
A Simple Baseline for Travel Time Estimation using

Large-Scale Trip Data

HONGJIAN WANG, Twitter Inc., USA

XIANFENG TANG, Pennsylvania State University, USA

YU-HSUAN KUO, Pennsylvania State University, USA

DANIEL KIFER, Pennsylvania State University, USA

ZHENHUI LI, Pennsylvania State University, USA

The increased availability of large-scale trajectory data provides rich information for the study of urban

dynamics. For example, New York City Taxi & Limousine Commission regularly releases source/destination

information of taxi trips, where 173 million taxi trips released for Year 2013 [29]. Such a big dataset provides

us potential new perspectives to address the traditional traffic problems. In this paper, we study the travel

time estimation problem. Instead of following the traditional route-based travel time estimation, we propose

to simply use a large amount of taxi trips without using the intermediate trajectory points to estimate the

travel time between source and destination. Our experiments show very promising results. The proposed big

data-driven approach significantly outperforms both state-of-the-art route-based method and online map

services. Our study indicates that novel simple approaches could be empowered by the big data and these

approaches could serve as new baselines for some traditional computational problems.

CCS Concepts: · Information systems → Nearest-neighbor search; · Computing methodologies → Un-

supervised learning; · Applied computing→ Transportation;

Additional Key Words and Phrases: Travel time estimation, big data, baseline, trajectory data

ACM Reference Format:

Hongjian Wang, Xianfeng Tang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2018. A Simple Baseline for

Travel Time Estimation using Large-Scale Trip Data. ACM Trans. Intell. Syst. Technol. 1, 1 (October 2018),

22 pages. https://doi.org/0000001.0000000

1 INTRODUCTION

The positioning technology is widely adopted into our daily life. The on-board GPS devices track the
operation of vehicles and provide navigation service, meanwhile a significant amount of trajectory
data are collected. For example, a huge amount of taxi trip data is accumulated and enables us to
study urban dynamics. While many existing methods try to outdo each other in terms of complexity
and algorithmic sophistication, in the spirit of łbig data beats algorithmsž, we study whether some
simple baseline methods can be empowered by taking the benefit of big data.

Authors’ addresses: Hongjian Wang, Twitter Inc. 1355 Market St. #900, San Francisco, CA, 94103, USA, hongjianw@twitter.

com; Xianfeng Tang, Pennsylvania State University, Westgate Building, University Park, PA, 16802, USA, xut10@ist.psu.edu;

Yu-Hsuan Kuo, Pennsylvania State University, Westgate Building, University Park, PA, 16802, USA, yzk5145@cse.psu.edu;

Daniel Kifer, Pennsylvania State University, W333 Westgate Building, University Park, PA, 16802, USA, dkifer@cse.psu.edu;

Zhenhui Li, Pennsylvania State University, E331 Westgate Building, University Park, PA, 16802, USA, jessieli@ist.psu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2157-6904/2018/10-ART $15.00

https://doi.org/0000001.0000000

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

2 H. Wang et al.

o1

o2

o3

Trajectory observations
O1 —> O2 —> O3

Potential route 1

Potential route 2

A

B

Fig. 1. Use historical trajectory o1 → o2 → o3 to estimate the travel time from A to B.

In this paper, we revisit a traditional travel time estimation problem, which estimates the travel
time between an origin and a destination. Existing travel time estimation approaches mostly fall
into the line of route-based method [4, 5, 13, 31]. Given a source and a destination, these methods
first identify a route and then estimate the travel time for this route by aggregating the travel time
spent on each segment (or subpath) based on historical trajectories. Such a route-based method
faces many complicated challenges in implementation. In particular, there are two major challenges:

• Route mapping. The route-based method needs to obtain the travel time from historical
trajectories. But the actual trajectory data may not map well onto the roads due to GPS
positioning errors, or imprecise road network data, or the time gap between two adjacent
observations (for example, in the Shanghai taxi data used in our experiments, the GPS sample
interval ranges from 60 to 90 seconds). We illustrate this problem in Figure 1. Suppose we
are estimating the travel time from A to B. We need to first identify a route (the black road
segments). Next, to estimate the travel time for this route, we need to know the travel time
spent on each segment. And the time spent on each segment is obtained from historical
trajectories. One historical trajectory o1 → o2 → o3 is shown on Figure 1. However, it is
non-trivial to map these GPS points to the actual road segments. Two potential routes are
plotted in Figure 1 and both could be taken by the observed trajectory. In addition, we often
have missing data between two consecutive data points. Therefore, it is not clear what is the
actual route taken by an observed trajectory.

• Data sparsity. Trajectory data are sparse. Even with millions of trip observations, there are
a lot of road segments not covered by any trajectory because of the non-uniform spatial
distribution of GPS locations in the city. For example, in the Shanghai taxi data, even with over
300 million GPS records, more than 50% of road segments are not covered by any trajectory.
The inference of travel time is not accurate due to limited number of trajectories covering
the road segment. In addition to the spatial sparseness, the trajectory data are temporally
sparse too. Even if a road segment is covered by a few trajectories, these trajectories may not
be sufficient to estimate the dynamic travel time that varies under different conditions (e.g.,
peak time and weekends).

To avoid these challenges in the route-based method, we propose a simple baseline method to
estimate the travel time. Suppose we are to predict travel time from A to B and we have hundreds
of historical trips from A to B. Even if we do not have the intermediate points for those trips, the
average travel time of these historical trips could provide us a reasonable estimation of the travel
time fromA to B. This is similar to the way we humans tackle this problem. For example, if someone
asks you how long it takes to drive from your office to home, you do not calculate the time based

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 3

on the travel time on each road segments. Instead, you would estimate an approximate time based
on the historical travel times.
But in the real-world setting, even with a large database of millions of trips, it is not easy to

get sufficient number of trips from exactly the same origin A to exactly the same destination B.
Therefore, we look for neighboring trips with a nearby origin and destination to estimate the travel
time and we call our method a neighbor-based method. However, simply taking the average time
of neighboring trips will yield a poor performance because of the variance in traffic at different
times. For example, the travel time during the peak hour could be much longer than that in the
midnight; there could also be abnormal traffic changes due to holidays or traffic jams. Therefore,
we further propose to consider such traffic dynamics by exploiting traffic periodicity and making
timely adjustments based on recent traffic patterns.

One may argue that our neighbor-based method does not provide the specific route information,
which limits its application. While this is true, it does not keep our method from being a good
baseline for travel time estimation problem. Besides, there are many real scenarios where the route
information is not important. One example is the trip planning [14]. For example, a person will
take a taxi to catch a flight, which leaves at 5pm. Since he is not driving, the specific route is
less of a concern and he only needs to know the trip time. The second example is to estimate the
city commuting efficiency [19] [17]. In the field of urban transportation research, the commuting
efficiency measure is a function of observed commuting time and expected minimum commuting
time of given origin and destination areas. To estimate the commuting efficiency of a city for
a future time, the ability to predict the pairwise travel time for any two areas is crucial. In this
scenario, the specific path between two areas is not important, either.

We conduct experiments on two large real-world datasets. We evaluate our method using more
than 450 million NYC trips, and our method is able to outperform Bing Maps [16] by almost 30%
(even when Bing uses traffic conditions during the same relative time within a week as query
trips). Since NYC taxi data only contain the information on endpoints of the trips (i.e., pick-up and
drop-off locations), to compare our method with route-based method, we use Shanghai taxi data
with more than 5 million trips with complete intermediate points of trajectories. On this dataset,
our method also significantly outperforms the state-of-the-art route-based method [27] by 19% and
Baidu Maps by 17%. It is noteworthy that our method runs 40 times faster than state-of-the-art
route-based method.
In summary, the contributions of this paper are as follows:

• We propose to estimate the travel time using neighboring trips from the large-scale historical
data. To the best of our knowledge, this is the first work to estimate travel time without
computing the routes.

• We improve our neighbor-based approach by addressing the dynamics of traffic conditions.
• Our experiments are conducted on large-scale real data. We show that our method can
outperform state-of-the-art methods as well as online map services (Bing Maps and Baidu
Maps).

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 defines
the problem and provides an overview of the proposed approach. Sections 4 discusses our method
to weight the neighboring trips. We present our experimental results in Section 5 and conclude the
paper in Section 6.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

4 H. Wang et al.

2 RELATED WORK

To the best of our knowledge, most of the studies in literature focus on the problem of estimating
travel time for a route (i.e., a sequence of locations). There are two types of approaches for this
problem: segment-based method and path-based method.
Segment-based method. A straightforward travel time estimation approach is to estimate the

travel time on individual road segments first and then take the sum over all the road segments of
the query route as the travel time estimation. There are two types of data that are used to estimate
the travel time on road segments: loop detector data and floating-car data (or probe data) [23]. Loop
detector can sense whether a vehicle is passing above the sensor. Various methods [12, 20, 22, 26]
have been proposed to infer vehicle speed from the loop sensor readings and then infer travel time
on individual road segments.
Floating cars collect timestamped GPS coordinates via GPS receivers on the cars. The speed of

individual road segments at a time t can be inferred if a floating car is passing through the road
segment at that time point [2, 30]. Due to the low GPS sampling rate, a vehicle typically goes
through multiple road segments between two consecutive GPS samplings. A fewmethods have been
proposed to overcome the low sampling rate issue [3, 8, 9, 11, 28]. Another issue with floating-car
data is data sparsity ś not all road segments are covered by vehicles all the time. Wang et al. [27]
proposes to use matrix factorization to estimate the missing values on individual road segments. In
our problem setting, we assume the input is a special type of the floating-car data, where we only
know the origin and destination points of the trips.

Path-based method. Segment-based method does not consider the transition time between road
segments such as waiting for traffic lights and making left/right turns. Recent research works start
considering the time spent on intersections [6ś8, 15]. However, these methods do not directly use
sub-paths to estimate travel time. Rahmani et al. [21] and Wang et al. [27] propose to concatenate
sub-paths to give a more accurate estimation of the query route. Our proposed solution can be
considered as an extreme case of the path-based method, where we use the travel time of the full
paths in historical data to estimate the travel time between an origin and a destination. Full paths
are better at capturing the time spent on all intersections along the routes, assuming we have
enough full paths (i.e., a reasonable support).
Origin-destination travel time estimation. In our problem setting, instead of giving a route as

the input query, we only take the origin and destination as the input query. One could argue that,
we could turn the problem into the trajectory travel time estimation by first finding a route (e.g.,
shortest route or fastest route) [4, 5, 13, 31] and then estimating the travel time for that route.
This alternative solution is similar to those provided by online maps services, where users input
a starting point and an ending point, and the service generates a few route options and their
corresponding times. Such solution eventually leads to travel time estimation of a query route.
However, the historical trajectory data may only have the starting and ending points of the trips,
such as the public NYC taxi data [29] used in our experiment. Different from the data used in
literature which has the complete trajectories of floating cars, such data have limited information
and are not suitable for the segment-based method or path-based method discussed above. In
addition, route-based approach introduces more expensive computations because we need to find
the route first and then compute travel time on segments or sub-paths. More importantly, such
expensive computation does not necessarily lead to better performance compared with our method
using limited information, as we will demonstrate in the experiment section.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 5

3 PROBLEM DEFINITION

A trip pi is defined as a 5-tuple (oi ,di , si , li , ti), which consists of the origin location oi , the destina-
tion location di and the starting time si . Both origin and destination locations are GPS coordinates.
We further use li and ti to denote the distance and travel time for this trip, respectively. Note that,
here we assume the intermediate locations of the trips are not available. In real world applications,
it is quite possible that we can only obtain such limited information about trips due to privacy
concerns and tracking costs. For example, the largest public taxi data released by New York City [29]
does not contain any intermediate GPS points.

Problem 1 (OD Travel Time Estimation). Suppose we have a database of trips, D = {pi }
N
i=1.

Given a query q = (oq,dq, sq), our goal is to estimate the travel time tq with given origin oq , destination

dq , and departure time sq , using the historical trips in D.

3.1 Approach Overview

An intuitive solution is that we should find similar trips as the query trip q and use the travel time
of those similar trips to estimate the travel time for q. The problem can be decomposed to two
sub-problems: (1) how to define similar trips; and (2) how to aggregate the travel time of similar
trips. Here, we name similar trips as neighboring trips (or simply neighbors) of query trip q. The
naive solution to travel time estimation is to find neighboring trips with exact origin/destination
and trip starting time. However, even with millions of trips due to the distribution skewness, this
naive solution faces with serious sparsity issue. Therefore, we have to loose the condition for
neighboring trips by considering trips with varying starting times, and thus the aggregating is not
trivial because of varying traffic conditions.
We call trip pi a neighbor of trip q if the origin (and destination) of pi are spatially close to the

origin (and destination) of q. Thus, the set of neighbors of q is defined as:

N(q) = {pi ∈ D|dist(oi ,oq) ≤ τ and dist(di ,dq) ≤ τ }, (1)

where dist() is a distance measure of two given points. For simplicity we use the Euclidean distance
in our paper, but it is better to use the road network distance.

With the definition of neighbors, a baseline approach is to take the average travel time of these
trips as the estimation:

t̂q =
1

|N(q)|

∑

pi ∈N(q)

ti . (2)

An alternative definition of neighbors is to weight neighboring trips based on the origin distance
(i.e., dist(oi ,oq)) and destination distance (i.e., dist(di ,dq)). However, such definition will make the
computation more expensive since we typically need to consider more neighbors and also does not
lead to a better performance (refer to Section 5.3.4).
With the model in Eq. (2), there is a major issue with the baseline approach: it does not model

the dynamic traffic conditions across different time. To remedy this issue, for each neighboring trip
pi of q we define the scaling factor wi calculated from the speed reference, so thatwiti ≈ tq . Thus,
our estimation model becomes

t̂q =
1

|N(q)|

∑

pi ∈N(q)

witi . (3)

In the following sections, we will discuss how to obtain scaling factorwi by using the temporal
regularity (Section 4.1), adjusting with respect to irregular changes (Section 4.2), and further
considering the geographical differences (Section 4.3).

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

6 H. Wang et al.

8am Sun 8am Mon 8am Tue 8am Wed 8am Thu 8am Fri 8am Sat
5

10

15

20

Starting time of the trip

A
v
e

ra
g

e
 S

p
e

e
d

 (
m

ile
/h

)

Fig. 2. Average travel speed w.r.t. trip starting time.

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Travel time ratio tq/ti

S
p
ee
d
ra
ti
o
v
i/
v
q

One pair

Linear fit
y = x

(a)
tq
ti

≈
vi
vq

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Speed ratio vi/vq. R
2 = 0.268

R
ef
er
en
ce

ra
ti
o
V
(s

i)
/V

(s
q
)

One pair
Linear fit
y = x

(b)
vi
vq

≈
V (si)
V (sq)

Fig. 3. The validity of our assumptions. We randomly sample a set of neighboring trip pairs, and calculate the

different ratios for each pair. We plot each trip pair as a blue point. The solid green line is the linear regression

fit of all the points. The dotted red line is y = x . In (a), we can see that fitted line has a slope approximating 1,

which verifies our assumption ∀pi ∈ N(q), li ≃ lq . Similarly, in (b), we conclude that ratio of speed reference

approximates the ratio of actual speed.

4 CAPTURING THE TEMPORAL DYNAMICS OF TRAFFIC CONDITIONS

As we discussed earlier, it is not appropriate to simply take the average of all the neighbors of q
because of traffic conditions vary at different times. Figure 2 shows the average speed of all NYC
taxi trips at different times in a week. Apparently, the average speed is much faster at the midnight
compared with the speed during the peak hours. Thus, if we wish to estimate the travel time of a
trip q at 2 a.m. using a neighboring trip p at 5 p.m., we should proportionally decrease the travel
time of p, because a 2 a.m. trip is often much faster than a 5 p.m. trip.
Now the question is, how can we derive a temporal scaling reference to correspondingly adjust

travel time on the neighboring trips. We first define the scaling factor of a neighboring trip pi on
query trip q as:

wi =
tq

ti
. (4)

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 7

One way to estimatewi is using the speed of pi and q. Let vi and vq be the speed of trip pi and
q. Since we pick a small τ to extract neighboring trips of q, it is safe to assume that ∀pi ∈ N(q),
li ≃ lq. In Figure 3(a), on a sample set of neighboring trip pairs, we plot the inverse speed ratio

against the travel time ratio. The solid line shows the actual relation between
tq

ti
and

vi

vq
, which

is very close to the dotted line y = x , which means that two ratios are approximately equivalent.
With this assumption, we have:

wi =
tq

ti
=

lq/vq

li/vi
≈

vi

vq
.

However, vq is unknown, so we need to estimate
vi

vq
. Since the average speed of all trips are

stable and readily available, we try to build a bridge from the actual speed ratio to the corresponding
average speed ratio for any given two trips. One solution is to assume the ratio between vq and vi
approximately equals to the ratio between the average speed of all trips at sq and si . Formally, let
V (s) denote the average speed of all trips at timestamp s , we have an approximation ofwi as

wi ≈
vi

vq
≈

V (si)

V (sq)
. (5)

This assumption is validated in Figure 3(b). For the sample set of neighboring trip pairs, the
average speed ratio is plotted against actual speed ratio. Since the points are approximately dis-
tributed along the line y = x , we conclude that average speed ratio is a feasible approximation of
the scaling factor. We notice that the fitted line has a slope less than 1, which is mainly due to the
anomaly in individual trips. Specifically, the speed of individual trips v has a higher variance and
some individual trip pairs have an extreme large ratio. On the other hand, the average speed V (s)

has a smaller variance and the ratio is confined to a more reasonable range [0.5, 2].
Next, we show the effectiveness of the scaling factor calculated from Eq. (5). In Figure 4, we

present two specific trips to demonstrate the intuition of how the scaling factor works. For each trip,
we retrieve its historical neighboring trips, and then plot the actual travel time in circle together
with the scaled travel time in triangle. From the Figure 4(a), we can see that the scaling factor helps
reduce the variance in the travel time of neighboring trips. In Figure 4(b), trip q happened in rush
hour, which takes longer time than most of its neighboring trips. This gap is successfully filled in
by the scaling factor.

Considering such scaling factors using speed as the reference, we can estimate the travel time of
q using the neighboring trips as follows:

t̂q =
1

|N(q)|

∑

pi ∈N(q)

ti ·
V (si)

V (sq)
. (6)

We show the effectiveness of this predictor in Figure 5. Each point in the figure is a target trip.
The prediction is plotted against the actual trip travel time. We can see that the prediction is close
to the actual value. This indirectly implies the validity of assumptions we made previously.

In order to compute the average speed V (si), we need to collect all the trips in D which start at
time si . However, for the query trip q, the starting time sq may be the current time or some time in
the future. Therefore, no trips in D have the same starting time as q. In the following, we discuss
two approaches to predict V (sq) using the available data.

4.1 Relative Speed Reference

In this section, we assume that V (s) exhibits a regular daily or weekly pattern. We fold the time
into a relative time window Tr ela = {1, 2, · · · ,T }, where T is the assumed periodicity. For example,

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

8 H. Wang et al.

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Index of neighboring trips

T
ri
p

 t
ra

v
e

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Scaled duration witi
Original duration ti
Target duration tq

(a)

0 5 10 15 20 25
0

500

1000

1500

Index of neighboring trips

T
ri
p

 t
ra

v
e

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Scaled duration witi
Original duration ti
Target duration tq

(b)

Fig. 4. We pick two particular trips to demonstrate the effectiveness of the scaling factor. The horizontal

green line shows the travel time of target trip q. The actual travel time ti of neighboring trips is plotted as

blue circle, while the scaled travel timewi ti is plotted as red triangle. The index of neighboring trips refers to

the ID of neighboring trip. In (a), the actual travel times of historical trips have very large variance, because

they are from different time slots with distinct traffic conditions. The scaling factor successfully reduces the

variance in the actual travel time ti . In (b), the target trip q occurred in rush hour, and thus tq is much longer

than most of its neighboring trips. The scaling factor successfully fill in the gap between historical trips and q.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Target trip travel time tq (seconds)

P
re
d
ic
ti
on

t̂ q
(s
ec
on

d
s)

One trip
Linear fit
y = x

Fig. 5. Estimated travel time against actual travel time. Each point is a trip, where the estimation ˆtq is plotted

against tq . The green line is the linear regression fit of the points, which is closer to the red line y = x . This

means the prediction is close to the actual value.

using a weekly pattern with 1 hour as the basic unit, we have T = 7 × 24 = 168. Using this relative
time window, we represent the average speed of the k-th time slot as Vk ,∀k ∈ Tr ela . We call
{Vk |k ∈ Tr ela} relative reference.
We use ki to denote the time slot to which si belongs. As a result, we can write V (si) = Vki . To

compute Vki , we collect all the trips in D which fall into the same time slot as pi and denote the

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 9

8am Sun 8am Mon 8am Tue 8am Wed 8am Thu 8am Fri 8am Sat
5

10

15

20

25

Starting time of the trip

S
p
e
e
d
 r

e
fe

re
n
c
e
 (

m
ile

/h
)

Absolute speed reference

Relative speed reference

Fig. 6. Comparison between the absolute speed reference and the relative speed reference in the Christmas

week (Dec 22, 2015 ś Dec 28, 2013). We can see the traffic condition is much better during Wednesday daytime

than usual, because people are celebrating Christmas.

set as S(pi). Then, we have

Vki =
1

|S(pi)|

∑

pj ∈S (pi)

lj

tj
(7)

In Figure 2, we present the weekly relative speed reference on all trips. We can see all the
weekdays share similar patterns the rush hour started from 8:00 in the morning. Meanwhile, during
the weekends, the traffic is not as much as usual during 8:00 in the morning.
The relative speed reference mainly has the following two advantages. First, the relative speed

reference is able to alleviate the data sparsity issue. By folding the data into a relative window, we
will have more trips to estimate an average speed with a higher confidence. Second, the computation
overhead of relative speed reference is small, and we could do it offline.

4.2 Absolute Speed Reference

In the previous section, the relative speed reference assumes the speed follows daily or weekly
regularity. However, in real scenario, there are always irregularities in the traffic condition. For
example, during national holidays the traffic condition will significantly deviate from the usual
days. In Figure 6, we show the actual average traffic speed during the Christmas week (Dec 22, 2013
ś Dec 28, 2013). Compared with the relative speed reference, we can see that on Dec 25th, 2013,
the traffic condition is better than usual during the day, since people are celebrating Christmas.
Therefore, assuming we have enough data, it would be more accurate if we could directly infer the
average speed at any time slot t from the historical data.
In this section, we propose an alternative approach to directly capture the traffic condition at

different time slots. We extend our relative reference from Section 4.1 to an absolute speed reference.
To this end, we partition the original timeline into time slots based on a certain time interval (i.e., 1
hour). All historical trips are mapped to the absolute time slots Tabs = {1, 2, 3, · · · } accordingly,
and the average speed {Vk |k ∈ Tabs } are calculated as the absolute speed reference.

The challenge in absolute speed reference is that for a given query trip with starting time sq in
the near future (e.g. next hour), we need to estimate the speed reference V (sq). We estimate V (sq)

by taking into account factors such as the average speed of previous hours, seasonality, and random
noise. Formally, given the time series of average speed: {V1,V2, . . . ,VM }, our goal is to compute
VM+1 as follows:

VM+1 = f (V1, . . . ,VM). (8)

In order to predict current speed reference based on historical speed time series, we adopt the
auto-regressive integrated moving average (ARIMA) model [10] for time series forecasting. We will
discuss the ARIMA model and seasonal ARIMA model in the following section.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

10 H. Wang et al.

4.2.1 Overview of the ARIMA Model. In statistical analysis of time series, ARIMA is a popular tool
for understanding and predicting future values in a time series. Mathematically, for any time series
{Xt }, let L be the lag operator :

LXt = Xt−1,∀t > 1. (9)

Then, the ARIMA(p,d,q) model is given by
(
1 −

p∑

i=1

ϕiL
i

)
(1 − L)d Xt =

(
1 +

q∑

i=1

θiL
i

)
ϵt , (10)

where parameters p, d and q are non-negative integers that refer to the order of the auto-regressive,
integrated, and moving average parts of the model, respectively. In addition, ϵt is a white noise
process.
In practice, the autocorrelation function (ACF) and partial autocorrelation function (APCF)

is frequently used to estimate the order parameters (p,d,q) from a time series of observations

{X1,X2, . . . ,XM }. Then, the coefficients {ϕi }
p
i=1 and {θi }

q
i=1 of the ARIMA(p,d,q) can be learned

using standard statistical methods such as the least squares.

4.2.2 Incorporating the Seasonality. In our problem, the average speed Vt exhibits a strong weekly
pattern. Thus, instead of directly applying the ARIMAmodel to {Vt }, we first compute the sequence
of seasonal difference {Yt }:

Yt = Vt −Vt−T , (11)

where T is the period (e.g., one week). Then, we apply the ARIMA model to {Yt }:
(
1 −

p∑

i=1

ϕiL
i

)
(1 − L)d Yt =

(
1 +

q∑

i=1

θiL
i

)
ϵt . (12)

Note that our ARIMA model with the seasonal difference is a special case of the more general class
of Seasonal ARIMA (SARIMA) model for time series analysis. We refer interested readers to [10]
for detailed discussion about the model.
Suppose we use first order difference of Yt , namely d = 1 and (1 − L)dYt = Yt − Yt−1. Then we

have

Yt = Yt−1 +

p∑

i=1

ϕiL
i (Yt − Yt−1) +

q∑

i=1

θiL
iϵt + ϵt (13)

Since the last term ϵt in Eq. (13) is white noise, whose value is unknown but the expectation

E(ϵt) = 0, we have estimator Ŷt = Yt − ϵt . Together with Eq. (11), we have

V̂t = Ŷt +Vt−T (14)

4.3 The Effect of Geographic Regions

So far, we have assumed that the traffic condition follows the same temporal pattern across all
geographic locations. However, in practice, trips within a large geographic area (e.g., New York
City) may have different traffic patterns, depending on the spatial locations. For example, in Figure 7
we show the speed references of two different pairs of regions. The speed reference in region pairs
(A,B) has a larger variation than (C,D). In particular, for (A,B) pair, the average speed is 22.7 mph
at 4:00 a.m. on Thursday and 8.5 mph at 12:00 p.m. on Wednesday. But for (C,D) pair, the average
speed is only 11.2 mph and 7.0 mph at these two corresponding times. The reason could be that A
is a residential area, whereas B is a business district. Therefore, the traffic pattern between A and B
exhibits a very strong daily peak-hour pattern. On the other hand, regions C and D are popular
tourist areas, the speeds are constantly slower compared with that of (A,B).

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

12 H. Wang et al.

using the same set of sampled trip pairs in Figure 3(b). Comparing with the Figure 3(b), we see that
the linear regression fit has a slope closer to 1, which means the two ratios are closer, and the R2 is
larger, which means the line fits better.

4.4 Time Complexity Analysis

Our approach has three steps: 1) mapping training trips into grids; 2) extracting neighbors of a
given OD pair; and 3) estimating travel time based on the neighbors.
Step 1. In order to quickly retrieve the neighboring trips, we employ a raster partition of the city

(e.g., 50 meters by 50 meters grid in our experiment), and preparing N training trips takes O(N)

time. This step can be preprocessed offline.
Step 2. Given a testing trip q, we find its corresponding origin gird inO(1) time. Then, retrieving

all the neighboring trips in the same grid would take O(N /h) time if the trips are uniformly
distributed, where h is the total number of grids. In practice, however, the number of trips in
each grid follows a long tail distribution. Therefore, the worst case time complexity of retrieving
neighboring trips would be O(α · N), where α · N is the number of trips in the most dense grid
(α = 0.01 in NYC taxi data).

Step 3. After retrieving the neighboring trips, the time complexity of calculating travel time
of q is O(|N(q)|), where |N(q)| is the number of neighbors of trip q. The speed references can be
computed offline. The relative speed reference takesO(N) time, and ARIMAmodel can be trained in
O(M2) time, whereM is the number of time slots. During the online estimation, looking-up relative
speed reference takesO(1) time, whereas using ARIMA to predict the current speed reference takes
O((p +q) ·d) time, where p, q, and d are the parameters learned during model training (p = 2, q = 0,
and d = 1 in our experiment).
Therefore, the time complexity of online computation is O(α · N) in the worst case. In order to

serve a large amount of batch queries, we can use multithreading to further boost the estimation
time.

5 EXPERIMENT

In this section, we present a comprehensive experimental study on two real datasets. All the
experiments are conducted on a 8-core 3.4 GHz Intel Core i7 system with 16 GB memory. We
parallelize the computation, which will be discussed in Section 5.6 in detail.

5.1 Dataset

We conduct experiments on datasets from two different countries to show the generality of our
approach.

5.1.1 NYC Taxi. A large-scale New York City taxi dataset has been made public online [29]. The
dataset contains more than 160 million taxi trips per year. Each trip contains information about
pick-up location and time, drop-off location and time, trip distance, fare amount, etc. We use the
subset of trips within the borough of Manhattan (the boundary is obtained from wikimapia.org)
from 2013 to 2015, which has roughly over 127 million trips per year. On average, we have 349, 410
trips per day.

Figure 9(a) shows the distribution of GPS points of the pick-up and drop-off locations. Figure 9(b)
shows the number of trips per day over the year 2013. Figure 9(c) and Figure 9(d) show the empirical
CDF plot of the trip distance and trip time. About 56% trips have trip time less than 10 minutes,
and about 99% trips have trip time less than 30 minutes. The mean and median trip time are 636
(second) and 546 (second). The mean and median trip distance are 1.935 (mile) and 1.6 (mile). We

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 13

−74.05 −74 −73.95 −73.9 −73.85

40.7

40.75

40.8

40.85

40.9

longitude

la
ti
tu

d
e

(a) Spatial distribution. (Red means dense location)

50 100 150 200 250 300 350
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Day of year

#
tr

ip
s

#trips per day

(b) # trips per day

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Trip time (minute)

C
D

F

travel time

(c) Trip time

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Trip distance (mile)

C
D

F

travel distance

(d) Trip distance

Fig. 9. NYC data statistics. See text for explanations.

noticed that most of trips in our dataset is short, however to the best of our knowledge the NYC
taxi dataset is the largest publicly accessible dataset.

5.1.2 Shanghai Taxi. In order to compare with the existing route-based methods, we use the
Shanghai taxi dataset with the trajectories of 2, 600 taxis during two months in 2006 [25]. A GPS
record has following fields: vehicle ID, speed, longitude, latitude, occupancy, and timestamp. In
total we have over 300 million GPS records. We extract the geographical information of Shanghai
road networks from OpenStreetMap.

To retrieve taxi trips in this dataset, we rely on the occupancy bit of GPS records. This occupancy
bit is 1 if there are passengers on board, and 0 otherwise. For each taxi, we define a trip as consecutive
GPS records with occupancy equal to 1. We get 5, 815, 470 trips after processing the raw data. The
distribution of trip travel time is similar to that of NYC taxi data in Figure 9(c). Specifically, about
half of the trips have travel time less than 10 minutes.

5.2 Evaluation Protocol

Methods for evaluation.We systematically compare the following methods:

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

14 H. Wang et al.

• Linear regression (LR). We train a linear regression model with travel time as a function of
the L1 distance between pick-up and drop-off locations. This simple linear regression serves
as a baseline for comparison.

• Neighbor average (AVG). This method simply takes the average of travel times of all neigh-
boring trips as the estimation.

• Temporally weighted neighbors (TEMP). This is our proposed method using temporal speed
reference to assign weights on neighboring trips. We name the method using relative-time
speed reference as TEMPrel (Section 4.1). And we call the method using ARIMA model to
predict absolute temporal reference as TEMPabs (Section 4.2).

• Temporal speed reference by region (TEMP+R). This is our improved method based on TEMP

by considering the temporal reference for different region pairs (Section 4.3).
• Segment-based estimator (SEGMENT). This method estimates the travel time of each road
segment individually, and then aggregate them to get the estimation of a complete trip (a
baseline method used in [27]).

• Subpath-based estimator (SUBPATH). One drawback of SEGMENT is that the transition time at
intersections cannot be captured. Therefore, Wang et al. [27] propose to concatenate subpaths
to estimate the target route, where each sub-path is consisted of multiple road segments. For
each sub-path, SUBPATH estimates its travel time by searching all the trips that contain this
sub-path.

• Online map service (BING and BAIDU). We also compare our methods with online map services.
We use Bing Maps [16] for NYC taxi dataset and Baidu Maps [1] for Shanghai dataset. We
use Bing Maps instead of Google Maps because Bing Maps API allows query with current
traffic for free whereas Google does not provide that. To consider traffic, we send queries to
Bing Maps at the same time of the same day (in a weekly window) as the starting time of the
testing trip. Due to national security concerns, the mapping of raw GPS data is restricted in
China [18]. So we use Baidu Maps instead of Bing Maps for Shanghai taxi dataset.

Evaluation metrics. Similar to [27], we use mean absolute error (MAE) and mean relative error
(MRE) to evaluate the travel time estimation methods:

MAE =

∑
i |yi − ŷi |

n
,MRE =

∑
i |yi − ŷi |∑

i yi
,

where ŷi is the travel time estimation of test trip i and yi is the ground truth. Since there are
anomalous trips, we also use the median absolute error (MedAE) and median relative error (MedRE)
to evaluate the methods:

MedAE =median(|yi − ŷi |),MedRE =median

(
|yi − ŷi |

yi

)
,

wheremedian returns the median value of a vector.

5.3 Performance on NYC Data

5.3.1 Overall Performance on NYCData. In our experiment, we evaluate ourmethods independently
within each of the three years. The trips from the first 11 months (i.e., January to November) are
used as training and the ones in the last month (i.e., December) are used as testing. As for the BING
method, due to the limited quota, we sample 260k trips in December as testing of each year. Bing
Map API does not support travel time query of a past trip. Therefore we assume that the traffic
condition has strong weekly periodicity, and we use the same relative time within a week to query
the Bing prediction for all the testing trips. The Bing predictions of all testing trips are queried in
the third week of August 2017. The overall accuracy comparisons are shown in Table 1. Since NYC

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 15

data only have endpoints of trips, we cannot compare our method with route-based methods. We
will compare with these methods using Shanghai data in Section 5.4.

Table 1. Overall Performance on NYC Data

Year Method MAE (s) MRE MedAE (s) MedRE

2013

LR 194.60 0.2949 164.82 0.3017
AVG 178.46 0.2704 120.83 0.2345
TEMPrel 149.81 0.2270 97.36 0.1907
TEMPabs 143.31 0.2171 98.78 0.1890
TEMPrel + R 143.72 0.2178 92.07 0.1805

TEMPabs + R 142.33 0.2157 98.05 0.1874

2014

LR 291.76 0.3552 224.574 0.3338
AVG 237.09 0.2887 142.17 0.2397
TEMPrel 204.43 0.2489 117.31 0.1993
TEMPabs 195.05 0.2375 118.90 0.1975
TEMPrel + R 194.81 0.2371 110.179 0.1867

TEMPabs + R 192.69 0.2346 118.37 0.1956

2015

LR 300.67 0.3567 227.87 0.3348
AVG 244.63 0.2902 147.10 0.2432
TEMPrel 207.64 0.2463 120.06 0.2000
TEMPabs 196.62 0.2332 116.78 0.1928
TEMPrel + R 196.54 0.2331 111.91 0.1859

TEMPabs + R 196.61 0.2332 116.78 0.1928

Comparison with Bing Maps (260K testing trips per year)

2013
BING 233.81 0.3642 153.00 0.3180
BING(traffic) 193.53 0.3015 140.00 0.2678
TEMPabs + R 135.36 0.2108 94.94 0.1839

2014
BING 343.69 0.4118 205.00 0.3615
BING(traffic) 240.41 0.2915 153.00 0.2517
TEMPabs + R 192.75 0.2337 117.59 0.1947

2015
BING 381.92 0.4410 231.00 0.3866
BING(traffic) 250.49 0.2892 152.00 0.2453
TEMPabs + R 204.12 0.2357 119.93 0.1938

We first observe that our method is better than linear regression (LR) baseline. This is expected
because LR is a simple baseline which does not consider the origin and destination locations.
Considering temporal variations of traffic condition improves the estimation performance. All

the TEMP methods have significantly lower errors compared with AVG method. The improvement of
TEMPabs over AVG is about 35 - 50 seconds in MAE. In other words, the MAE is decreased by nearly
20% by considering the temporal factor. Furthermore, using the absolute speed reference (TEMPabs)
is better than using the relative (i.e., weekly) speed reference (TEMPrel). This is because the traffic
condition does not strictly follow the weekly pattern, but has some irregular days such as holidays.

By adding the region factor, the performance is further improved. This means the traffic patterns
between regions are actually different. However, we observe that the improvement of TEMPabs + R
over TEMPabs is not as significant as the improvement of TEMPrel + R over TEMPrel. This is due to
data sparsity when we compute the absolute time reference for each region pair. If two regions

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

16 H. Wang et al.

1 week 2 weeks 1 3 7 11
140

150

160

170

180

190

200

Number of months used for training

M
A

E
 (

s
e

c
o

n
d

)

AVG
TEMPrel

TEMPrel+ R

TEMPabs

TEMPabs+ R

(a) MAE w.r.t. training set size

1 week 2 weeks 1 3 7 11
1

1.1
x 10

7

Number of months used for training

N
u
m

b
e
r

o
f
p
re

d
ic

ta
b
le

 t
ri
p
s

1 week 2 weeks 1 3 7 11

0.95

1

P
e
rc

e
n
ta

g
e
 o

f
p
re

d
ic

a
b
le

 t
ri
p
s

Trips with neighbors

Total test

Percentage

(b) Coverage of testing set

Fig. 10. Performance with regard to the training set size on 2013 data.

have little traffic flow, the absolute time reference might not be accurate. In this case, using the
relative time reference between regions make the data more dense and produces better results.
In Table 1, the MAE of TEMPabs + R is significantly lower than BING by more than 100 seconds.

BING underestimates the travel times without considering traffic, where 81.37% testing trips are
underestimated. When considering traffic, BING(traffic) is able to better predict the travel time.
Notice that this result is different from our conference paper [24], where BING(traffic) has a
higher prediction error than BING. The reason is that the previous Bing results are queried in
October 2015. In the this paper, we queried the Bing Map predictions for testing trips in the week
of August 2017. There might be an improvement on the Bing Map service.

5.3.2 Performance w.r.t. the Size of Historical Data. We expect that, by using more historical data
(i.e., training data), the estimation will be more accurate. To verify this, we study how performance
changes w.r.t. the size of training data. We choose different time durations (from 1 week, 2 weeks,
to 11 months) before December as the training data. Figure 10(a) shows the accuracy w.r.t. the
size of the training data. The result meets with our expectation that MAE drops when using more
historical data. But the gain of using more data is not obvious when using more than 1 month data.
This indicates that using 1-month training data is enough to achieve a stable performance in our
experimental setting. Such indication will save running time in real applications as we do not need
to search for neighboring trips more than 1 month ago.

In addition, using more historical data, we are able to cover more testing trips. Because a testing
trip should have at least one neighboring trip in order to be estimated. Figure 10(b) shows the
coverage of testing data by using more historical data. With 1-week data, we can estimate 95.16%
testing trips; with 1-month data, we can cover 99.20% testing trips.

5.3.3 Performance w.r.t. Trip Features. Next, we study the performance of all methods with respect
to various trip features.
Performance w.r.t. trip time. In Figure 11(a) and 11(b), we plot the MAE and MRE with respect

to the trip time. As expected, the longer-time trips have higher MAEs. It is interesting to observe
that the MREs are high for both short-time trips and long-time trips. Because the short-time trips
(less than 500 seconds) are more sensitive to dynamic conditions of the trips, such as traffic light.
On the other hand, the long-time trips usually have less neighbors, which leads to higher MREs.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 17

Performance w.r.t. trip distance. The MAE and MRE against trip distance are shown in
Figure 11(c) and 11(d). Overall, we have consistent observations as Figure 11(a) and Figure 11(b).
However, we notice that the error of TEMPrel + R increases faster than other methods. TEMPrel + R
becomes even worse than AVGmethod when the trip distance is longer than 8 miles. This is because
the longer-distance trips have fewer neighboring trips. However, we do not observe the same
phenomenon in Figure 11(a) and Figure 11(b). After further inspection, we find that long-distance
trips have even less neighboring trips than long-time trips. The reason is that long-distance trips
usually have long travel time; however, long-time trips may not have long trip distance (e.g., the
long travel time may be due to traffic).
Performance w.r.t. number of neighboring trips. The error against number of neighbors

per trip is shown in Figure 11(e) and Figure 11(f). MAEs decrease for the trips with more neighbors.
However, MREs increase as the number of neighbors increases. The reason is that the short trips
usually have more neighbors and short trips have higher relative errors, as shown in Figure 11(b)
and Figure 11(d).

5.3.4 An Alternative Definition of Neighbors. We further study the performance by defining soft
neighbors. We give neighboring trips spatial weights based on the sum of corresponding end-points’
distance, and evaluate the performance on 500k trips. The MAE of TEMPabs + R is 107.705s on this
testing set. Adding spatial weights on the neighbors degenerates the performance to 112.392s. It
suggests that it is non trivial to assign weights on neighbors based on the distances of end-points.
It will require more careful consideration of this factor.

5.4 Performance on Shanghai Taxi Data

In this section, we conduct experiments on Shanghai taxi data. This dataset provides the trajectories
of the taxi trips so we can compare our method with SEGMENT and SUBPATHmethods. Both SEGMENT

and SUBPATH methods use the travel time on individual road segments or subpaths to estimate
the travel time for a query trip. Due to data sparsity, we cannot obtain travel time for every road
segments. [27] propose a tensor decomposition method to estimate the missing values. In our
experiment, to avoid the missing value issue, we only select the testing trips that have values on
every segments of the trip. However, by doing such selection, the testing trips are biased towards
shorter trips. Because the shorter the trip is, the less likely the trip has missing values on the
segment. To alleviate this bias issue, we further sampled the biased trip dataset to make the travel
time distribution similar to the distribution of the original whole dataset. We randomly sample
2, 138 trips in total as testing, and the rest are used as training. We use the same training set and
testing set for different methods.

Table 2. Overall Performance on Shanghai Taxi Data

Method MAE (s) MRE MedAE (s) MedRE

LR 130.710 0.6399 138.796 0.6173

BAIDU 111.484 0.5451 73.001 0.5001

SEGMENT 119.833 0.5866 84.704 0.4947

SUBPATH 113.566 0.5560 75.913 0.4820

AVG 94.202 0.4615 60.183 0.3739

TEMPrel 92.428 0.4527 55.317 0.3678

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

18 H. Wang et al.

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

1800

Trip travel time (second)

M
A

E
 (

s
e
c
o
n
d
)

AVG
TEMPrel
TEMPrel+ R

TEMPabs
TEMPabs+ R

(a) MAE w.r.t. travel time

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Trip travel time (second)

M
R

E
 (

%
)

AVG
TEMPrel
TEMPrel+ R

TEMPabs
TEMPabs+ R

(b) MRE w.r.t. travel time

0 2 4 6 8 10
0

100

200

300

400

500

600

Trip actual distance (mile)

M
A

E
 (

s
e

c
o

n
d

)

AVG
TEMPrel
TEMPrel+ R

TEMPabs
TEMPabs+ R

(c) MAE w.r.t. distance

0 2 4 6 8 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Trip actual distance (mile)

M
R

E
 (

%
)

AVG
TEMPrel
TEMPrel+ R

TEMPabs
TEMPabs+ R

(d) MRE w.r.t. distance

0 1000 2000 3000 4000 5000 6000 7000
100

120

140

160

180

200

220

Number of neighbors per trip

M
A

E
 (

s
e
c
o
n
d
)

AVG
TEMPrel
TEMPrel+ R

TEMPabs
TEMPabs+ R

(e) MAE w.r.t. # neighbors

0 1000 2000 3000 4000 5000 6000 7000
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Number of neighbors per trip

M
R

E
 (

%
)

AVG
TEMPrel
TEMPrel+ R

TEMPabs
TEMPabs+ R

(f) MRE w.r.t. # neighbors

Fig. 11. Performance with regard to the trip features.

5.4.1 Overall Performance on Shanghai Taxi Data. The comparison among different methods is
shown in Table 2. Our neighbor-based method significantly outperform other methods. The simple
method AVG is 17 seconds better than BAIDU in terms of MAE. By considering temporal factors, our

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 19

method TEMPrel further outperforms AVG method. Here, we do not report the results of TEMPabs,
because the two-month Shanghai data have several days’ trip missing, but the ARIMA model
requires complete time series. In addition, SUBPATH method outperforms SEGMENT method, which
is consistent with previous work [27]. SEGMENT simply adds travel time of individual segments,
whereas SUBPATH considers the transition time between segments by concatenating subpaths.
However, SUBPATH is still 21 seconds worse than our method TEMPrel in terms of MAE. Such result
is also expected. Because our method can be considered as a special case of SUBPATHmethod, where
we use the whole paths from the training data to estimate the travel time for a testing trip. If we
have enough number of whole paths, it is better to use the whole paths instead of subpaths.
Since the Shanghai taxi data are much more sparse than NYC data, we do not show the results

of TEMPrel + R and TEMPabs + R on this dataset. Note that the main goal of this experiment is to
show that TEMPrel outperforms the existing methods. With more data, our other approaches could
potentially outperform the TEMPrel as well as shown in NYC data.

5.4.2 Applicability of Segment-based Method and Neighbor-based Method. Segment-based method
requires every individual road segment of the testing trip has at least one historical data point to
estimate the travel time. On the other hand, our neighbor-based method requires a testing trip
has at least one neighboring trip. Among 435, 887 trips in Shanghai dataset, only 54, 530 trips
have values on every road segment, but 217, 585 trips have at least one neighbor. Therefore, in
this experimental setting, our method not only outperforms segment-based method in terms of
accuracy, it is also more applicable to answer more queries (49.9%) compared with segment-based
method (12.5%).

5.5 Parameter Sensitivity

In this section we study the parameter sensitivity of our proposed method. There is only one
parameter in our proposed method, the distance threshold τ to define the neighbors. We use
the first 11 months of 2013 from NYC dataset to study the performance w.r.t. parameter τ . For
computational efficiency, we partition the map into small grids of 50 meters by 50 meters. The
distance in Eq. (1) is now defined as the L1 distance between two grids. For example, if p1 is a
neighboring trip of q for τ = 0, it means that the pick-up (and drop-off) location of p1 is in the
same grid as the pick-up (and drop-off) location of q. If τ = 1, a neighboring trip has endpoints in
the same or adjacent grids.

A larger τ will retrieve more neighboring trips for a testing trip and thus could give an estimation
with a higher confidence. However, a larger τ also implies that the neighboring trips are less similar
to the testing trip, which could introduce prediction errors. Therefore, it is crucial to identify the
optimal τ that balance estimation confidence and neighbors’ similarity. In Figure 12(a), we plot the
empirical relationship between the MAE and τ . We can see that MAE is the lowest when τ is in the
range of [3, 6], striking a good balance between confidence and similarity. It is worthy to mention
that our method is not sensitive to the different selection of τ .
We also want to point out that we need to have at least one neighboring trip in order to give

an estimation of a testing trip. Obviously, the larger τ is, the more testing trips we can cover.
Figure 12(b) plots the percentage of testing trips with at least one neighbor. The figure shows that if
τ = 1, there are only 32% trips are predictable. When τ = 3, 99% trips are predictable. Considering
the both aspects, we use τ = 3 in our experiments, which considers two trips are neighboring if
their starting and ending points are within 150 meters. Our method can also adapt to different
cities by controlling neighborhood parameter τ .

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

20 H. Wang et al.

0 2 4 6 8
130

140

150

160

170

180

190

Neighbor threshold τ

M
A

E
 (

s
e

c
o

n
d

s
)

AVG
TEMPrel

TEMPabs

TEMPrel+ R

(a) Performance

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Neighbor threshold τ

P
o
rt

io
n
 o

f
te

s
ti
n
g
 t
ri
p
s
 w

it
h
 n

e
ig

h
b
o
rs

(b) Coverage

Fig. 12. Estimation error and testing coverage w.r.t. neighbor threshold τ .

5.6 Running Time

Table 3 presents the running time comparison between TEMPabs + R and SUBPATH. We use a multi-
threading implementation of our method, since it is easy to parallel. We profile the running time
of TEMPabs + R on last two months’ trips in NYC dataset, and SUBPATH on whole Shanghai dataset.
Note that NYC dataset is bigger than Shanghai dataset and TEMPabs + R is the most computationally
expensive method, and also the most accurate method among our proposed methods. The pre-
processing time for TEMPabs + R consists of mapping trips to grids, calculating the speed reference,
and learning the ARIMA parameters. The preparation time for SUBPATH includes indexing trajectory
by road segments.

Table 3. Running time comparison

Method Process #trips time time/trip

Our
Prep. training trip 11M 42s 0.004ms

method
Learn ARIMA 11M 147s 0.013ms
Find neighbor 100K 24s 0.24ms

Estimate 10.5M 229s 0.021ms

SUBPATH
Prep. training trip 4.35M 547s 0.126ms

Estimate 54K 2297s 42ms

In TEMPabs+R, both training trip preparation and learning ARIMA can be done off-line or updated
every hour with the new data. The online query part includes querying neighboring trips and
estimation using neighbors. The neighbor finding is the most time consuming part. We get 1.09
ms/trip if using one thread and 0.24 ms/trip if using 8 threads. The estimation part only takes 0.02
ms with 8 threads. So the total online query time for our method is 1.505 ms/trip on average and it
will be even faster (i.e., 0.26 ms/trip) if using 8 threads. The estimation of SUBPATH includes finding
optimal concatenation of segments, which hasO(n2 ·m) time complexity, where n is the number of
road segments andm is number of trips going through each segment. It takes 42ms on average
to estimate a testing trip. Our neighbor-based method is more efficient in answering travel time
queries because we avoid computing the route and estimating the time for the subpaths.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data 21

6 CONCLUSION

This paper demonstrates that one can use large-scale trip data to estimate the travel time between
an origin and a destination in a very efficient and effective way. Our proposed method retrieves all
the neighboring historical trips with the similar origin and estimation locations and estimate the
travel time using those neighboring trips. We further improve our method by considering the traffic
conditions w.r.t. different temporal granularity and spatial dynamics. We conduct experiments
on two large-scale real-world datasets and show that our method can greatly outperform the
state-of-the-art methods and online map services.
In our method, the spatial region is an important factor which greatly improves the estimation

accuracy. However, for the purpose of simplicity, we directly employ the administrative boundary
to partition city into regions. One could improve this baseline partitioning by learning a better
partitioning from the taxi data, because the goal of region partition should be finding neighborhood,
within which temporal traffic pattern is similar. Deriving those neighborhoods with similar traffic
patterns is actually non-trivial and worth further investigation.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their valuable comments and helpful
suggestions.

Theworkwas supported in part by NSF awards #1054389, #1228669, #1544455, #1652525, #1618448,
and #1702760. Zhenhui Li would like to acknowledge the support from Haile Family Early Career
Professorship. The views and conclusions contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.

REFERENCES

[1] Baidu 2016. Baidu Map: http://map.baidu.com.

[2] Paolo Cintia, Roberto Trasarti, Livia Almada Cruz, Camila F Costa, and Jose Antônio F deMacedo. 2013. A GravityModel

for Speed Estimation over Road Network. In IEEE MDM, Vol. 2. IEEE, 136ś141. https://doi.org/10.1109/MDM.2013.83

[3] Corrado De Fabritiis, Roberto Ragona, and Gaetano Valenti. 2008. Traffic estimation and prediction based on real time

floating car data. In IEEE International Conference on Intelligent Transportation Systems. 197ś203.

[4] Brian C Dean. 1999. Continuous-time dynamic shortest path algorithms. Ph.D. Dissertation. Massachusetts Institute of

Technology.

[5] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul Sondag. 2007. Adaptive fastest path

computation on a road network: a traffic mining approach. In International Conference on Very large Data Bases.

794ś805.

[6] Ryan Herring, Aude Hofleitner, Saurabh Amin, T Nasr, A Khalek, Pieter Abbeel, and Alexandre Bayen. 2010. Using

mobile phones to forecast arterial traffic through statistical learning. In 89th Transportation Research Board Annual

Meeting. 1ś22.

[7] Aude Hofleitner and Alexandre Bayen. 2011. Optimal decomposition of travel times measured by probe vehicles using

a statistical traffic flow model. In IEEE International Conference on Intelligent Transportation Systems. 815ś821.

[8] Aude Hofleitner, Ryan Herring, Pieter Abbeel, and Alexandre Bayen. 2012. Learning the dynamics of arterial traffic

from probe data using a dynamic Bayesian network. IEEE Transactions on Intelligent Transportation Systems 13, 4

(2012), 1679ś1693.

[9] Timothy Hunter, Ryan Herring, Pieter Abbeel, and Alexandre Bayen. 2009. Path and travel time inference from GPS

probe vehicle data. NIPS Analyzing Networks and Learning with Graphs 12, 1 (2009).

[10] Rob J Hyndman and George Athanasopoulos. 2014. Forecasting: principles and practice. OTexts.

[11] Erik Jenelius and Haris N Koutsopoulos. 2013. Travel time estimation for urban road networks using low frequency

probe vehicle data. Transportation Research Part B: Methodological 53 (2013), 64ś81.

[12] Zhanfeng Jia, Chao Chen, Ben Coifman, and Pravin Varaiya. 2001. The PeMS algorithms for accurate, real-time estimates

of g-factors and speeds from single-loop detectors. In IEEE International Conference on Intelligent Transportation Systems.

536ś541.

[13] Evangelos Kanoulas, Yang Du, Tian Xia, and Donghui Zhang. 2006. Finding fastest paths on a road network with

speed patterns. In IEEE International Conference on Data Engineering. IEEE, 10ś10.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

22 H. Wang et al.

[14] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua Teng. 2005. On trip planning queries

in spatial databases. In Advances in Spatial and Temporal Databases. Springer, 273ś290.

[15] Mu Li, Amr Ahmed, and Alexander J. Smola. 2015. Inferring Movement Trajectories from GPS Snippets. In ACM

WSDM. 325ś334.

[16] Microsoft Bing 2017. Bing Maps: https://www.bing.com/maps/.

[17] EndaMurphy and James E Killen. 2010. Commuting economy: an alternative approach for assessing regional commuting

efficiency. Urban studies (2010).

[18] National Administration of Surveying, Mapping and Geoinformation of China. 2016. Surveying and Mapping Law of

the People’s Republic of China.

[19] Michael A Niedzielski. 2006. A spatially disaggregated approach to commuting efficiency. Urban Studies 43, 13 (2006),

2485ś2502.

[20] Karl F Petty, Peter Bickel, Michael Ostland, John Rice, Frederic Schoenberg, Jiming Jiang, and Ya’acov Ritov. 1998.

Accurate estimation of travel times from single-loop detectors. Transportation Research Part A: Policy and Practice 32, 1

(1998), 1ś17.

[21] Mahmood Rahmani, Erik Jenelius, and Haris N Koutsopoulos. 2013. Route travel time estimation using low-frequency

floating car data. IEEE International Conference on Intelligent Transportation Systems (2013).

[22] John Rice and Erik Van Zwet. 2004. A simple and effective method for predicting travel times on freeways. IEEE

Transactions on Intelligent Transportation Systems 5, 3 (2004), 200ś207.

[23] Martin Treiber and Arne Kesting. 2013. Traffic flow dynamics. Traffic Flow Dynamics: Data, Models and Simulation,

Springer-Verlag Berlin Heidelberg (2013).

[24] Hongjian Wang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2016. A Simple Baseline for Travel Time Estimation

using Large-Scale Trip Data. In Proceedings of the 24th SIGSPATIAL International Conference on Advances in Geographic

Information Systems (GIS ’16). ACM, New York, NY, USA.

[25] Hongjian Wang, Yanmin Zhu, and Qian Zhang. 2013. Compressive sensing based monitoring with vehicular networks.

In INFOCOM, 2013 Proceedings IEEE. 2823ś2831. https://doi.org/10.1109/INFCOM.2013.6567092

[26] Yibing Wang and Markos Papageorgiou. 2005. Real-time freeway traffic state estimation based on extended Kalman

filter: a general approach. Transportation Research Part B: Methodological 39, 2 (2005), 141ś167.

[27] Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel time estimation of a path using sparse trajectories. In Proceedings

of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 25ś34.

[28] Bradford S Westgate, Dawn B Woodard, David S Matteson, and Shane G Henderson. 2013. Travel time estimation for

ambulances using Bayesian data augmentation. The Annals of Applied Statistics 7, 2 (2013), 1139ś1161.

[29] Chris Whong. 2014. Foiling NYC’s Taxi Trip Data: http://chriswhong.com/open-data/foil_nyc_taxi/.

[30] Daniel B Work, O-P Tossavainen, Sébastien Blandin, Alexandre M Bayen, Toch Iwuchukwu, and Ken Tracton. 2008.

An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. In IEEE

Conference on Decision and Control. 5062ś5068.

[31] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. 2010. T-drive:

driving directions based on taxi trajectories. In ACM SIGSPATIAL. 99ś108.

Received November 2016; revised August 2017; accepted October 2018

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: October 2018.

