors in horizontal and
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vertical directions. Assuming the particles are self-propelled

with common speed v0, the position of particle i at time step

k+1 is

xi(k+1) = xi(k)+ v0Vi(k+1). (3)

The collective behavior generated by the Vicsek model is

alignment, which can be captured using polarization as order pa-

rameter. Polarization is the magnitude of the averaged normal-

ized velocity of the group. In other words, at time step k, the

polarization of the group P(k) is equal to

P(k) =
1

N

∣∣∣∣∣
N

∑
i=1

Vi(k)

∣∣∣∣∣ . (4)

Therefore, polarization is a number between 0 and 1 and higher

values of polarization is associated with better alignment in the

group.

For a realization of the model, the polarization time series

reaches stationary condition after an initial transient. The mean

value of stationary polarization depends of the level of noise η
and the view angle φ . In case of zero noise and large enough

view angle, the group will establish full alignment and polariza-

tion reaches to value 1. Therefore, the length of the transient τ
captures how fast the group reaches its stationary condition and

can be used as a metric to study alignment [21], as we will do

in this study. As a comment, the mean value of polarization in

stationary condition measures the collective behavior when noise

is present, as is used in [14].

INTERACTION METRICS
From the previous research in the literature, we know that

the length of the transient depends on the view angle of the par-

ticles and that an optimal angle exists which minimizes transient

length. In this work, we explore the interaction among the par-

ticles during the transient to get some clue about the dynamics

of the system that explains the origin of the optimal angle. For

this effort, we study the interaction between the particles in a

multi-agent system as a dynamic network or graph.

Mathematically, a (directed) graph G is defined as an or-

dered pair of sets G = (V,E) in which elements of E are the

ordered pairs of elements of V . The elements of V and E are

called vertices and edges of the graph G, respectively. We say

that the vertex v j is adjacent or neighbor to vertex vi if (vi,v j)
is an edge of the graph. For each graph, the adjacency matrix
A summarizes the adjacency relationship between vertices of the

graph. The element ai j of the adjacency matrix A is equal to 1 if

(vi,v j) is an edge of the graph, otherwise it is equal to 0.

FIGURE 2. A SCHEMATIC OF SMALL GROUP OF PARTICLES

ALONG WITH THEIR VIEW REGIONS AND CORRESPONDING

INTERACTION GRAPH AND ADJACENCY MATRIX

For a multi-agent system, at each time step, we can define

an interaction graph Gk based on the neighborhood relationship

between the particles. We assign a node vi to the ith particle

and we can define and edge (vi,v j) if particle j is a neighbor of

particle i. We can also define the adjacency matrix Ak at each

time step. Figure 2 shows an example of an interaction graph as

well as the adjacency matrix for a small group of particles.

In order to study the interaction between the particles during

the transient time, we choose two different metrics. The first one

is the total number of the interactions averaged over the group,

calculated during the transient time. This metric is chosen to

investigate if increasing view angle leads to more interaction in

the group. Knowing the adjacency matrix at each time step, we

can define I, the total number of averaged interaction, as

I =

〈
Kt

∑
k=1

Ak1N×1

〉
N

(5)

where N = {1,2, . . . ,N} is the index set of the particles and Kt
is the normalized number of time steps in the transient.

The second metric we use to study interaction among parti-

cles is the total number of distinct neighbors averaged over the

group calculated during the transient time. This metric aims to

measure how much mixing is happening between the particles.

If the total number of distinct neighbors averaged over the group

is high, particles are more inclined to change neighbors which

shows high mixing inside the group. On the other hand, if this

metric is low, each particle is only interacting with a small set of
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particles and therefore the system in essence more rigid. Since

the adjacency matrix is known at each time step, the total number

of distinct neighbors averaged over the particles can be found as

D =

〈
sign

(
Kt

∑
k=1

Ak

)
1N×1

〉
N

(6)

where sign(·) returns the sign of a matrix argument.

Since the length of transient parts are different for different

view angles, it can affect the total number of interactions and

total number of distinct neighbors during the transient part. To

compensate this effect, one can scale the time steps for different

view angles to ensure the transient happens at the same number

of time steps.

NUMERICAL SIMULATION
To investigate the correlation between the particle interac-

tions during the transient time and its length, we use numerical

simulation on a two-dimensional Vicsek model with restricted

view angle. The parameters used in this simulation are listed

in table 1, which are the same parameters as used in [21] for

comparison. Since there is no noise in the system and the view

angles are large enough, polarization will reach value 1 in the

steady-state condition. The length of transient τ is calculated as

the time step in which polarization reaches 0.99 for the first time,

in line with the analysis performed in [21]. The simulation is run

for 1400 time steps to ensure we capture the entire transient part

for all considered view angles.

The initial position and heading angles of all the particles are

randomly assigned for each view angle. After finding the length

of the transient, the step size of simulation is scaled for each view

angle to make sure that in all cases, the transients have the same

number of time steps. In other words, we normalized each simu-

lation length with the length of its transient. This will allow us to

TABLE 1. SIMULATION PARAMETERS

Variable Symbol Value

Simulation time steps K 1400

Normalized transient time steps Kt 1000

Domain side length L 10

Number of particles N 400

Speed of particles v0 0.04

Noise amplitude η 0

View range R 0.6

FIGURE 3. LENGTH OF TRANSIENT AS A FUNCTION OF

VIEW ANGLE. LINE PLOT SHOWS MEAN VALUE OVER ALL

PARTICLES FOR 100 DIFFERENT INITIAL CONDITIONS, WITH

SHADED REGION SHOWING ± ONE STANDARD DEVIATION

compare the number of interactions during the transient time for

different view angles. To account for the effect of random initial

conditions, the simulation was performed for 100 repetitions.

SIMULATION RESULTS
The length of the transient as a function of view angle is

plotted in figure 3. The line plot shows the length of transient av-

eraged over 100 simulations with different initial conditions, and

the error bars show the standard deviation over these repetitions.

In line with the results in [21], there is a minimum in the length

of transient τ which occurs at some view angle which is less than

the maximum possible angle 2π . We refer to this as an optimal

view angle, and we seek to understand the dynamics from which

it originates.

Based on the hypothesis that the optimal view angle results

from restricting the number of interactions, we compute the total

number of interactions over the entire transient, averaged over

all particles in the group and varying with view angle, shown in

figure 4. This plot shows that, on average, the total number of in-

teractions among particles is not monotonically increasing with

view angle. In fact, it decreases as view angle decreases from 2π
until it reaches a minimum and then increases. Notably, the an-

gle at which the minimum number of interactions occurs is close

to the optimal view angle in figure 3. In line with this analysis,

the number of distinct neighbors over the entire transient, aver-

aged over all particles in the group and varying with view angle,
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FIGURE 4. TOTAL NUMBER OF INTERACTIONS AVERAGED

OVER PARTICLES AS A FUNCTION OF VIEW ANGLE. LINE

PLOT SHOWS MEAN VALUE OVER ALL PARTICLES FOR 100

DIFFERENT INITIAL CONDITIONS, WITH SHADED REGION

SHOWING ± ONE STANDARD DEVIATION

is shown in figure 5. This plot shows that the total number of

different particles interacting with a specific particle is also not

monotonic as view angle is varied, and it shows a minimum close

the optimal angle.

Figure 6 demonstrates in detail the combined effect of dis-

tinct neighbors and number of interactions. In this figure, the hor-

izontal axis shows the rank of the neighbor with the most num-

ber of interactions for each particle and the vertical axis shows

the frequency of the visit. These ranked frequencies are com-

puted for four values of the view angle, and are averaged over all

particles in the group and over all repetitions of the initial con-

ditions (error bars are omitted for clarity). As a rule, all curves

are monotonically decreasing since they order the most to least

frequently visited neighbors. In addition, steeper curves show

more interactions with a smaller cohort of neighbors, while flat-

ter curves show more mixing or shuffling among the neighbor set

of all particles.

DISCUSSION
The optimal view angle associated with minimum conver-

gence time correlates well with parameters associated with low

numbers of interactions and few distinct neighbors. From figures

3, 4, and 5, we can see that the minimum of all plots occurs in a

similar range of the view angle φ . This suggests that fewer inter-

actions are associated with faster convergence when view angle

is in a certain range. Although this result seems counterintuitive

FIGURE 5. NUMBER OF DISTINCT NEIGHBORS AVERAGED

OVER PARTICLES AS A FUNCTION OF VIEW ANGLE. LINE

PLOT SHOWS MEAN VALUE OVER ALL PARTICLES FOR 100

DIFFERENT INITIAL CONDITIONS, WITH SHADED REGION

SHOWING ± ONE STANDARD DEVIATION

initially, it may indicate that the restricted view angle imposes a

kind of sorting that allows particles to preferentially select neigh-

bors whose motion is well-aligned with theirs. This possibility is

supported by results from figure 6.

Another way to view these results is to notice that mix-

ing among particles’ neighbor sets is sensitive to the view an-

gle. Considering figure 6, we see that ranked interaction fre-

quency curves become increasingly more peaked as φ increases

from 0.8π to 1.4π . This shows that neighbor sets become more

mixed as view angle is restricted. However, between φ = 1.4π
and φ = 2π , the curve becomes flatter, indicating that more mix-

ing occurs when view angle increases beyond a critical value.

This suggests that increasing view angle above critical may cause

each particle to be disturbed by surrounding particles leading to

a longer transient.

Based on these result, one possible explanation about exis-

tence of view angle could be based on a trade off between two

different interaction mechanisms. When the view angle is small,

it is less likely for a typical particle to observe the same set of

particles for several consecutive time steps. In other words, the

neighbors of that particle are changing too fast for local align-

ment to happen. On the other hand, when the view angle is larger,

each particle needs to average its heading direction with more

number of neighbors at each time step and that increases the in-
ertia of the particle. Therefore, both number of total interaction

and distinct neighbors are high. In the optimal case, however, the
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FIGURE 6. RANKED FREQUENCY OF NUMBER OF INTERAC-

TIONS WITH DISTINCT NEIGHBORS, AVERAGED OVER PAR-

TICLES AND 100 DIFFERENT INITIAL CONDITIONS. SHADED

REGION SHOWS ± ONE STANDARD DEVIATION OVER INITIAL

CONDITIONS. LINE PLOTS ARE FOR FOUR DIFFERENT VAL-

UES OF VIEW ANGLE.

view angle is large enough to provide enough time for neighbor-

ing particles to locally align, yet not be disturbed by too many

neighbors. This may result in a more cohesive growing network

for the cases where view angle is close to the optimal value in

comparison to cases with smaller or larger view angles.

Another observation from figures 3-5 is the larger error bars

in small and large view angles comparing to the optimal angle.

Since these error bars show the standard deviation of the cor-

responding parameter for different initial conditions, the large

error bars show that the length of transient for small and large

view angles depends more on initial condition. This dependency

to initial condition can also be a sign that the group struggles in

building a cohesive growing network if the initial condition is not

well-aligned to start with.

CONCLUSION AND FUTURE WORK
In this paper, we studied the two-dimensional Vicsek model

with restricted view angle to explore fa possible cause of the

seemingly counterintuitive optimal view angle which leads to

faster convergence for the algorithm. This optimal view angle is

reported in several studies in the literature, and we also showed

its existence here. We studied the statistics of the interaction be-

tween particles and found that there is a correlation between the

length of transient part of the system and the averaged number of

interactions in the group and number of distinct neighbors each

individual has in average. The results of this study show that the

optimal view angle corresponds to an interaction network with

fewer interactions and fewer independent neighbors, yet both in-

teractions and neighbors seem to be selected in a more targeted

way comparing to smaller and larger view angles.

More investigation is needed to get a better understanding

on the origin of the optimal angle in the two-dimensional Vicsek

model. For example comparing the results of the same analy-

sis for different values of group density (number of particles per

unit area of the domain), and particle speed can be enlighten-

ing. Also, it is possible to get more local information about the

interaction of particles using local order parameters.

ACKNOWLEDGMENT
This work is supported by the National Science Foundation

under grant CMMI-1751498.

REFERENCES
[1] Bajec, I. L., and Heppner, F. H., 2009. “Organized flight in

birds”. Animal Behaviour, 78(4), pp. 777 – 789.

[2] Bonabeau, E., 2002. “Agent-based modeling: methods and

techniques for simulating human systems”. Proceeding of
the National Academy of Sciences of the United States, 99,

p. 72807287.

[3] Couzin, I. D., and Franks, N. R., 2003. “Self-organized

lane formation and optimized traffic flow in army ants”.

Proceedings of the Royal Society of London B: Biological
Sciences, 270(1511), pp. 139–146.

[4] Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein,

R. E., and Kessler, J. O., 2004. “Self-concentration and

large-scale coherence in bacterial dynamics”. Physical Re-
view Letters, 93, Aug, p. 098103.

[5] Partridge, B. L., 1982. “The structure and function of fish

schools”. Scientific American, 246(6), pp. 114–123.

[6] Sueur, C., and Petit, O., 2008. “Organization of group

members at departure is driven by social structure in

macaca”. International Journal of Primatology, 29(4),

pp. 1085–1098.
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