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Abstract— The problem of sound source localization has
attracted the interest of researchers from different disciplines
ranging from biology to robotics and navigation. It is in essence
an estimation problem trying to estimate the location of the
sound source using the information available to sound receivers.
It is common practice to design Bayesian estimators based on
a dynamic model of the system. Nevertheless, in some practical
situations, such a dynamic model may not be available in the
case of a moving sound source and instead, some a priori
information about the sound source may be known. This paper
considers a case study of designing an estimator using available
a priori information, along with measurement signals received
from a bearing-only sensor, to track a moving sound source in
two dimensions.

I. INTRODUCTION

Sound source localization, which is also referred to as
passive sonar, considers the challenge of estimating the
location of a source of an incoming sound. Based on the
wide range of research areas interested in the problem
of sound source localization, it is hard to find the origin
of this problem in the literature. Perhaps one of the first
studies on this problem is a set of experiments performed
by Rayleigh [1] to find out how humans can localize the
source of a sound. This is still an active field of research
in psychoacoustics, and summaries of new developments
in this area can be found in [2],[3]. Biologists are also
interested in sound localization since some animals such as
bats and whales use sound to perceive their environment
[4]. Although sound localization originated as a research
question in biology, it finds many applications in engineering,
especially in robotics. The more recent advances in sound
source localization and its application in robotics can be
found in [5] and [6].

The problem of sound source localization involves many
challenges. Information about the location of the sound
source is usually extracted through analysing the magnitude
and the time of arrival of the sound to different sensors.
Therefore, the first challenge is detecting the sound and
estimating the delay in the reception time across receivers.
Many signal processing techniques, such as generalized
cross-correlation and eigenvalue decomposition along with
different models for sound propagation and reverberation, are
implemented to achieve this goal. A comprehensive review
of these approaches is presented in [7].
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After the sound signals are received and processed, the
next step is extracting the direction of the incoming sound
and the distance it traveled using different acoustic cues.
Among these cues, the difference of the arrival time of the
sound to each receiver, usually referred as Time Difference
of Arrival (TDoA), is commonly used to estimate the sound
direction [8], [9]. Finding sound direction is more challeng-
ing when only two receivers are used, which mimics human
localization (binaural localization). The complication in this
case is due to geometrical symmetry called cone of confu-
sion, or front-back confusion in the two dimensional case.
This confusion can be resolved by breaking the symmetry
using a head motion [10], or taking into account the acoustic
shadow created by head defining a head model often referred
as the Head Related Transfer Function (HRTF) [11], [12].

Range estimation, on the other hand, is a more chal-
lenging task in sound source localization and still is an
active research area. In some approaches, the redundancy
of several receivers is exploited to estimate the range of
the sound source [8]. Another work estimates range using
consecutive measurements as a head with a binaural sensor
turns [13]. In indoor situations, some localization approaches
take advantage of the reverberant sound energy to estimate
the range [14]. The idea is that, while the energy of the
sound signal received directly from the source depends on
the distance between the source and sensor, the reverberated
sound energy is independent of this distance. The work
presented in [15] is another example of using environmental
effects on the sound signal for localization by exploiting
sound reflection and diffraction in an indoor environment.

Another approach in range estimation is to take advan-
tage of sensor/source mobility by implementing some type
of Bayesian estimation. In this approach, the localization
problem essentially is a target tracking problem using a
bearing-only sensor. The work represented in [16] employs
a multiple mode Kalman filter to mitigate the effect of noise
and uncertainty in tracking a moving sound source, but the
authors assume the direct measurement of its location. They
also assume three hypotheses for motion of the source–static,
constant velocity, and constant acceleration–and based on
Bayes’ formula, estimate the probability of any of these
assumptions. In [17], particle filtering is implemented to
localize a moving sound source as the sensor is moving.
In this work, the filter is designed assuming the sound
source is stationary and then investigates what type of sensor
motion will reduce the localization error in the case of a
moving sound source. The work presented in [18] considers
localization of an intermittent moving sound source using a
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mixture Kalman filter. The location and speed of the sound
source, as well as its activity status, are included in the state
vector and therefore, a dynamic model is assumed for the
motion of sound source and its activity.

As is briefly mentioned above, the sound localization
algorithm based on Bayesian estimation assumes some dy-
namic model for the sound source to build transition prob-
ability. However, such a dynamic model may not always
be available. Instead it may be possible to use some a
priori information about the motion of the sound source.
This information may come from our knowledge about the
source. As an example, a beacon for guiding a group of
vehicles using passive sonar may be designed to move with
constant speed or generate sound with a specific pattern. This
information can also be available through measurement, such
as estimating speed based on the Doppler shift effect. This
paper considers a case study to investigate the possibility
of designing an estimator by exploiting a priori information
combined with measurement data from a bearing-only sensor
to perform sound localization.

II. MODELING

Consider the problem of localization of a sound source
using a bearing-only sensor. As an example, a microphone
array can be used as a bearing-only sensor that can measure
the bearing angle of the incoming sound but not the range.
The dynamics of the sound source is unknown but we
know that the source is moving in the horizontal plane
with constant speed v and it emits sound pulses at known
intervals. Therefore, the measurement available to the sensor
consists of the bearing angle of the incoming sound and the
time the signal is received. To completely localize the sound
source, an estimation algorithm is needed to extract the range
of the sound source with respect to the sensor.

Although a dynamic model of the sound source is not
available, it is possible to build up the dynamics and a
measurement model using the existing information about
its motion and the sensor measurement. To this end, the
measurement vector is divided into two disjoint parts. The
first part, which is referred to zp, is used to build a dynamic
model to predict the next state of the system. However, the
second part of measurement vector, zc, is used to build a
measurement model to correct the prediction of states.

The time the sound reaches the sensor is related to the
distance between the sound source and the sensor. When the
time interval between pulses is known, it can be used to
extract some information about the range of the source. If
∆ is the time interval of the sound source and the kth signal
is received at time tk when the sound source is at range rk,
the next signal is expected at time tk+1 when the source is
at range rk+1 and the following relation holds:

rk+1 = rk + c (tk+1 − tk −∆) + νk, (1)

where c is the speed of sound, and νk is the process noise,
which is a zero-mean random variable independent from
the states of the system which models uncertainties and
measurement noise on reception time. In this model, it is
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Fig. 1. A schematic of the sound source moving in the plane with constant
speed.

assumed that the speed of the sound source is negligible
compared to the speed of the sound, and therefore, when the
signal is received, the sound source is approximately at the
same location as when it emits the sound.

Fig. 1 shows a schematic of the motion of the sound
source. The sensor is located at the origin and the localization
goal is to estimate the range r. The sound source is moving
on the dashed line in the direction of the arrows. When the
sound source is at the point A at time step k, it emits a sound
and then moves along the path to reach the point B at time
step k+1, when it generates another sound. Since the speed
of the source and the time interval between pulses are known,
the distance the sound source has traveled during this time
can be approximated by v∆, assuming the path to be linear
during this time period. Therefore, the location of point B
is located on the circle with radius v∆ centered at A. Also,
the range of B is known by (1), which reduces the possible
location of the sound source at time step k+1 to two points
labeled as B and C in Fig. 1. Using the law of cosines in
the triangle OAB gives us

(v∆)
2

= r2
k+1 + r2

k − 2rk+1rk cos (θk+1 − θk) . (2)

where θk is the bearing of the sound source with respect
to the sensor at time step k. Solving (2) for θk+1 and then
disturbing the result with a zero-mean independent noise ωk
leads to

θk+1 = θk ± cos−1

(
r2
k+1 + r2

k − v2∆2

2rk+1rk

)
+ ωk. (3)

This equation shows the existence of two possible solutions
for the triangulation as mentioned earlier (points B and C in
Fig. 1). However, this confusion can be resolved when θk+1

is measured by the sensor by choosing the sign that leads to
closer value to the measured angle.

Although a model of the sound source motion is not
available, using the known information about the sound
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source augmented with some measurement information (i.e.
time), this method enables us to build up a dynamic model
for the sound source as well as a measurement model of
the remaining measurement vector (i.e. bearing angle) as
expressed in (1) and (3), respectively. Now it is possible to
apply a model-based estimation technique to find the range.
To this end, in the following section, an estimator based
on minimum mean squared error (MMSE) is presented. We
comment that the strategy for the design of the estimator
follows analogous logic to the classical proof of an extended
Kalman filter (EKF), but must take into account our novel
formulation that uses parts of the measurement for both
prediction and correction [19].

III. LINEAR MMSE ESTIMATION ALGORITHM

The dynamic model described in (1) can be expressed in
the following format:

xk+1 = f
(
xk, νk; zpk, z

p
k+1

)
, (4)

where xk and νk are state and process noise vectors. Also,
zpk is the part of the measurement vector that is used for state
prediction at time step k. It is important to note here that,
since these measurements are available through the sensor,
they are treated as a deterministic parameter while the state
and process noise are stochastic variables.

The measurement model described in (3) can be expressed
as

zck+1 = h (xk+1, xk; zck) + ωk, (5)

where zck is the portion of the measurement vector used for
correction of the predicted state at time step k.

The goal of this section is to design an iterative estimator
to find the range of the sound source. In other words,
assuming that the state estimate at time step k, x̂k, is known
and that all the measurements zpk , zpk+1, zck, and zck+1 are
available, it is desired to find an expression for x̂k+1.

Using the Taylor expansion about point (x̂k, 0), one can
linearize the dynamic model (4) to approximate xk+1 by

xk+1 = f
(
x̂k, 0; zpk, z

p
k+1

)
+ Fk (xk − x̂k) + Γkνk, (6)

where Fk = ∂f
∂xk

∣∣∣
(x̂k,0)

and Γk = ∂f
∂νk

∣∣∣
(x̂k,0)

. The MMSE

estimator returns the expected value of the posterior as the
estimation. Therefore, the goal is to calculate

x̂k+1 = E [xk+1|Zk+1
]
, (7)

where Zk is a notation to show all the measurements taken
up to and including time step k, and E[·] is the expected
value. Taking expected value from the linearized dynamics
(6), and noting that νk is a zero-mean random variable and is
independent from the states, one can find the expected value
of the prior, or the predicted state as follows:

x̄k+1 = E
[
xk+1|Zk, zpk+1

]
= f

(
x̂k, 0; zpk, z

p
k+1

)
. (8)

The covariance of the prior distribution is defined as

P̄xx = E
[

(xk+1 − x̄k+1) (xk+1 − x̄k+1)
T
∣∣∣Zk] . (9)

Substituting xk+1 and x̄k+1 from (6) and (8) into (9) yields

P̄xx = FkPxxF
T
k + ΓkQΓTk (10)

where Pxx is the covariance of the predicted state and Q is
the covariance of the process noise. One can use the predicted
state and the measurement model in (5) to find the predicted
measurement at the next time step. The measurement model
can be linearized about (x̄k+1, x̂k) to approximate zck+1 by

zck+1 = h (x̄k+1, x̂k; zck)

+ H̄k (xk+1 − x̄k+1) +Hk (xk − x̂k) + ωk,
(11)

where H̄k = ∂h
∂xk+1

∣∣∣
(x̄k+1,x̂k)

and Hk = ∂h
∂xk

∣∣∣
(x̄k+1,x̂k)

.

Therefore, the predicted measurement can be found as the
expected value of zck+1. Using (11), and noting that the
measurement noise is zero-mean and independent from the
states, the expected measurement can be found as

z̄ck+1 = E
[
zck+1

∣∣Zk] = h (x̄k+1, x̂k; zck) . (12)

Using the linear MMSE estimator, the state estimate and its
covariance can be found as [19]

x̂k+1 = x̄k+1 + P̄xzP̄
−1
zz

(
zck+1 − z̄ck+1

)
, (13)

Pxx = P̄xx − P̄xzP̄−1
zz P̄

T
xz, (14)

where P̄xz is the covariance between predicted state and
predicted measurement and P̄zz is the predicted measurement
covariance. To complete an iteration step, one needs to
calculate P̄xz and P̄zz . Using the definition of the covariance,

P̄xz = E
[(
xk+1 − x̄k+1

) (
zck+1 − z̄ck+1

)T ∣∣∣Zk, zpk+1

]
.

(15)
Substituting zck+1 and z̄ck+1 respectively from (11), and (12)
leads to

P̄xz = E
[

(xk+1 − x̄k+1) (xk+1 − x̄k+1)
T
H̄T
k

∣∣∣Zk, zpk+1

]
+ E

[
(xk+1 − x̄k+1) (xk − x̂k)

T
HT
k

∣∣∣Zk, zpk+1

]
+ E

[
(xk+1 − x̄k+1)ωTk

∣∣Zk, zpk+1

]
. (16)

The last term in (16) vanishes since the measurement noise
is assumed to be zero-mean and independent of the state
variables. Substituting xk+1 and x̄k+1 from (6) and (8) into
the second term in (16), leads to the following:

P̄xz = P̄xxH̄
T
k + FkPxxH

T
k . (17)

Similarly, one can calculate P̄zz as follows

P̄zz = E
[(
zck+1 − z̄ck+1

) (
zck+1 − z̄ck+1

)T ∣∣∣Zk, zpk+1

]
= E

[
H̄k (xk+1 − x̄k+1) (xk+1 − x̄k+1)

T
H̄T
k

∣∣∣Zk, zpk+1

]
+ E

[
H̄kFk (xk − x̂k) (xk − x̂k)

T
HT
k

∣∣∣Zk, zpk+1

]
+ E

[
Hk (xk − x̂k) (xk − x̂k)

T
H̄T
k F

T
k

∣∣∣Zk, zpk+1

]
+ E

[
Hk (xk − x̂k) (xk − x̂k)

T
HT
k

∣∣∣Zk, zpk+1

]
+ E

[
ωωT

∣∣Zk, zpk+1

]
= H̄kP̄xxH̄

T
k + H̄kFkPxxH

T
k +HkPxxH̄

T
k F

T
k

+HkPxxH
T
k +R, (18)
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where R is the covariance of the measurement noise. Again,
the fact that the process and measurement noises are zero-
mean and independent from state variables is used to simplify
the expression for P̄zz . Now it is possible to calculate the
estimated state and its covariance for the next time step using
(13) and (14), respectively. A summary of one iteration of
the algorithm is presented in table I.

The last step to finish the design of the estimator is to
assume initial state and initial covariance. Similar to the EKF,
this estimator operates based on linearization of the dynamic
and measurement equations about the best estimate of the
previous state. Therefore, the performance of the estimator
strongly depends on how close the initial state estimation is
to reality. This initial state and its covariance can be set using
some a priori information about the initial state or through
measurement. Here, we used a simple approach to get a
rough estimate of source location. The change in bearing
angle, dθ, is measured by finding the difference between two
consecutive bearing measurements. Then, assuming that the
sound source is moving on a circular path, one can estimate
the initial position to be

x0 =
v∆

|dθ|
, (19)

and its variance is set to be equal to v∆, the amount that the
sound source is moving between two pulses.

Finally, it is important to note a limitation of this ap-
proach. As it was mentioned before, the general idea of
this localization approach is to use the measured time of
arrival of the sound to predict its source’s next location while
using the bearing angle to correct the prediction, compensate
the effect of noise, and improve localization confidence.
However, when the sound source is moving radially toward
or away from the sensor, there is no change in bearing angle
and therefore implementing the correction step is out of the
question. In fact, due to the existence of noise in the bearing
angle measurement, the same problem occurs when the
change in angle is small compared to the standard deviation
of the bearing angle measurement noise. In these situations,
the measured bearing angle is dominantly noise and, if it is
used for correction step, it may lead to divergence of the
algorithm. Therefore, we used a metric similar to signal-to-
noise ratio to evaluate the information in the measurement
and skip the correction step when the signal is dominated
by noise. If the change in bearing angle is shown by dθ, we
define this ratio ρ, measured in dB, as

ρ = 20 log
|dθ|
σθ

, (20)

where σθ is the standard deviation of the bearing angle
measurement noise. This metric defines a bound around zero
within which we assume the measurement is dominated by
noise.

IV. SIMULATION RESULTS

To examine the performance of the proposed localization
algorithm, numerical simulation is used. The sound source

TABLE I
AN ITERATION OF THE ESTIMATION ALGORITHM

Inputs: x̂k, Pxx, z
p
k , z

p
k+1, z

c
k, z

c
k+1

Outputs: x̂k+1, Pxx

Prediction:
x̄k+1 = f

(
x̂k, 0; zpk , z

p
k+1

)
Fk = ∂f

∂xk

∣∣∣
(x̂k,0)

, Γk = ∂f
∂xk

∣∣∣
(x̂k,0)

P̄xx = FkPxxFT
k + ΓkQΓT

k
Correction:
z̄ck+1 = h

(
x̄k+1, x̂k; zck

)
Hk = ∂h

∂xk

∣∣∣
(x̄k+1,x̂k)

, H̄k = ∂h
∂xk+1

∣∣∣
(x̄k+1,x̂k)

P̄xz = P̄xxH̄T
k + FkPxxHT

k .
P̄zz = H̄kP̄xxH̄T

k + H̄kFkPxxHT
k +HkPxxH̄T

k F
T
k +HkPxxHT

k
+R

x̂k+1 = x̄k+1 + P̄xzP̄
−1
zz

(
zck+1 − z̄ck+1

)
Pxx = P̄xx − P̄xzP̄

−1
zz P̄

T
xz

k = k + 1 and repeat

is moving with constant speed of 1 m/s in x-y plane. The
bearing-only sensor is located at the origin and the bearing
angle is measured from positive x-axis. The value of pulse
intervals is set to be ∆ = 0.2 s and the variance of process
noise is assumed to be Q = 4 × 10−4 m2. The standard
deviation of the measurement noise in sensing the bearing
angle and time of arrival are respectively set to σθ = 0.005
rad, and σt = 0.1 ms. Therefore the measurement noise
covariance matrix is equal to R = diag

[(
σ2
θ , σ

2
t

)]
, where

diag [v] is a diagonal matrix in which the elements of vector
v are located on the main diagonal.

Two different paths are considered for the sound source.
In the first simulation, the sound source starts from point
(1,1) and moves on a circle around the origin in the counter
clockwise direction. Fig. 2 shows the actual (blue dashed
line) and tracked (solid red line) paths of the sound source.
Time series for the range estimation error, its covariance,
and the change in measured bearing angle of sound source
in this case are shown in Fig. 3. The red dashed lines show
the bound when ρ is set to be 24 dB for simulation purposes.
In practice, this range should be chosen based on the sensor
accuracy and bearing angle estimation approach.

In the second simulation, the sound source is moving on
a straight line. The simulation parameters are the same as
mentioned in the first paragraph of this section. In this case,
the sound source starts from (2,1) and moves horizontally to
the left. The actual path and the estimated one are shown
in Fig. 4. The range estimation error, estimation covariance,
and the measured change in bearing angle for this case is
shown in Fig. 5. Again, the red dashed lines show the bound
when ρ is set to be 24 dB.

In order to investigate the robustness of the designed
estimator, Monte Carlo simulations are performed for 100
repetition. The mean value of the range estimation error±
one standard deviation for both paths are shown in Fig. 6.

V. DISCUSSION

The algorithm developed in this work is the first of
its kind, to the best of our knowledge, that uses part of
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Fig. 2. The actual path and the path tracked by the algorithm when the
sound source moves on a circular, counter clockwise path around the sensor.
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Fig. 3. The range estimation error (top), its covariance (middle), and the
change in measured bearing angle (bottom) of the sound source moving on
a circular path around the sensor. The dashed red lines in the bottom plot
show the bound when ρ is set to be 24 dB.

a measurement for prediction within a standard Bayesian
estimation procedure. As a result, we are able to use bearing-
only measurements to track a sound source with unknown
dynamics. The simulation results show that the algorithm
can estimate the sound source location using the available
information and measurement. In Fig. 2, the assumed initial
range of the sound source is close to the actual value and the
estimator can track the sound source in presence of process
and measurement noise. Fig. 3 shows the performance of
the estimator. The first plot shows range estimation error is
relatively small although there are fluctuations due to the
noise in the system. The covariance of estimation drops
rapidly, which shows the confidence of the algorithm. This
confidence can lead to inconsistency of the estimator mainly
due to linearization, as it is well-known and studied for EKF
[19]. The last plot shows that, in this example, the change

-6 -4 -2 0 2
X(m)

-2

-1

0

1

2

3

4

5

Y
(m

)

Actual
Tracked

Fig. 4. The actual path and the path tracked by the algorithm when the
sound source moves on a linear path.
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Fig. 5. The range estimation error (top), its covariance (middle), and the
change in measured bearing angle (bottom) of the sound source moving on
a linear path. The dashed red lines in the bottom plot show the bound when
ρ is set to be 24 dB.

in measured bearing angle is large compared to the noise
standard deviation as it is outside the bounds set by ρ and
therefore, these measurements are informative.

In the second case study, as it is shown in Fig. 4, the
initial range estimation is relatively far from the actual state,
but still the algorithm manages to converge. The first plot
in Fig. 5 shows the range estimation error reduces to near
zero. The estimation covariance decreases rapidly and then
starts to increase. This increase in covariance happens when
the change in bearing angle is perceived to be corrupted by
noise, as the sound source moves away from the sensor at
constant speed. Therefore the correction step is skipped and
the covariance increases due to noise accumulation. Finally,
Monte Carlo simulations show that, given an initial state and
noise covariances, the estimation algorithm results are robust
over multiple runs.
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Fig. 6. The mean value of the range estimation error over 100 Monte
Carlo simulations for the circular path (above) and the linear path (below).
Shaded region shows ± one standard deviation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the tracking problem of a moving sound
source using a bearing-only sensor is studied when a dynamic
model of the sound source is not available. Using information
about its motion as well as some measurement information, a
dynamic and measurement model is developed for the sound
source. This model is used to predict the next location of the
sound source and the remaining measurement information is
exploited to correct this estimation. An EKF-type estimator
is designed using MMSE estimation and its performance is
studied using numerical simulation.

Although the simulation results show the convergence of
the algorithm, there are still practical challenges in imple-
menting the algorithm. The most important challenge is the
limited range of operation which is related to use of bearing-
only sensors. When the sound source is radially moving
towards or away from the sensor, or when it is located far
enough from the sensor that its bearing angle does not change
significantly between two consequent pulses, the change in
bearing angle is dominated by noise and implementing the
correction update leads to bad estimates of the sound source
location. This effect can be mitigated using accurate sensors,
i.e. smaller noise covariance, which increases the cost in
practical applications.

Another way to improve the performance of the algorithm
even in higher noise covariance is to improve estimation of
the initial range and its covariance. A more rigorous way to
estimate initial state (compared to that used in this work) is
to record a fixed amount of samples and use a smoothing
algorithm to improve the initial estimation [19]. Since the
success or failure of tracking depends on the accuracy of
the estimation of the initial state and the parameters defining
both the process and measurement noise, a parameter study
to understand the dependency of the algorithm’s success on
these factors is necessary. These improvements are the main
direction of our future work on this problem.
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