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Abstract. Statistics computed from data are viewed as random variables. When they
are used for tasks like hypothesis testing and confidence intervals, their true sampling
distributions are often replaced by approximating distributions that are easier to work with
(for example, the Gaussian, which results from using approximations justified by the Central
Limit Theorem). When data are perturbed by differential privacy, the approximating
distributions also need to be modified. Prior work provided various competing methods for
creating such approximating distributions with little formal justification beyond the fact
that they worked well empirically.

In this paper, we study the question of how to generate statistical approximating
distributions for differentially private statistics, provide finite sample guarantees for the
quality of the approximations. We also provide illustrative examples, mostly focusing on
chi-squared testing.

1. Introduction

The increasing use of formal privacy methods, such as differential privacy [Dwork et al., 2006,
Bun and Steinke, 2016], to create and release sanitized data (instead of the original sensitive
data) has raised the question of how much to trust analyses derived from the sanitized
data. These concerns have led to a line of research [Gaboardi et al., 2016, Karwa, 2016,
D’Orazio et al., 2015, Sheffet, 2015, Rogers and Kifer, 2017, Uhler et al., 2013, Yu et al.,
2014, Smith, 2011, Vu and Slavkovic, 2009, Dwork et al., 2015, Solea, 2014, Karwa and
Slavkovic, 2016, Johnson and Shmatikov, 2013] on how to properly incorporate differential
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privacy in statistics to account for errors due to (1) sampling of the original data from a
data-generating distribution, and (2) additional noise due to privacy protection schemes.

I was fortunate enough to meet Steve at a
variety of privacy workshops over the years.
More than anyone I have met, he encour-
aged early-career researchers and showed
interest in their work. Part of the reason was
Steve’s enthusiasm for statistical disclosure
control, which comes across in every con-
versation. Once, he (half-jokingly) told me
that everyone should be limited to lifetime
total of 20 published pages, so that people
focus their energies on deep progress in the
problems they care about. Late in his career,
Steve also mentioned that he started telling
prospective students that he doesn’t need
to publish anymore. Of course, he contin-
ued his research in privacy — not because
he needed to, but because he wanted to.
One of our shared common interests was in
developing techniques for proper statistical
analysis of differentially private data, and
overcoming the associated computational
difficulties. I am grateful for his support and
encouragement — to a first-year faculty, it
means a lot when a legend tells you he had
read all of your papers, and I will miss his en-
thusiasm.

Dan Kifer
DOI: 10.29012/jpc.705

The typical process we consider is to
start with a sensitive dataset Dn of size n,
compute a noisy privacy-preserving statistic
S̃(Dn) and then approximate the sampling

distribution of S̃(Dn). This approximating
distribution can then be used for various
purposes, such as creating confidence inter-
vals, testing hypotheses, etc.1 Previous ap-
proaches in this direction used ad-hoc tech-
niques that were specifically customized to
how S̃(Dn) was computed or used simpli-
fying assumptions, such as truly Gaussian
distributed data.

In the non-private case, a simple exam-
ple of the use of approximating distributions
is in the generation of confidence intervals
around the mean of n i.i.d. random vari-
ables.

Example 1.1. Let Dn = {x1, x2, . . . , xn}
be a sequence of numbers that are bounded
between 0 and 1 and are generated indepen-
dently from some distribution F with known
variance σ2. The mean µ of F can be esti-
mated as µ̂n ≡ 1

n

∑
xi. To get a confidence

interval around µ̂n that is likely to contain
the true mean, the standard approach is to
use the Central Limit Theorem to conclude
that

√
n µ̂n−µ

σ converges in distribution to a standard Gaussian N(0, 1) as n → ∞. Next

approximate
√
n µ̂n−µ

σ as a Gaussian and find an interval [−α, α] that contains 95% of
the probability mass of a standard Gaussian. Thus P (

√
n(µ̂n − µ)/σ ∈ [−α, α]) ≈ 0.95.

Simple algebra then shows that P (µ ∈ [µ̂n − σα/
√
n, µ̂n + σα/

√
n]) ≈ 0.95 and this gives an

(approximate) 95% confidence interval for µ.

In Example 1.1, the Gaussian was used as an approximation to the true distribution
of the average of n observations in the data. In practice, this approximation is often fairly
accurate (e.g., see Figure 1).

In the privacy-preserving case, we would not have direct access to x1, x2, . . . , xn or even
to
∑

i xi but we could have access to a privacy-preserving noisy sum, such as Yε +
∑

i xi,
where Yε is a Laplace random variable with scale 1/ε and variance 2/ε2. We can estimate
the true mean µ of the distribution F as µ̃n = 1

n(Yε +
∑

i xi) – this is our privacy-preserving

statistic S̃(Dn). If we can find an approximating distribution for
√
n(µ̃n − µ)/σ, then we

could proceed as in Example 1.1 to generate a confidence interval for the unknown true

1We note that other approaches are also possible, such as using MCMC (e.g., [Charest, 2011]) or, in certain
cases, computing the exact distribution (e.g., [Solea, 2014]).
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Specifically, let S(Dn) be a non-private statistic whose sampling distribution F is

approximated by some distribution G. Let S̃(Dn) be a privacy preserving version of this

statistic and let G̃ be an approximation of its sampling distribution F̃ . We are looking to
provide guarantees of the form d(F̃ , G̃) ≤ αd(F,G), where d is a distance measure between
distributions (e.g., the Kolmogorov-Smirnov distance). These relative guarantees allow us to
directly take advantage of non-private convergence results (e.g., the Berry-Esseen theorem) to

bound the distance between G̃ and F̃ . Furthermore, in cases where the non-private statistic
converges faster than the theoretical results imply (i.e. the constants in the theoretical results
may be too loose), relative guarantees would state that the privacy-preserving statistics also
converge quickly to their approximating distributions.

As a simple example, our techniques show that the approximation used in Options 2
and 3 (Figure 3) is just as good (in terms of Kolmogorov-Smirnov or Wasserstein distance)
as the Gaussian approximation used by the Central Limit Theorem in the non-private case
(Figure 1). In summary, our contributions are as follows:

• We provide a generic recipe for creating approximations to the sampling distributions
of privacy-preserving statistics. While conceptually simple, we note that existing works
either use poor approximations (e.g., [Johnson and Shmatikov, 2013]) or propose methods
specific to a given application (e.g., [Uhler et al., 2013, Yu et al., 2014, Gaboardi et al.,
2016, Rogers and Kifer, 2017]).

• We provide accuracy guarantees for these approximating distributions. The accuracy
guarantees are relative to the guarantees that would hold in the non-private case and
depend on the mechanism M that outputs privacy-preserving statistics.

• In many cases, the noisy statistic M(S(D)) undergoes further processing (for example,
when using the value of the noisy statistic and its approximating distribution to create
confidence intervals or to do a chi-squared test). We provide positive and negative results
on how such post-processing can affect approximation accuracy. For some statistical
analyses, we cannot provide an accuracy guarantee, so one of the purposes of this paper is
also to point out possible research directions in non-private rates of convergence that can
help address the negative results.

In Section 2, we review related work. In Section 3, we review background material in
statistics and privacy. We discuss desiderata for approaches for creating approximating
distributions in Section 4. We present a general recipe for approximating distributions in
Section 5, along with relative accuracy guarantees (Section 5.1) and degradation results
under post-processing (Section 5.2). In Section 6, we show how the proposed recipe can be
applied to a variety of applications, what guarantees can be provided, and what kinds of
additional non-private results are needed.

2. Related Work

The ability to use differential privacy to protect data has raised the question of how useful
would the data be in statistical applications [Wasserman and Zhou, 2010, Fienberg et al.,
2010, Dwork and Lei, 2009, Vu and Slavkovic, 2009, Smith, 2011, Chaudhuri and Hsu, 2012].
Early experimental evaluations were not encouraging [Fienberg et al., 2010] but since then
there have been numerous efforts at designing statistical tests and confidence intervals with
improved performance [Johnson and Shmatikov, 2013, Uhler et al., 2013, Solea, 2014, Yu
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et al., 2014, Sheffet, 2015, Gaboardi et al., 2016, Rogers and Kifer, 2017, Karwa, 2016, Karwa
and Slavkovic, 2016, D’Orazio et al., 2015, Cai et al., 2017].

The most common applications of statistics involve estimation (e.g., estimating the
mean of a population from a sample), confidence intervals, and hypothesis testing. The latter
two tasks involve computing a statistic Sn over a dataset of size n and often (but not always)
approximating the sampling distribution of Sn and then using the approximating distribution
to create confidence intervals or to provide evidence against statistical hypotheses. In the
case of differential privacy, such decisions must be made from a noisy statistic S̃n rather than
the true statistic Sn. Then most, but not all (e.g., Cai et al. [2017], Acharya et al. [2017],
Karwa and Vadhan [2018], Awan and Slavković [2018], Charest [2011]) approaches base their

confidence intervals or hypothesis test on an approximation to the true distribution of S̃n.
There are various approaches to generating such approximating distributions. The most

direct approach is to compute the limiting distribution of S̃n as n → ∞ and use that as the
approximation [Johnson and Shmatikov, 2013, Smith, 2011, Karwa and Slavkovic, 2016].
The resulting approximations are often inaccurate unless n is so large that the variance of
the privacy noise is insignificant compared to the variance in the data. Other approaches
make specific assumptions on the data (such as normality) to avoid using approximation
techniques like the CLT [Karwa, 2016, Solea, 2014, Sheffet, 2015, Chen et al., 2016].

When dealing with non-normal data, one common approach is to perform direct re-

placements, such as finding terms like
∑

i(xi − µ)/
√
nσ2 and replacing them with Gaussian

random variables [D’Orazio et al., 2015, Gaboardi et al., 2016]. Other approaches involve
setting up a limiting process [Rogers and Kifer, 2017, Uhler et al., 2013, Yu et al., 2014] and
using the limiting distribution as the finite sample approximation. An advantage of this
approach is that it can be used with other limit theorems, like Slutsky’s theorem [Rogers
and Kifer, 2017, Ferguson, 1996]. In all cases, the methods are narrow – they are designed
for the specific privacy mechanisms that generate the privacy-preserving statistics and do
not provide approximation guarantees.

Recent work by Rinott et al. [2018] considered several cases where the likelihood function
of noisy tables is tractable and parameter estimates can be obtained by optimization
procedures. This likelihood function was, for example, used in testing the null hypothesis
of independence between rows and columns of a table. They noted that the sampling
distribution empirically matched the asymptotic distribution that one gets as the sample
size n → ∞. However, in general it is not always possible to optimize the likelihood function
efficiently (Rinott et al. [2018] noted two special cases where it is: Poisson data with
truncated noise and Binomial data with truncated noise – it is worth noting that truncated
noise is used to ensure the computational complexity does not scale with the sample size,
but forces the use of approximate differential privacy). Furthermore, when the privacy noise
does not depend on the sample size, letting n → ∞ is generally not a reliable way of finding
a good approximation to the sampling distribution [Uhler et al., 2013, Gaboardi et al.,
2016] (since the added noise always drops out of the resulting distribution). We conjecture
that when our recipe is applied to the techniques of Rinott et al. [2018], the approximating
distribution will coincide with the distribution they obtained by letting n → ∞.

Charest [2011] proposed some of the earliest Bayesian techniques to analyze differentially
private data by taking advantage of conjugate priors in the differential privacy mechanism
and using MCMC. In general, Bayesian techniques for the analysis of differentially private
data are computationally expensive and in many cases would need to resort to approximations
for efficiency. One exception, which we discuss later in this section, is the case where each
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record is individually perturbed. However, such approaches lead to more perturbation and a
greater loss of power since the privacy noise scales with the sample size.

Smith [Smith, 2011] and Wasserman and Zhou [Wasserman and Zhou, 2010] focus on
finite sample guarantees about the distribution of data protected by differential privacy,
while Chaudhuri and Hsu [2012] study the convergence of point estimators derived from
empirical distribution functions. In particular, Smith [Smith, 2011] studies the convergence
of differentially private statistics to the Gaussian distribution; however, valid statistical tests
can be performed even if the noisy data are still far from Gaussian [Gaboardi et al., 2016,
Rogers and Kifer, 2017] (as long as a different approximating distribution is used). The
results of Wasserman and Zhou [Wasserman and Zhou, 2010] can be viewed as the rate at
which sample size overpowers fixed privacy noise when estimating the true data-generating
distribution. Again, valid statistical inference can be performed over differentially private
data even when the data do not overpower the privacy noise (for example when the variance
of the privacy noise is a constant fraction of the variance due to data sampling) [Gaboardi
et al., 2016, Rogers and Kifer, 2017, Karwa, 2016].

An important line of work focuses on record-level perturbations. That is, rather than
adding noise to sufficient statistics, each record is individually perturbed. This approach
generally leads to a higher loss of power since the amount of perturbation scales with the size
of the data. However, it can be used to provide stronger notions of local privacy where even
the data collector is not trusted [Duchi et al., 2018]. Duchi et al. [2018] study mechanisms
with optimal minimax rates under this setting. Since the noise scales with the sample size,
there is no issue with using asymptotics where n → ∞ (since it doesn’t cause the noise to
drop out of the equation). However, in this setting it is common to use Bayesian techniques
(e.g., MCMC) to fit models from the perturbed data [Goldstein and Shlomo, 2018, Polettini
and Arima, 2015] or EM for point estimates and rely on standard asymptotics for their
properties (such as unbiasedness) [Woo and Slavkovic, 2015].

3. Notation and Background

In this paper, we use the notation Lap(b) for the Laplace distribution with density function

f(x) = 1
2be

−|x|/b; it has mean 0 and standard deviation b
√
2. We use the notation Lapk(b)

for a vector of k independent Lap(b) random variables.

3.1. Concepts in Privacy. The main privacy definitions we will be considering are ε-
differential privacy and ρ-zcdp. This allows us provide examples of our framework using
different kinds of privacy noise.

Definition 3.1 (Dwork et al. [2006]). A randomized algorithm M satisfies ε-differential
privacy if for all possible outputs ω and pairs of datasets D1, D2 differing on the value of one
record, P (M(D1) = ω) ≤ eεP (M(D2) = ω), where the randomness comes from the algorithm
M .

Differential privacy controls how much influence one person’s data could have on the
output of a randomized algorithm [Dwork et al., 2006, Kifer and Machanavajjhala, 2014,
Machanavajjhala and Kifer, 2015]. A relaxation of differential privacy, known as ρ-zero mean
concentrated differential privacy (ρ-zcdp) [Bun and Steinke, 2016], is defined as:
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Definition 3.2 (ρ-zcdp [Bun and Steinke, 2016]). A randomized algorithm M satisfies
ρ-zero-mean concentrated differential privacy (ρ-zcdp) if for each pair of datasets D1, D2

that differ on the value of one record and all α > 1,

∑

ω∈range(M)

(
P (M(D1) = ω)

P (M(D2) = ω)

)α−1

P (M(D1) = ω) ≤ e(α−1)ρα.

Informally, it takes the privacy loss random variable, defined as P (M(D1)=ω)
P (M(D2)=ω) , and instead

of bounding it absolutely by eε (as in differential privacy), it allows the privacy loss to be a
random variable with constraints on its moments.

Some commonly used algorithms for both privacy definitions are based on the concept
of sensitivity. The Lp sensitivity of a function f , denoted by Senp(f), is the largest change
in f resulting from a change in one of the input records. More precisely,

Senp(f) = max
D1,D2

||f(D1)− f(D2)||p

where the max is over all pairs of datasets that differ on one record.
A very simple algorithm for enforcing ε-differential privacy is known as the Laplace

Mechanism [Dwork et al., 2006].

Lemma 3.3 (Laplace Mechanism [Dwork et al., 2006]). Given a function f , and a database
D, and a differential privacy parameter ε, the Laplace Mechanism, which releases the noisy
answer f(D) + Lap(Sen1(f)/ε), satisfies ε-differential privacy.2

On the other hand, for ρ-concentrated differential privacy, we can use the Gaussian
mechanism [Bun and Steinke, 2016].

Lemma 3.4 (Gaussian Mechanism [Bun and Steinke, 2016]). Given a function f , a database
D, and a zcdp parameter ρ, the Gaussian Mechanism, which releases the noisy answer

f(D) +N(~0,Σ =
Sen2

2(f)
2ρ I), satisfies ρ-zcdp.

Even though ρ-concentrated differential privacy is a relaxation of ε-differential privacy,

the two definitions are often compared by setting ρ = ε2

2 as this setting guarantees that an
ε-differential privacy algorithm satisfies ρ-zcdp [Bun and Steinke, 2016].

3.2. Other Notation. For a random variable X, we let FX denote its cumulative distri-
bution function (cdf), so that FX(t) = P (X ≤ t). We denote multidimensional random
variables in bold (e.g., X) and multidimensional scalars like ~t. The multidimensional cdf is
FX(~t) = P (X � ~t), where � is component-wise inequality.

One way to measure distance between distributions is a variant of the Kolmogorov-
Smirnov distance:

Definition 3.5 (KS(L) Distance). Let X and Y be d-dimensional random variables with
cumulative distribution functions FX and FY. The KS(L) distance dKS(L) is defined as:

dKS(L)(X,Y) = sup~t∈L |FX(~t)− FY(~t)|. When L = R
d, we simply write it as dKS.

2If f is vector valued, the noise is a vector of independent Laplace random variables.
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The set L is used to exclude certain points, such as points of discontinuity, which are
frequently omitted in statistics when measuring convergence to distributions [Ferguson,
1996]. We also use the total variation distance dV :

dV (FX, FY) = sup |P (FX ∈ S)− P (FY ∈ S)|.
When X and Y are both discrete or both have densities, dV is half the L1 distance between
X and Y.

We say X1,X2, . . . converge in distribution to Y if FXn(~t) → FY(~t) at all points ~t at
which FY is continuous.

Another way to measure distance between distributions is the Wasserstein metric. We
use its dual representation [Edwards, 2011]:

Definition 3.6 (Wasserstein distance). Let µ1 and µ2 be two Borel probability measures over
R
d such that EX∼µ1 ||X||2 < ∞ and EY∼µ2 ||Y||2 < ∞. Let Ω be the set of all real-valued 1-

Lipschitz continuous functions on R
d. Then dW (µ1, µ2) = supf∈ΩEX∼µ1f(X)−EY∼µ2f(Y).

When FX and FY are the corresponding cdfs of µ1 and µ2, we also write dW (FX, FY) as
dW (X,Y).

4. Desiderata for Approximating Distributions

In this section, we propose desiderata for methods that generate approximating distributions
of differentially private statistics: they should be general and compatible with existing limit
theorems.

4.1. Generality. There have been several approaches to generating asymptotic approxima-
tions of differentially private statistics. To compare them, consider the following example of

a chi-squared goodness-of-fit test, which tests if data did not come from a Multinomial(n0, ~θ)
distribution. The null hypothesis is that the data did come from this distribution. The
data points are k-dimensional vectors ~x1, ~x2, · · · , ~xn0 that are one-hot coded (in each vector
~xi, one component is 1 and the rest are 0 – this corresponds to the item that is sampled
from a Multinomial). Let Sn0 =

∑n0
i=1 ~xi, which is a Multinomial random variable. The null

hypothesis is that Sn0 was sampled from a Multinomial(n0, ~θ) distribution with a specific

value of the parameter ~θ. In the non-private case, one would commonly use the test statistic

φn0(Sn0) =
∑k

j=1
(Sn0 [j]−n0

~θ[j])2

n0
~θ[j]

and approximate its sampling distribution under the null

hypothesis (i.e. the assumption that ~θ is the true parameter) by calculating the distribution
of limn→∞ φn(Sn). Let F be the cumulative probability function of this limit. The quantity
1 − F (φn0(Sn0)) is therefore an estimate, under the null hypothesis, of seeing a value of
the test statistic as extreme as what was observed on the data at hand. This quantity is
called the p-value and if it is small, then this data is unlikely to be a sample from the

Multinomial(n0, ~θ) distribution.
For the sake of illustration, consider three different ways of making this statistic satisfy

differential privacy or ρ-zcdp:3

3Please note that we are not proposing any of those to be used as a test, we are merely proposing three
different situations to evaluate the suitability of previously proposed methods for generating approximating
distributions.
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Case 1: [Input Perturbation]. Set S̃n0 = Sn0 + Lapk(b1/ε) (that is, add k independent,
appropriately scaled Laplace random variables to Sn0 – for our purposes here, the

specific value of b1 is not relevant) and use the test statistic
∑k

j=1
(S̃n0 [j]−n0

~θ[j])2

n0
~θ[j]

. For

ρ-zcdp with ρ = ε2

2 one can use N(0, b21/ε
2Ik) noise instead of Laplace.

Case 2: [Output Perturbation]. Add noise directly to the test statistic:
∑k

j=1
(Sn0 [j]−n0

~θ[j])2

n0
~θ[j]

+

Lap(b2/ε). For ρ-zcdp (ρ = 1
2ε

2), use N(0, b22/ε
2) noise instead.

Case 3: [Hybrid]. Set S̃n0 = Sn0 + Lapk(b3/ε) and use the test statistic
∑k

j=1
(S̃n0 [j]−n0

~θ[j])2

n0
~θ[j]

+

Lap(b4/ε). Again, for ρ-zcdp with ρ = 1
2ε

2, replace Lap(b3/ε) and Lap(b4/ε) with

N(0, b23/ε
2) and N(0, b24/ε

2), respectively.

If we want to generate an approximating asymptotic distribution, there are two prior
proposals: compute the distribution of the test statistic as n → ∞ [Johnson and Shmatikov,
2013, Uhler et al., 2013] (Approach 1) or let n → ∞ while keeping ε

√
n constant [Gaboardi

et al., 2016, Rogers and Kifer, 2017] (Approach 2). Although the resulting distributions are
complicated, their key properties can be determined:

(1) In Case 1, under the null hypothesis, Approach 1 yields a chi-squared distribution with
k−1 degrees of freedom regardless of the variance of the added Gaussian or Laplace noise.
Prior work [Gaboardi et al., 2016] showed that Approach 1 produces an approximating
distribution with a much smaller first moment than the true sampling distribution and
noted that Approach 2 is much more accurate empirically.

(2) In Case 2, under the null hypothesis, Approach 1 results in the sum of a chi-squared
random variable (with k − 1 degrees of freedom) and a Laplace(b2/ε) (or Gaussian,
depending on the added noise) random variable. This approximation is intuitive and has
the same first moment as the sampling distribution.4 Meanwhile, Approach 2 diverges
since the noise scale approaches infinity (n → ∞ and n

√
ε →constant imply that ε → 0).

(3) In Case 3, under the null hypothesis, the same arguments as in Gaboardi et al. [2016]
show that Approach 1 again results in a distribution that underestimates the first
moment while Approach 2 again diverges.

These examples show that no single asymptotic regime will provide good approximation
to the sampling distributions of the statistics – even the first moment of the approximation
can be significantly different from that of the sampling distribution.

In particular, the “right” limit to use depends on the privacy enforcement mechanism
M (e.g., input perturbation or output perturbation). Thus, the choice of limit must depend
on the mechanism M .

Please note that in this specific example, the sampling distribution of the test statis-
tic under the null hypothesis can be exactly sampled from (e.g., sample a dataset from

Multinomial(n0, ~θ) and use it to compute the test statistic) and so the p-value 1−F (φn0(Sn0))
can be estimated using Monte Carlo techniques. In general this will not always be the case,
hence the need for approximating distributions.

4To see the result about equality of the first moment, replace (Sn0
− n0

~θ)/
√
n by a Gaussian having the

same first and second moments. Standard results in statistics [Ferguson, 1996] show that the result has a
chi-squared distribution with k − 1 degrees of freedom. Meanwhile the first moment is unchanged because it

only depends on the first and second moments of (Sn0
− n0

~θ)/
√
n.
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4.2. Compatibility with Limit Theorems. Setting up limits and using well-defined
asymptotic regimes is not the only way of creating approximating distributions. For example,
in all of the cases in Section 4.1, another method is to rewrite the test statistic as a joint

function of (1) the quantity (Sn0 − n0
~θ)/

√
n0 and (2) a Laplace (or Gaussian) random

variable. Then one could substitute (Sn0 − n0
~θ)/

√
n0 with its central limit approximation

N(~0,Σ).
For example, in Case 1 of Section 4.1, one could rewrite the test statistic as follows.

Let ~u = [u1, u2, . . . , uk] be a vector where ui = (Sn0 [i] − n~θ[i])/
√
n0 for all i and let

~V = [v1, . . . , vk] be a vector of independent Laplace(b1/ε) random variables. The test

statistic can then be written as
∑k

i=1(ui + vi/
√
n0)

2/~θ[i]. Since the Central Limit Theorem
approximates [u1, . . . , uk] by a multivariate Gaussian, the ad-hoc substitution approach
simply replaces ~u = [u1, . . . , uk] by a vector of Gaussians. The result is a generalized
chi-squared distribution [Gaboardi et al., 2016].

However, ad-hoc substitutions may not always be applicable, especially in cases where
multiple limit theorems are used to derive approximating distributions in the non-private
setting (in general, one must be careful about combining mathematical theorems and ad-hoc
substitutions in the same result).

One example is the chi-squared test of independence. Consider an r × c table of counts
Tn0 with n0 records over two variables R with r possible values and C with c possible values,
so that Tn0 [i, j] is the number of records in which R = i and C = j. Such a table is modeled
as a sample from a Multinomial(n0, θ) distribution where θ[i, j] is the probability of a record
with R = i and C = j. Thus

∑
i

∑
j T [i, j] = n0. Let us use the notation T [•, j] =∑i T [i, j]

and T [i, •] =
∑

j T [i, j] to represent column and row marginals, respectively. A typical

question to ask is whether the rows and columns of T are not independent (independence
test) [Gaboardi et al., 2016, Rogers and Kifer, 2017, Uhler et al., 2013, Yu et al., 2014, Wang
et al., 2015]. The non-private chi-squared statistic for this independence test is computed as

φn0(Tn0) =
∑r

i=1

∑c
j=1

(T [i,j]−E[i,j])2

E[i,j] where E[i, j] = T [i, •]T [•, j]/n0.

The null hypothesis is that the table is generated by any Multinomial distribution in
which rows and columns are independent. Thus, unlike in Section 4.1, even under the null
hypothesis, we do not know the true distribution over the data and hence cannot write down
or sample from the true sampling distribution of the test statistic.

Nevertheless under the null hypothesis of independence between rows and columns, this
test statistic converges in distribution to a chi-squared random variable with (r − 1)(c− 1)
degrees of freedom [Ferguson, 1996]. This result is obtained by using a combination of two

limits: the Central Limit Theorem (which approximates (T [i, j]− nθ[i, j])/
√
nθ[i, j] by a

Gaussian) and the fact that E[i, j]/n → θ[i, j] in probability. Slutsky’s theorem provides a

justification for combining the two, to show that (T [i, j]−nθ[i, j])/
√

nE[i, j]/n converges to
the same Gaussian distribution (additional algebra then yields the asymptotic distribution
of the test statistic [Ferguson, 1996]).

In the privacy-preserving case, differential privacy can be achieved by adding noise
directly to the table T [Gaboardi et al., 2016, Rogers and Kifer, 2017, Johnson and Shmatikov,
2013] or to the test statistic itself [Uhler et al., 2013, Yu et al., 2014].

However, ad-hoc substitution cannot be used to create an approximating distribution
for the differentially private test statistic because θ is unknown. In fact, existing techniques
must first estimate θ [Gaboardi et al., 2016, Rogers and Kifer, 2017], argue that the estimate
converges in probability to θ, and then use Slutsky’s theorem to merge this estimate with
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Table 1: List of Symbols in the Asymptotic Regime

n The variable to take to infinity; hypothetical sample size
n0 The true sample size
Sn A statistic computed from data with size n
φn The statistic we are interested in: φn0(Sn0)
hn Transformation for which hn(Sn) converges in distribution as n → ∞
Z limn→∞ hn(Sn) → Z in distribution
W An approximation to the distribution of Sn

M A privacy mechanism that can be applied to Sn

the Central Limit Theorem. Ad-hoc substitutions generally cannot be combined with limit
theorems like Slutsky’s theorem because they will not always guarantee that the necessary
conditions of the theorems are satisfied.

Thus, any method of constructing approximating distributions should be compatible
with other mathematical limit theorems. In particular, this suggests that the method of
constructing approximating distributions should be setting up a limiting process.

5. Recipe for Approximating Distributions

In this section, we present a recipe for generating approximating distributions for differentially
private statistics and present results about the relative accuracy that can be expected. Then
in Section 6 we present applications of these results.

To describe our setup, we consider two alternate worlds, the privacy-preserving world
and the non-private world. The data scientist has a planned analysis for the hypothetical
non-private world, but works in the privacy-preserving world and would like to modify the
planned analysis appropriately.
The privacy-preserving world. There is a dataset D = {~x1, . . . , ~xn0} of size n0 and a
statistic Sn0 is computed from it (for example Sn0 =

∑n0
i=1 ~xi). A differentially private or

ρ-zcdp mechanism M is applied to Sn0 – for example, M can add a Laplace random variable
Y to Sn0 .
The non-private world. In the non-private world, the analyst would have access to Sn0

directly and would be interested in some function φn0(Sn0) (for example, the chi-squared
statistic). To approximate the distribution of φn0(Sn0), statisticians often hypothesize “what
if the sample size were not a constant n0, but a variable n that can be manipulated.” Such
an approach provides approximation results, like the central limit theorem, which states that
there is a transformation hn(Sn) that converges in distribution to some random variable Z
as n → ∞ (for example hn(Sn) =

√
n(n−1Sn − ~µ) where ~µ is the mean for the i.i.d. samples

~xi’s). In our case, we assume hn invertible and piecewise continuous (with a finite number
of pieces).5

We summarize this notation in Table 1. In the non-private case, the statistician would
compute the limit: lim

n→∞
φn(Sn) and use the convergence in distribution of hn(Sn) to Z as

part of the computations. This limit would then be used as an approximation of φn0(Sn0).

5If hn is not one-to-one, one can often augment it so that it becomes one-to-one. For example, if hn(Sn) = |Sn−
n~µ|/√n, then hn is not one-to-one, but it can be extended to a function gn(Sn) = (|Sn −n~µ|/√n, sign(Sn −
n~µ)) that returns the sign as well.
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In the privacy-preserving case, we propose instead to compute the limit:

lim
n→∞

φn0(M(h−1
n0

(hn(Sn))))

and use it as an approximation to φn0(M(Sn0)), since the analyst only has access to M(Sn0)
instead of Sn0 . Another way to think of it is that if hn(Sn) converges in distribution to Z and
we would like to approximate hn0(Sn0) with Z, then we could approximate the distribution
of Sn0 as h−1

n0
(Z) and thus approximate φn0(M(Sn0)) with

φn0(M(h−1
n0

(Z)))).

As a simple toy example, let us revisit Example 1.1 where we have a dataset {x1, . . . , xn0}
of scalars. Here Sn0 is the non-private sum, φn0(Sn0) =

√
n0(n

−1
0 Sn0−µ)/σ is the statistic we

are interested in when creating non-private confidence intervals, hn(Sn) =
√
n(n−1Sn−µ)/σ

is the transformation of Sn whose sampling distribution can be approximated in the non-
private setting. M is the mechanism that adds Laplace noise Yε with scale 1/ε to Sn. The
recipe tells us that we should derive the approximation for the sampling distribution of
φn0(M(Sn0)) =

√
n0(n

−1
0 (Yε + Sn0) − µ)/σ from the limit (note that equality here means

equality in distribution):

lim
n→∞

φn0(M(h−1
n0

(hn(Sn)))) = lim
n→∞

φn0(M(h−1
n0

(∑n
i=1(xi − µ)

σ
√
n

)
))

= lim
n→∞

φn0(M

(
n0µ+

√
n0

∑n
i=1(xi − µ)√

n

)
)

= lim
n→∞

φn0

(
Laplace(1/ε) + n0µ+

√
n0

∑n
i=1(xi − µ)√

n

)

= lim
n→∞

Laplace(1/ε)

σ
√
n0

+

∑n
i=1(xi − µ)

σ
√
n

=
Laplace(1/ε)

σ
√
n0

+N(0, 1).

This yields the intuitively expected approximation for the sampling distribution of
√
n0(

Yε+Sn0
n0

−
µ)/σ. Thus, if one wanted to form confidence intervals for the mean, one would find an
α such that the interval [−α, α] contains 95% of the probability mass of the convolution
of a standard Gaussian with a Laplace random variable with scale 1/(ε

√
n0σ). The confi-

dence interval for µ is then [
Yε+Sn0

n0
− ασ√

n0
,
Yε+Sn0

n0
+ ασ√

n0
]. We defer more examples of this

computation for various applications to Section 6.
The next question to ask is how accurate is the approximation to the sampling dis-

tribution – if
√
n0(n

−1
0 Sn0 − µ)/σ is well approximated by the standard Gaussian, then is

the proposed approximation to the sampling distribution of
√
n0(n

−1
0 (Yε + Sn0)− µ)/σ also

accurate? Such questions are addressed next.

5.1. Relative Guarantees. We first study how the mechanism M affects distance between
random variables. For example, if the Kolmogorov-Smirnov distance dKS(X,Y) ≤ δ (or
total variation distance dV (X,Y) ≤ δ) then what can we say about dKS(M(X),M(Y))?
We will apply this result to answer the following question: if (in the non-private case) the
distribution of Sn0 is close to the distribution of some random variable Φ, then will the
distribution of M(Sn0) remain close to the distribution of M(Φ) (i.e., in the private case,
will M preserve distances relative to the non-private case)?



APPROXIMATING DISTRIBUTIONS UNDER DP 13

The first result is that if X and Y are random variables whose distributions are very
similar – their total variation distance dV (X,Y) ≤ δ, then even if the total variation distance
between M(X) and M(Y) is large, the Kolmogorov-Smirnov (KS) distance will be small.

Theorem 5.1. Let X and Y be two random variables using a common measure µ, so
that FX(~t) =

∫
~x�~t fX(~x) dµ(~x) and FY(~y) =

∫
~y�~t fY(~y) dµ(~y). Let M : Rk → R

` be a

randomized function associated with conditional probability g(· | ·) (so that P (M(~x) ∈ S) =∫
~z∈S g(~z | ~x) dν(~z)). Then

dKS(M(X),M(Y)) ≤ 2dV (X,Y)

where the probability is over the randomness in the function M and the random variables X
and Y.

The proof of Theorem 5.1 is in Appendix A.1.
In some cases the KS distance between X (the true sampling distribution) and Y

(its approximation) can be small even though the total variation distance between X and
Y is large. This often happens when one of the distributions is discrete while the other
is continuous. In this case, the Kolmogorov-Smirnov distance (restricted to some set L)
between M(X) and M(Y) depends strongly on the properties of M .

Theorem 5.2. Let L ⊆ R
k. Let X and Y be random variables over R

k whose cumulative
distribution functions can be written as

∫
~x�~t fX(~x) dµ1(~x) and

∫
~y�~t fY(~y) dµ2(~y), respec-

tively.6 Let M : Rk → R
` be a randomized function associated with conditional probability

g(· | ·) satisfying the following conditions:

• Denote H(~t | ~x) =
∫
~z�~t g(~z | ~x) dν(~z), where ν is the measure used to integrate over the out-

put space of M , and suppose there is a function ḡ† such that H(~t | ~x) =
∫
~s�~x ḡ

†(~t | ~s) dµ3(~s)

for some measure µ3.
•
∫
~s∈Rk 11{~s/∈L} dµ3(~s) = 0.

Then for all ~t ∈ R
`:

dKS(M(X),M(Y)) ≤ dKS(L)(X,Y) sup
~t∈L

||ḡ†(~t | ·)||1,

where ||ḡ†(~t | ·)||1 =
∫
~s∈Rk |ḡ†(~t | ~s)| dµ3(~s).

The proof of Theorem 5.2 is in Appendix A.2.
The use of possibly different base measures µ1, µ2, µ3 in Theorem 5.2 are necessary

because the sampling distribution X and its approximating distribution can be of various
types (e.g., discrete, continuous, mixture). Intuitively, the function ḡ† is the derivative of the
conditional CDF of M with respect to the second argument, and the blowup in distance is
controlled by the L1 norm of ḡ†. A simple corollary is that if M has a translation invariant
conditional CDF (e.g., if M adds an independent random noisy variable), then the blowup
in distance is at most 1:

Corollary 5.3. Using the notation of Theorem 5.2, if the conditional CDF g(· | ·) of M is
translation invariant (i.e. g(~z + ~t | ~x+ ~t) = g(~z | ~x)) and uses the same base measure as Y
(i.e. P (M(~x) � ~t) =

∫
~z�~t g(~z | ~x) dµ2(~z)). Then

dKS(L)(M(X),M(Y)) ≤ dKS(L)(X,Y).

6Note that µ1 and µ2 can be different measures, so, for example X can be discrete and Y can be continuous.
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The proof of Corollary 5.3 is in Appendix A.3.
This result allows us to re-use existing convergence results, such as the Berry-Esseen

inequality:

Theorem 5.4 Feller [1971]. Let X1, X2, . . . , be i.i.d. random variables with E[Xi] = µ,
E[|Xi − µ|2] = σ2 > 0, and E[|Xi − µ|3] = ρ < ∞. Let Y be a standard Gaussian random

variable. Then dKS(
∑n

i=1(Xi−µ)

σ
√
n

, Y ) ≤ 3ρ
σ3

√
n
.

Combing Corollary 5.3 with Theorem 5.4 immediately yields:

Corollary 5.5. Let X1, X2, . . . , be i.i.d. random variables with E[Xi] = µ, E[|Xi − µ|2] =
σ2 > 0, and E[|Xi − µ|3] = ρ < ∞. Let Y be a standard Gaussian random variable. Let Z1

and Z2 be independent Laplace(1/ε) random variables. Then dKS(
Z1+

∑n
i=1(Xi−µ)

σ
√
n

, Y + Z2

σ
√
n
) ≤

3ρ
σ3

√
n
.

Continuing our toy example from Example 1.1 whose sampling distribution was approx-
imated in the beginning of Section 5, Corollary 5.3 tells us that this approximation is as
close to the sampling distribution of the private statistic as the central limit theorem is close
to the sampling distribution of the non-private statistic. Meanwhile, Corollary 5.5 provides
the rate of convergence.

Similar results can be obtained for the Wasserstein metric. For these results, we view
a differentially private algorithm as a function of two variables: f(X,B). The first is a
k-dimensional vector corresponding to the input (for example, it could contain the mean
and estimated standard deviation of the data, or it could contain the value of a non-private
chi-squared statistic). The second is a finite-dimensional random variable (e.g., a sequence
of random bits that guide the operation of the algorithm).

Lemma 5.6. Let M be a mechanism that satisfies ε-differential privacy and that works
as follows. On input X ∈ R

k, M samples a finite-dimensional random vector B from a
distribution µb and then returns f(X,B) for some function f : Rk ×R

b → R
`. Let X and Y

be random vectors in R
k having distributions µ1 and µ2, respectively. If all of the following

conditions are satisfied:

• f is L-Lipschitz continuous in its first argument (i.e. X)

• E[||f(~0,B)||2] < ∞
• E[||X||2] < ∞
• E[||Y||2] < ∞
then the following holds: dW (X,Y) ≤ δ ⇒ dW (M(X),M(Y)) ≤ Lδ.

For proof see Appendix A.4.
Clearly, if M adds independent random noise (i.e. f(X,B) = X + B) then f is 1-

Lipschitz continuous. This allows us to re-use convergence results based on Stein’s method,
such as the following.

Theorem 5.7 Ross [2011]. Let X1, X2, . . . , be i.i.d. random variables with E[Xi] = µ,
E[|Xi − µ|2] = σ2 > 0, E[|Xi − µ|3] = ρ3 < ∞, and E[|Xi − µ|4] = ρ4 < ∞. Let Y be a

standard Gaussian random variable. Then dW (
∑n

i=1(Xi−µ)

σ
√
n

, Y ) ≤ 1ρ3
σ3

√
n
+

√
2ρ4√
πnσ2 .

Combining Lemma 5.6 and Theorem 5.7, we get the following guarantee for the approxi-
mating distribution of a noisy sum that arises from the proposed recipe:
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Corollary 5.8. Let X1, X2, . . . , be i.i.d. random variables with E[Xi] = µ, E[|Xi − µ|2] =
σ2 > 0, and E[|Xi − µ|3] = ρ < ∞. Let Y be a standard Gaussian random variable. Let Z1

and Z2 be independent Laplace(1/ε) random variables. Then dW (
Z1+

∑n
i=1(Xi−µ)

σ
√
n

, Y + Z2

σ
√
n
) ≤

1ρ3
σ3

√
n
+

√
2ρ4√
πnσ2 .

5.2. Degradation due to Postprocessing. The results of Section 5.1 bound the degra-
dation in approximation quality when M is applied to a random variable (compared to when
M is applied to its approximation).

However, a data scientist is most often interested in some function φn0(M(Sn0)) and
would like to know if applying φn0 will preserve the quality of the approximation. For some
simple operations, the approximation is preserved but for others it can become arbitrarily
bad. Such considerations can inform the design of privacy-preserving analysis. In the
following theorem we consider common operations used to create test statistics (for example,
in chi-squared testing [Gaboardi et al., 2016, Rogers and Kifer, 2017], the postprocessing
would include pointwise squaring followed by summation). In this theorem we now interpret
X to be M(Sn0), W to be the approximation of Sn0 , and Y to be M(W).

Theorem 5.9. Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be k-dimensional random
variables and suppose dKS(L)(X,Y) ≤ δ then:

1. If φ is the coordinate projection operator that selects a fixed subset of the components of
a vector (e.g., φ(~t) = (t2, t4, t5)) then dKS(L)(φ(X), φ(Y)) ≤ δ.

2. If φ is the sum of coordinates (i.e. φ(~t) = t1 + t2 + · · ·+ tk) then there exist X and Y
such that dKS(L)(X,Y) ≤ δ but dKS(L)(φ(X), φ(Y)) = 1.

3. If φ(~t) ≡ c~t+ ~a, where c is a scalar, then dKS(L)(φ(X), φ(Y)) ≤ δ.

4. Even if φ is continuous, is one-to-one, and preserves partial orders (i.e. ~t � ~s ⇒ φ(~t) �
φ(~s)) then there still exist X and Y such that dKS(L)(X,Y) ≤ δ but dKS(L)(φ(X), φ(Y)) =
1.

The proof is in Appendix A.5.
The consequence of the theorem is the following. If the distribution of a random vector

X is close (in the KS distance) to the distribution of a random vector Y then any marginal
of the variables in X is equally close to the corresponding marginal of Y. However, the sum
of the random variables

∑
Xi might have a significantly different distribution (in the KS

distance) than
∑

Yi.
Thus, in general, when applied to statistics, the distribution of a random variable W

could be a good approximation of the sampling distribution of Sn0 (in the sense of the
KS-distance), however this does not guarantee that φn0(W) is a good approximation to
φn0(Sn0) (unless W is close to Sn0 under a stronger metric). Despite this negative result,
simulations (e.g., in Section 6.1) suggest that the worst-case is pathological. However, from
a purely statistical perspective, output perturbation (designing a mechanism that directly
releases a noisy version of φn0(Sn0)) appears preferable to input perturbation (i.e. releasing
a noisy version of Sn0 and then applying φn0 to the result) as there is no post-processing to
worry about.

For the Wasserstein distance dW , the following postprocessing result is almost trivial:

Lemma 5.10. If φ is L-Lipschitz continuous then dW (X,Y) ≤ δ ⇒ dW (φ(X), φ(Y)) ≤ Lδ.
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The coordinate projection operation is 1-Lipschitz continuous and so preserves the
Wasserstein distance. The summation of coordinates is

√
d-Lipschitz continuous (where d is

the dimensionality) and so blows up the Wasserstein distance by at most
√
d, unlike the KS

distance which has no such guarantee. However, an operation such as squaring (which is
used in chi-squared testing) is not Lipschitz continuous and so could distort two distributions
arbitrarily. In such cases even stronger notions of distances are needed. We will examine
such cases in Section 6.

6. Applications

We present a variety of applications and show how to apply the recipe for approximating
distributions in this section. We also study relative guarantees and discuss research directions
in non-private convergence rates that are needed.

6.1. Chi-squared Goodness-of-fit Test with Input Perturbation. We use the same
setup and notation as in Section 4.1.

In the non-private world, a statistician would typically compute the test statistic

φn0(Sn0) =
∑k

j=1
(Sn0 [j]−n0

~θ[j])2

n0
~θ[j]

. If Sn0 really is generated by Multinomial(n0, ~θ), the Central

Limit Theorem states that limn→∞
Sn−n~θ√

n
converges in distribution to the multivariate

Gaussian N(~0, diag(~θ)− ~θ~θt) and it follows that limn→∞ φn(Sn) converges in distribution to
a chi-squared random variable with k − 1 degrees of freedom [Ferguson, 1996]. Thus the
analyst computes the probability that a chi-squared random variable exceeds the actual

value of
∑k

j=1
(Sn0 [j]−n0

~θ[j])2

n0
~θ[j]

. If this probability (i.e. the p-value) is small enough (e.g.,

≤ 0.01), then the analyst could conclude that the data were probably not generated by

Multinomial(n0, ~θ).
In this example, we consider the use of Gaussian noise to perturb the table to protect

privacy (as in Gaboardi et al. [2016]). Specifically, to satisfy ρ-zcdp, a mechanism M

could add N(~0, (1/ρ)I) noise to Sn0 (on the other hand, if one wanted to use ε-differential
privacy, one could use Laplace noise instead). The data analyst would only be given access

to M(Sn0) = Y + Sn0 ≡ S̃n0 with Y ∼ N(~0, (1/ρ)I). The analyst can then compute

φn0(S̃n0) ≡
∑k

j=1
(S̃n0 [j]−n0

~θ[j])2

n0
~θ[j]

.

Lemma 6.1. The above computation of φn0(S̃n0) satisfies ρ-zcdp.

Proof. Modifying the record of one person’s data would lead to one cell from Sn0 increasing

by one and another cell decreasing by one. So Sen2(Sn0) =
√
2. Then, by the Gaussian

Mechanism in Lemma 3.4, adding noise from N(~0, (1/ρ)I) to Sn0 would satisfy ρ-zcdp. The

computation of φn0(S̃n0) is just post-processing on S̃n0 , therefore it also satisfies ρ-zcdp by
the post-processing property of zero-concentrated differential privacy.
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We still need an approximation to φn0(S̃n0) under the null hypothesis. In our proposed
scheme, we take the limit of φn0(M(h−1

n0
(hn(Sn)))). We break this computation into simple

steps:

• hn(Sn) = (Sn − n~θ)/
√
n.

• h−1
n0

(hn(Sn)) = n0
~θ +

√
n0√
n
(Sn − n~θ).

• M(h−1
n0

(hn(Sn))) = Y + n0
~θ +

√
n0√
n
(Sn − n~θ).

• φn0(M(h−1
n0

(hn(Sn)))) =
k∑

i=1

(
Y[i]√
n0

+ Sn[i]−n~θ[i]√
n

)2
1
~θ[i]

.

Now, taking the limit as n → ∞ and using Slutsky’s theorem [Ferguson, 1996] we get

lim
n→∞

φn0(M(h−1
n0

(hn(Sn)))) = lim
n→∞

k∑

i=1

(
Y[i]√
n0

+
Sn[i]− n~θ[i]√

n

)2
1

~θ[i]
=

k∑

i=1

(
Y[i]√
n0

+A[i]

)2 1

~θ[i]

in distribution, where Y ∼ N(~0, (1/ρ)I) and A ∼ N(~0, diag(~θ)− ~θ~θt).

To summarize, a data analyst computes a noisy chi-square statistic
k∑

i=1

(
Y[i]√
n0

+ Sn[i]−n~θ[i]√
n

)2
1
~θ[i]

and can estimate its sampling distribution in two ways.

• The first is to use the approximation
∑k

i=1

(
Y[i]√
n0

+A[i]
)2

1
~θ[i]

, whose tails can be numerically

evaluated [Gaboardi et al., 2016] and ends up as equivalent to the intuitive process of

replacing the true data
Sn0 [i]−n0

~θ[i]√
n0

with its Gaussian approximation.

• The second method is to directly sample from the sampling distribution: sample a new

copy Sn0 from Multinomial(n0, ~θ), fresh noise Y, and compute Y[i]√
n0

+
Sn0 [i]−n0

~θ[i]√
n0

. Many

samples are required to get an estimate of the tail probabilities under the null hypothesis.

The first method is much faster, but an important question is how accurate it is in practice.

Corollary 5.3 and Lemma 5.6 imply that if the distribution of the true data
Sn0−n0

~θ√
n0

is

well-approximated by the Gaussian A then the distribution of the noisy data ( Y√
n0

+
Sn0−n0

~θ√
n0

)

is approximated by the noisy Gaussian ( Y√
n0

+A), in Wasserstein and Kolmogorov-Smirnov

distances, without loss in approximation quality. However, squaring the terms and subsequent
summation can decrease the approximation quality under the Kolmogorov-Smirnov and
Wasserstein distances in the worst case (e.g., Theorem 5.9).

In practice [Wang et al., 2015, Gaboardi et al., 2016], the resulting approximating
distribution for the noisy chi-square statistic appears accurate enough for hypothesis testing.
This suggests that an even stronger notion of convergence is occurring. One possibility
is to use several measures of the distance between two random variables X and Y as
follows [Gaunt, 2015]. For example, let H` be a class of bounded functions that are `-times
continuously differentiable with bounded derivatives and let G` be a class of functions
that are `-times continuously differentiable with derivatives that are bounded by a specific
polynomial. For instance, G` could consist of the single function z → z2 that performs
squaring. Following Gaunt [2015], define:

dH`
(X,Y) = sup

h∈H
E[h(X)]− E[h(Y)]
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dH`G`
(X,Y) = sup

h∈H,g∈G
E[h(g(X))]− E[h(g(Y))].

Clearly, if dH`G`
(X,Y) ≤ δ then dH`

(g(X), g(Y)) ≤ δ. Such a family of metrics would
neatly capture worst case degradation due to postprocessing in the non-private case.

In the privacy preserving case, we are interested in a statistic φ of the privacy-
preserving data M(X) that is produced by a mechanism. We would like a similar type
of guarantee: if dH`G`

(X,Y) ≤ δ then dH`G`
(M(X),M(Y)) ≤ δ′ (for some δ′) and

dH`
(φ(M(X)), φ(M(Y))) ≤ δ′′ (for some δ′′). It appears that additional restrictions on the

class of functions G` would be required. For example,

Lemma 6.2. Let M be a mechanism that adds some random variable Z to its input. Suppose
that φ ∈ G` and that G` is closed under translation of its input (i.e., if g ∈ G then for every
c, the function x → g(x+ c) belongs to G`) then:

dH`G`
(X,Y) ≤ δ ⇒ dH`G`

(M(X),M(Y)) ≤ δ ⇒ dH`
(φ(M(X)), φ(M(Y))) ≤ δ.

The proof can be found in Appendix A.6
Nonprivate multivariate convergence results of the necessary form are an open area of

research for many applications [Gaunt, 2015].
To facilitate the understanding for our recipe, we create several toy simulations and

show the results in Figures 4 through 8. In each case, we set θ0 = (0.1, 0.1, 0.3, 0.5). Figure
4 plots the sampling distribution of the non-private chi-squared statistic (with n0 = 10, 000)
against the standard asymptotic approximation. Figure 7 shows the same plots but for
n = 2, 000. In both cases, the asymptotic approximation agrees well with the sampling
distributions. Figures 5 and 6 show the corresponding results for the privacy-preserving case
(ρ-zCDP) with ρ = 0.001 and 0.01, respectively. We see that our approximating distribution
matches the true sampling distribution much better than the naive approximation (i.e. the
asymptotic distribution when n → ∞). Visually, the approximation is as good as in the
non-private case (Figure 4). We note that the naive approximation gets better when the
noise is smaller relative to the sample size (e.g., ρ = 0.01 when n0 = 10, 000). We can see
similar results when comparing Figures 7 and 8. In this case the sample size is smaller
but the proposed approximation is still accurate while the naive asymptotic distribution is
inaccurate, even for ρ = 0.01.

We next look at how these approximations affect hypothesis testing. We use the same
setting as Figures 7 and 8.

Example 6.3. Consider the toy numerical example in Table 2a. Setting ρ = 0.01 we
can achieve ρ-zCDP by adding N(~0, (1/ρ)I) to the data. One such realization is shown

in Table 2b. To test goodness of fit to the Multinomial(n = 2, 000, ~θ0 = (0.1, 0.1, 0.3, 0.5))
distribution, we compute the chi-squared statistics over both tables. The chi-squared statistic
in Table 2a is equal to 3.557 with a corresponding p-value of 0.313 (when approximating
the sampling distribution as χ2(3)). Note that the original table therefore does not provide
much evidence against the null hypothesis. On the other hand, the chi-squared statistic in
Table 2b is equal to 8.186. If we use the naive asymptotic distribution (i.e., χ2(3)) it leads
to an estimated p-value of 0.042 because this approximation has much smaller tails than the
true sampling distribution. But if we use the proposed approximating distribution, we get
an estimated p-value of 0.12 for Table 2b. This illustrates that the privacy noise increases
variability in the p-values. However, since the approximating distribution closely matches
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the sampling distribution under the null hypothesis (Figure 8), the p-value is correct (e.g.,
setting the rejection threshold at 0.05 will result in a Type I error of approximately 0.05).

197 201 637 965

(a) Original table

186.6 219.5 646.9 958.5

(b) 0.01-zCDP table

Table 2: A Toy Example on Goodness-of-fit Test

6.2. Chi-squared Goodness-of-fit Test with Output Perturbation. We now consider
the same setup as in Sections 4.1 and 6.1, but using output perturbation instead of input
perturbation.

To protect ε-differential privacy using output perturbation, a privacy mechanism M
could add a random variable Y from the distribution Lap(Sen1(φn0)/ε) to φn0(Sn0) ≡
∑k

j=1
(Sn0 [j]−n0

~θ[j])2

n0
~θ[j]

to obtain a noisy φ̃n0 . The sensitivity is:

Lemma 6.4. Sen1(φn0) =
1
n0

maxu,v:u 6=v

(
2n0−1
~θ[u]

+ 2n0+1
~θ[v]

)
for the chi-squared goodness of

fit test statistic φn0.

The proof of Lemma 6.4 is in Appendix A.7.7

Thus, we are interested in an approximating distribution (under the null hypothesis)

to φ̃n0(Sn0) = φn0(Sn0) + Y with Y ∼ Lap(Sen1(φn0)/ε). In our proposed scheme, we take
the limit of M(φn0(h

−1
n0

(hn(Sn)))). We break this computation into simple steps:

• hn(Sn) = (Sn − n~θ)/
√
n.

• h−1
n0

(hn(Sn)) = n0
~θ +

√
n0√
n
(Sn − n~θ).

• φn0(h
−1
n0

(hn(Sn))) =
∑k

i=1

(
Sn[i]−n~θ[i]√

n

)2/
~θ[i].

• M(φn0(h
−1
n0

(hn(Sn)))) =

[∑k
i=1

(
Sn[i]−n~θ[i]√

n

)2/
~θ[i]

]
+ Y .

Now, taking the limit as n → ∞, we get

lim
n→∞

M(φn0(h
−1
n0

(hn(Sn)))) = lim
n→∞




k∑

i=1

(
Sn[i]− n~θ[i]√

n

)2/
~θ[i]


+ Y = χ2

k−1 + Y

since the term in brackets is known to converge to χ2
k−1, a chi-squared random variable with

k− 1 degrees of freedom [Ferguson, 1996]. Thus the approximating distribution is the convo-
lution of a chi-square and a Laplace random variable (a similar approximation to what was
proposed in Uhler et al. [2013] for the different problem of chi-squared independence testing).
Corollary 5.3 and Lemma 5.6 then show that under the null hypothesis, this approximation
is as close to the true sampling distribution of φ̃n0 as the nonprivate approximation is to
φn0 .

One advantage of using this approximating distribution instead of the true distribution

under the null hypothesis is that the approximating distribution does not use ~θ at all, so

7For independence testing, which uses a slightly different test statistic, the sensitivity can be found in Uhler
et al. [2013].
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one could develop a numerical algorithm for computing the tails of that distribution (a
one-dimensional integral). In general, this could be faster than sampling from the true

distribution (which would entail generating multiple datasets from ~θ and computing the

test statistic φ̃n0 for each one – since a large number of samples would be needed to get an
estimate for the tails of the distribution).

6.3. Chi-squared Test of Independence with Input Perturbation. We use the same
setup for independence testing as Section 4.2.

Following the same notation, the row marginals Tn0 [1, •], Tn0 [2, •], . . . , Tn0 [r, •] are mod-

eled as a Multinomial random variable U ∼ Multinomial(n0, π
(1)), where π(1) is unknown.

Similarly, the column marginals Tn0 [•, 1], Tn0 [•, 2], . . . , Tn0 [•, c] are modeled as a Multinomial

random variable V ∼ Multinomial(n0, π
(2)) where π(2) is unknown.

The null hypothesis of independence between U and V is that the entire Tn0 is generated

from a Multinomial(n0, ~θ) distribution in which ~θ has the form ~θ = vec (π(1)(π(2))t) for some

unknown π(1) and π(2) (so the alternate hypothesis is that R and C are correlated and so

Tn0 is generated by some other Multinomial with row marginals Multinomial(n0, φ
(1)) and

column marginals Multinomial(n0, φ
(2))).

In the non-private world, an analyst using the chi-square test of independence would

first compute estimators for the parameters π(1) and π(2) as follows: π
(1)
i = T [i, •]/n0

and π
(2)
j = T [•, j]/n0. Then they would compute estimated cell counts under the null

hypothesis: E[i, j] = T [i, •]T [•, j]/n0. Finally, they would compute the chi-squared statistic:

φn0(Tn0) =
∑r

i=1

∑c
j=1

(T [i,j]−E[i,j])2

E[i,j] . Under the null hypothesis, the asymptotic distribution

of the chi-squared statistic is a chi-squared random variable with (r − 1)(c− 1) degrees of
freedom [Ferguson, 1996]. The p-value can be approximated as the probability that the
chi-squared random variable exceeds φn0(Tn0). A low p-value (e.g., ≤ 0.01) indicates strong
evidence against the null hypothesis.

In the non-private case, the convergence is proved in two steps. In the first step, one

proves that φn0(Tn0) =
∑r

i=1

∑c
j=1

(T [i,j]−E[i,j])2

n~θ[i.j]
converges to the chi-square distribution

with (r − 1)(c− 1) degrees of freedom. The second step uses Slutsky’s theorem and the fact

that E[i, j]/n converges to ~θ[i, j] in probability to conclude that ~θ[i, j] can be replaced in
the denominator with E[i, j]/n without affecting the nonprivate asymptotic distribution.

One way to perform independence testing with ρ-zcdp and input perturbation is the
following: a mechanism M can add N(~0, (1/ρ)I) to Tn0 , as justified by the Gaussian

Mechanism in Lemma 3.4 and the fact that Sen2(Tn0) =
√
2. The data analyst can be

given access to M(Tn0) = Tn0 + Y ≡ T̃n0 with Y ∼ N(~0, (1/ρ)I). The analyst can then

compute φn0(T̃n0) ≡
∑r

i=1

∑c
j=1

(T̃ [i,j]−Ẽ[i,j])2

Ẽ[i,j]
with Ẽ[i, j] = T̃ [i, •]T̃ [•, j]/T̃ [•, •]. We also

define θ̃[i, j] = Ẽ[i, j]/n0.

We still need the approximating distribution for φn0(T̃n0) under the null hypothesis. In
our proposed scheme, we take the limit of φn0(M(h−1

n0
(hn(Tn)))). We break this computation

into simple steps:

• hn(Tn) = (Tn − n~θ)/
√
n.

• h−1
n0

(hn(Tn)) = n0
~θ +

√
n0√
n
(Tn − n~θ).

• M(h−1
n0

(hn(Tn))) = Y + n0
~θ +

√
n0√
n
(Tn − n~θ).
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• φn0(M(h−1
n0

(hn(Tn)))) =
r∑

i=1

c∑
j=1

(
Y[i,j]+n0

~θ[i,j]+
√

n0√
n
(Tn[i,j]−n~θ[i,j])−n0θ̃[i,j]

)2

n0θ̃[i,j]
.

Now, taking the limit as n → ∞ and using Slutsky’s theorem [Ferguson, 1996] we get

lim
n→∞

φn0(M(h−1
n0

(hn(Tn)))) = lim
n→∞

r∑

i=1

c∑

j=1

(
Y[i, j] + n0

~θ[i, j] +
√
n0√
n
(Tn[i, j]− n~θ[i, j])− n0θ̃[i, j]

)2

n0θ̃[i, j]

=

r∑

i=1

c∑

j=1

(Y[i, j] +
√
n0A[i, j])2

n0θ̃[i, j]

in distribution, where Y ∼ N(~0, (1/ρ)I) and A ∼ N(~0, diag(~θ)− ~θ~θt). The last equality is

achieved partially by limn→∞ θ̃ = ~θ.
Note that this limit is equivalent to taking φn0(T̃n0) = φn0(Tn0 + Y) (where Y ∼

N(~0, (1/ρ)I) and taking the limit as n0 → ∞ and n0ρ →constant, as proposed by Rogers
and Kifer [2017].

Thus there are two ways of approximating the tails of the resulting statistic:

• One can estimate the parameter ~θ and plug it into the approximating distribution. Then
one can numerically work out the tails of the above distribution (as it is a polynomial of
Gaussians) or one can sample from it many times to estimate the tails.

• On the other hand, following Gaboardi et al. [2016], one could estimate θ̃[i, j] = Ẽ[i, j]/T̃ [•, •]
(as long as none of the noisy counts are negative), or one could use more complicated
estimation methods [Gaboardi et al., 2016, Rogers and Kifer, 2017], then sample m

datasets T
(1)
n0 , . . . , T

(m)
n0 from the Multinomial(n0, θ̃) distribution, run M on each one to

get T̃
(1)
n0 , . . . , T̃

(m)
n0 , and compute φn0(T̃

(1)
n0 ), . . . , φn0(T̃

(m)
n0 ). The p-value (probability of

incorrectly declaring that rows and columns are not independent) is

∣∣∣
{
i: φn0 (T̃

(i)
n0

)≥φn0 (T̃n0 )
}∣∣∣

m .

In both of these cases, one can approximate the tails of the distribution of φn0(T̃n0) by
sampling from a parametrized distribution whose parameters are estimated from the privacy-
preserving data. This turns out to be problematic. For example, in the second method, we

are approximating Tn0 ∼Multinomial(n0, ~θ) as a random variable T ′
n0

∼Multinomial(n0, θ̃)
distribution. For relative guarantees, we would be interested in statements such as if
dW (Tn0 , T

′
n0
) < δ, then how does it compare to dW (M(Tn0),M(T ′

n0
)) and dW (φn0(M(Tn0))

, φn0(M(T ′
n0
))
)
?

The difficulty is that the randomness in M is correlated with T ′
n0

(because its distribution

is, by definition, Multinomial(n0, θ̃) and θ̃ was estimated from M(Tn0)), so that our prior
results do not apply. That is, our results are of the form d(X,Y ) ≤ δ ⇒ d(M(X),M(Y )) ≤ δ
when M and Y are independent. We leave open the problem of relative guarantees under
these types of correlation. However, we do note that there is a workaround that we discuss
in the next section.

6.4. Alternative Chi-squared Test of Independence with Input Perturbation.
One alternative to the approach in the previous section is to divide the privacy bud-
get into two pieces: ρ = ρ1 + ρ2. Using ρ1 we estimate the Multinomial parameter as follows.
First we obtain row marginals R[i] = Tn0 [i, •] +N(0, 2/ρ1) and column marginals C[j] =
Tn0 [•, j]+N(0, 2/ρ1). We normalize the row and column marginals so that they add up to n0
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and are nonnegative. Then we set θ̃[i, j] = R[i]
n0

C[j]
n0

. Then we obtain noisy table counts using

ρ2 of the privacy budget: T̃n0 = M(Tn0) = Tn0 +N(~0, (1/ρ2)I). The test statistic remains

the same: φn0(T̃n0) ≡
∑r

i=1

∑c
j=1

(T̃n0 [i,j]−Ẽ[i,j])2

Ẽ[i,j]
with Ẽ[i, j] = T̃n0 [i, •]T̃n0 [•, j]/T̃n0 [•, •].

Let T ′
n0

be a random variable following the Multinomial(n0, θ̃) distribution. Now θ̃
is independent of M . To obtain relative guarantees, we note that the postprocessing (i.e.
computation of φn0 from its input) is a rational function in which the numerator is a quartic
polynomial and the denominator is a quadratic polynomial of the input to φn0 . Our strategy

will be to define a secondary test statistic φ′
n0

as φ′
n0
(T̃n0) ≡

∑r
i=1

∑c
j=1

(T̃n0 [i,j]−Ẽ[i,j])2

n0
~θ[i,j]

,

which uses the true (unknown) parameter in the denominator and then show that closeness
between the distributions of Tn0 and T ′

n0
⇒ closeness between M(Tn0) and M(T ′

n0
) ⇒

closeness between φ′
n0
(M(Tn0)) and φ′

n0
(M(T ′

n0
)) ⇒ closeness between φn0(M(Tn0)) and

φn0(M(T ′
n0
)) with high probability.

Since φ′ is now just a quartic polynomial in its input, following the discussion in Section
6.1, we can define H` to be the set of bounded functions that are `-times continuously
differentiable with bounded derivatives and G` to be the quartic polynomials. One starting
point is to require the stronger convergence condition:

dH`G`
(Tn0 , T

′
n0
) ≡ sup

h∈H`,g∈G`

E[h(g(Tn0))]− E[h(g(T ′
n0
))] ≤ δ

(note that establishing such type of multivariate convergence results is a current area of
research [Gaunt, 2015]). Lemma 6.2 then implies that

dH`G`
(M(Tn0),M(T ′

n0
)) ≤ δ

and
dH`

(φ′
n0
(M(Tn0)), φ

′
n0
(M(T ′

n0
))) ≤ δ.

Now note that under the null hypothesis of independence between rows and columns,

Ẽ[i, j]/n0 converges to ~θ[i, j] almost surely so that there exist small constants γn0 > 0 and

βn0 > 0 such that Ẽ[i, j]/n0 ∈ [(1− γn0)
~θ[i, j], (1 + γn0)

~θ[i, j]] for all i, j with probability at

least 1− βn0 . Thus, assuming ~θ[i, j] > 0 for all i, j, the ratio φ′
n0
(T̃n0)/φn0(T̃n0) is bounded

by 1± γn0 with probability at least 1−βn0 . Thus the following result will establish closeness
between φn0(M(Tn0)) and φn0(M(T ′

n0
)) with high probability (i.e. conditioned on the high

probability event that Ẽ[i, j]/n0 is close to ~θ[i, j]).

Lemma 6.5. Let H be a subset of the 1-Lipschitz continuous functions and let X and Y be
random variables and φ′ be a positive function such that dH(φ′(X), φ′(Y )) ≡ suph∈H E[h(φ′(X))]−
E[h(φ′(Y ))] ≤ δ and max(E[|φ′(X)|], E[|φ′(Y )|]) ≤ µ for some µ. Let φ be another function
with the same domain as φ′. For any γ ∈ (0, 1), define Bγ =

{
~t : φ(~t)/φ′(~t) ∈ [1− γ, 1 + γ]

}

and let β1 ≥ max(P (X /∈ Bγ), P (Y /∈ Bγ)) and β2 ≥ max(E[|φ′(X)|1[X/∈Bγ ]], E[|φ′(Y )|1[Y /∈Bγ ]]).

Then when we condition on X and Y being in Bγ, dH(φ(X) | Bγ , φ(Y ) | Bγ) ≤ 2γµ
1−β1

+
δ

1−β1
+ 2β2

1−β1
.

The proof of Lemma 6.5 is in Appendix A.8.
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6.5. Kolmogorov-Smirnov Test with ε-Differential Privacy. In the one sample Kolmogorov-
Smirnov test, we have i.i.d. samples x1, · · · , xn0 from some unknown distribution F , a known
continuous distribution F0 and would like to test the hypothesis F = F0.

Define an empirical c.d.f. by Fn0(x) =
1
n0

∑n0
i=1 I(xi ≤ x), then in the non-private world,

the test statistic is computed as
√
n0 sup

x
|Fn0(x)−F (x)|. Under the null hypothesis F = F0,

the test statistic converges in distribution to the Kolmogorov-Smirnov distribution when n0

goes to infinity. The c.d.f. of KS distribution is H(t) = 1− 2
∑∞

i=1(−1)i−1e−2i2t. We then
compute a p-value. A small p-value (e.g., < 0.01) indicates strong evidence against the null
hypothesis.

Under the private setting, we let Sn0 = sup
x

|Fn0(x)− F (x)|. A change in the value of

one record increases or decreases Fn0(x) (for any x) by at most 1/n0, so the sensitivity
of Sn0 is 2/n0 since the maximum could be achieved at a different value of x. To achieve
ε-differential privacy, a privacy mechanism M could add a random variable Y from the
distribution Lap(2/(n0ε)) to Sn0 to obtain S̃n0 , as justified by Lemma 3.3. The statistic we
are interested in is φn0(Sn0) =

√
n0Sn0 . We then define hn(Sn) =

√
nSn to indicate we are

interested in the Kolmogorov-Smirnov approximation.
To compute the asymptotic approximation to φn0(S̃n0), in our proposed scheme, we

take the limit of φn0(M(h−1
n0

(hn(Sn)))). We break the computation into simple steps:

• hn(Sn) =
√
n sup

x
|Fn(x)− F (x)|.

• h−1
n0

(hn(Sn)) =
√
n√
n0

sup
x

|Fn(x)− F (x)|.

• M(h−1
n0

(hn(Sn))) =
√
n√
n0

sup
x

|Fn(x)− F (x)|+ Y .

• φn0(M(h−1
n0

(hn(Sn)))) =
√
n sup

x
|Fn(x)− F (x)|+√

n0Y .

Now, taking the limit as n → ∞, we get

lim
n→∞

φn0(M(h−1
n0

(hn(Sn)))) = lim
n→∞

√
n sup

x
|Fn(x)− F (x)|+√

n0Y = K +
√
n0Y

where K is a Kolmogorov-Smirnov random variable and Y is a Lap(2/(n0ε)) random variable.
As with all output perturbation methods, Corollary 5.3 and Lemma 5.6 show that if the

sampling distribution of the test statistic (under the null hypothesis) is well approximated
(either in KS distance or Wasserstein distance) by the KS distribution, then the noisy test
statistic is approximated just as well by the approximation proposed by the recipe.

7. Conclusions

In this paper we studied a simple recipe for approximating the distribution of a statistic
that is perturbed for privacy reasons. For the approximating distributions, we studied
relative convergence guarantees of the form: if the non-private sampling distribution is well
approximated by a classical statistical distribution, then how well (relative to the non-private
case) is the sampling distribution of the privacy-preserving statistic approximated by the
distribution proposed by the recipe?

In general, output perturbation privacy mechanisms preserve distances between distri-
butions. However, input perturbation methods followed by nonlinear postprocessing require
stronger convergence guarantees between the underlying data and their classical statistical
approximations. Multivariate convergence results of this form are an active area of research.
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Appendix A. Proofs

A.1. Proof of Theorem 5.1.

Theorem 5.1. Let X and Y be two random variables using a common measure µ, so
that FX(~t) =

∫
~x�~t fX(~x) dµ(~x) and FY(~y) =

∫
~y�~t fY(~y) dµ(~y). Let M : Rk → R

` be a

randomized function associated with conditional probability g(· | ·) (so that P (M(~x) ∈ S) =∫
~z∈S g(~z | ~x) dν(~z)). Then

dKS(M(X),M(Y)) ≤ 2dV (X,Y)

where the probability is over the randomness in the function M and the random variables X
and Y.

Proof.

|P (M(X) � ~t)− P (M(Y) � ~t)|

=

∣∣∣∣
∫

~z�~t

∫

~x∈Rk

g(~z | ~x) (fX(~x)− fY(~x)) dµ(~x) dν(~z)

∣∣∣∣

≤
∫

~z�~t

∫

~x∈Rk

g(~z | ~x)
∣∣∣ (fX(~x)− fY(~x))

∣∣∣ dµ(~x) dν(~z)

=

∫

~x∈Rk

(∫

~z�~t
g(~z | ~x) dν(~z)

) ∣∣∣ (fX(~x)− fY(~x))
∣∣∣ dµ(~x)

≤
∫

~x∈Rk

∣∣∣ (fX(~x)− fY(~x))
∣∣∣ dµ(~x)

=2dV (X,Y).

Taking the supremum over all ~t yields the result.

A.2. Proof of Theorem 5.2. To prove this theorem, first we need an intermediate result
(a special case of multidimensional integration by parts).

Theorem A.1 . Let µ and ν be two σ-finite nonnegative measures over R
k and let f and

g be functions such that
∫
Rk |f(~x)| dµ(~x) < ∞ and

∫
Rk |g(~s)| dν(~s) < ∞.8 Let F (~t) =∫

~x�~t f(~x) dµ(~x) and G(~t) =
∫
~s�~t g(~s) dν(~s). Then

∫

Rk

f(~x)G(~x) dµ(~x) =

∫

Rk

F (~s)g(~s) dν(~s).

Proof. Using Fubini’s theorem to switch order of integration (since f and g are absolutely
integrable),

∫

Rk

f(~x)G(~x) dµ(~x)

=

∫

Rk

f(~x)

(∫

~s�~x
g(~s) dν(~s)

)
dµ(~x)

8Note that this includes counting measures, so if ν is a point mass on elements of some countable set S ⊂ R
k

then
∫
Rk |g(~s)| dν(~s) = ∑

~s∈S |g(~s)|. This notation allows us to combine proofs for discrete and continuous
cases.
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=

∫

Rk

∫

Rk

11{~s�~x}f(~x)g(~s) dν(~s) dµ(~x)

=

∫

Rk

(∫

Rk

11{~s�~x}f(~x)g(~s) dµ(~x)

)
dν(~s)

=

∫

Rk

(∫

~s�~x
f(~x) dµ(~x)

)
g(~s) dν(~s)

=

∫

Rk

F (~s)g(~s) dν(~s).

Theorem 5.2. Let L ⊆ R
k. Let X and Y be random variables over R

k whose cumulative
distribution functions can be written as

∫
~x�~t fX(~x) dµ1(~x) and

∫
~y�~t fY(~y) dµ2(~y), respec-

tively.9 Let M : Rk → R
` be a randomized function associated with conditional probability

g(· | ·) satisfying the following conditions:

• Denote H(~t | ~x) =
∫
~z�~t g(~z | ~x) dν(~z), where ν is the measure used to integrate over the out-

put space of M , and suppose there is a function ḡ† such that H(~t | ~x) =
∫
~s�~x ḡ

†(~t | ~s) dµ3(~s)

for some measure µ3.
•
∫
~s∈Rk 11{~s/∈L} dµ3(~s) = 0.

Then for all ~t ∈ R
`:

dKS(M(X),M(Y)) ≤ dKS(L)(X,Y) sup
~t∈L

||ḡ†(~t | ·)||1,

where ||ḡ†(~t | ·)||1 =
∫
~s∈Rk |ḡ†(~t | ~s)| dµ3(~s).

Proof. Pick a ~t ∈ R
`. With two applications of Theorem A.1 in the third equality below,

∣∣P (M(X) � ~t)− P (M(Y) � ~t)
∣∣

=
∣∣∣
∫

~z�~t

∫

~x∈Rk

fX(~x)g(~z|~x)dµ1(~x)dν(~z)−
∫

~z�~t

∫

~y∈Rk

fY(~y)g(~z|~y)dµ2(~y)dν(~z)
∣∣∣

=

∣∣∣∣∣∣∣

∫

~x∈Rk

fX(~x)H(~t|~x)dµ1(~x)−
∫

~y∈Rk

fY(~y)H(~t|~y)dµ2(~y)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

~s∈Rk

FX(~s)ḡ†(~t|~s)dµ3(~s)−
∫

~s∈Rk

FY(~s)ḡ†(~t|~s)dµ3(~s)

∣∣∣∣∣∣∣

≤
∫

~s∈Rk

|FX(~s)− FY(~s)| ∗
∣∣∣ḡ†(~t|~s)

∣∣∣ dµ3(~s)

=

∫

~s∈L
|FX(~s)− FY(~s)| ∗

∣∣∣ḡ†(~t|~s)
∣∣∣ dµ3(~s)

≤dKS(L)(X,Y) ∗ ||ḡ†(~t | ·)||1
≤dKS(L)(X,Y) sup

~t∈L
||ḡ†(~t | ·)||1.

9Note that µ1 and µ2 can be different measures, so, for example X can be discrete and Y can be continuous.
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A.3. Proof of Corollary 5.3.

Corollary 5.3. Using the notation of Theorem 5.2, if the conditional CDF g(· | ·) of M is
translation invariant (i.e. g(~z + ~t | ~x+ ~t) = g(~z | ~x)) and uses the same base measure as Y
(i.e. P (M(~x) � ~t) =

∫
~z�~t g(~z | ~x) dµ2(~z)). Then

dKS(L)(M(X),M(Y)) ≤ dKS(L)(X,Y).

Proof. The complication is that X and Y may be defined with respect to different measures.
For example, in the case of the Central Limit Theorem for Binomial random variables, X
would be discrete and Y would be continuous. We will use Theorem 5.2. Note that due to
translation invariance,

H(~t | ~x) =
∫

~z≺~t
g(~z | ~x) dµ2(~z)

=

∫

~z�~t
g(~z − ~x | ~0) dµ2(~z)

=

∫

~y�~t−~x
g(~y | ~0) dµ2(~y)

=

∫

~w�−~x
g(~w + ~t | ~0) dµ2(~w)

=

∫

−~w�~x
g(~w + ~t | ~0) dµ2(~w)

= −
∫

~v�~x
g(−~v + ~t | ~0) dµ2(~v)

= −
∫

~v�~x
g(~t | ~v) dµ2(~v)

so the desired ḡ†(~t | ~s) is −g(~t | ~s). Next note that

||ḡ†(~t | ·)||1 =
∫

|ḡ†(~t | ~s)| dµ(~s)

=

∫
g(~t | ~s) dµ(~s)

=

∫
g(~t− ~s | ~0) dµ(~s)

= 1.
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A.4. Proof of Lemma 5.6.

Lemma 5.6. Let M be a mechanism that satisfies ε-differential privacy and that works
as follows. On input X ∈ R

k, M samples a finite-dimensional random vector B from a
distribution µb and then returns f(X,B) for some function f : Rk ×R

b → R
`. Let X and Y

be random vectors in R
k having distributions µ1 and µ2, respectively. If all of the following

conditions are satisfied:

• f is L-Lipschitz continuous in its first argument (i.e. X)

• E[||f(~0,B)||2] < ∞
• E[||X||2] < ∞
• E[||Y||2] < ∞
then the following holds: dW (X,Y) ≤ δ ⇒ dW (M(X),M(Y)) ≤ Lδ.

Proof. First consider the function h(~x) ≡ EB∼µb
[g(f(~x,B))], where g is 1-Lipschitz continu-

ous. The following calculations show that h is finite and L-Lipschitz continuous (for the

finite part, set ~y = ~0):

L||~x− ~y||2 = EB∼µb
[L||~x− ~y||2]

≥ EB∼µb
[||f(~x,B)− f(~y,B)||2]

≥ EB∼µb
[||g(f(~x,B))− g(f(~y,B))||2]

≥ ||EB∼µb
[g(f(~x,B))− g(f(~y,B))]||2

= ||h(~x)− h(~y)||2.
Now, for any α > 0, let Ω`

α be the set of α-Lipschitz continuous functions from R
` → R.

dW (M(X),M(Y)) = sup
g∈Ω`

1

E[g(M(X))]− E[g(M(Y))]

= sup
g∈Ω`

1

E[g(f(X,B))]− E[g(f(Y,B))]

= sup
g∈Ω`

1

EX∼µ1

[
EB∼µb

[g(f(X,B))]
]
− EY∼µ2

[
EB∼µb

[g(f(Y,B))]
]

≤ sup
h∈Ω`

L

EX∼µ1

[
h(X)

]
− EY∼µ2

[
h(Y)

]

≤ Lδ.

A.5. Proof of Theorem 5.9.

Theorem 5.9. Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be k-dimensional random
variables and suppose dKS(L)(X,Y) ≤ δ then:

1. If φ is the coordinate projection operator that selects a fixed subset of the components of
a vector (e.g., φ(~t) = (t2, t4, t5)) then dKS(L)(φ(X), φ(Y)) ≤ δ.

2. If φ is the sum of coordinates (i.e. φ(~t) = t1 + t2 + · · ·+ tk) then there exist X and Y
such that dKS(L)(X,Y) ≤ δ but dKS(L)(φ(X), φ(Y)) = 1.

3. If φ(~t) ≡ c~t+ ~a, where c is a scalar, then dKS(L)(φ(X), φ(Y)) ≤ δ.
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4. Even if φ is continuous, is one-to-one, and preserves partial orders (i.e. ~t � ~s ⇒ φ(~t) �
φ(~s)) then there still exist X and Y such that dKS(L)(X,Y) ≤ δ but dKS(L)(φ(X), φ(Y)) =
1.

Proof. For (1), pick a ~t = (t1, . . . , tk) and define the vector ~s = (s1, . . . , sk) such that
si = ti when i is one of the coordinates selected by φ and si = ∞ otherwise. Then
P (φ(X) � φ(~t)) = P (X � ~s) and the conclusion follows.
For (2), we construct a pair X and Y for which the distance grows large. let n = d1/δe so
that 1/n ≤ δ. Define a two-dimensional random variable Y: the support of Y is the set of
pairs (i+ 1

4 , n− i) for i = 1, . . . , n and Y is uniformly distributed on its support. Define X
as follows: the support of X is (i, n− i) for i = 1, . . . , n and X is uniformly distributed on
its support. There are several facts to note:

• Rectangles are convex, so if a rectangle contains the points (i, n− i) and (j, n− j) then it
also contains the points (`, n− `) for ` = i, . . . , j.

• If a rectangle contains the points (i+ 1
4 , n− i) and (j + 1

4 , n− j) then it also contains the

points (`+ 1
4 , n− `) for ` = i, . . . , j.

• If a rectangle contains (i, n− i) and (i+ 1, n− (i+ 1)) then it contains (i+ 1
4).

• If a rectangle contains (i+ 1
4 , n−i) and (i+1+ 1

4 , n−(i+1)) then it contains (i+1, n−(i+1)).

These facts mean that if a rectangle contains r points from the domain of X it also contains
either r − 1, r, or r + 1 points from the domain of Y. Since the probability of any point in
the domain of its random variable is 1/n ≤ δ, this means sup~t |P (X � ~t)− P (Y � ~t)| = δ.

However, φ(X) = n and φ(Y) = n+ 1
4 so |P (φ(X) ≤ n)| = 1 while |P (φ(Y)) ≤ n| = 0.

For (3) note that φ(~t) � φ(~s) ⇔ ~t � ~s so the result follows trivially.
For (4), let’s define φ((t1, . . . , tn)) ≡ (t1, . . . , tn−1,

∑
i ti). From part (1) we know that if

dKV (φ(X), φ(Y)) ≤ δ∗, then projection on the last coordinate preserves distance but this
projection equals the sum of the components of X and Y. Thus if distributions of the sums
of the components of X and Y have a distance of 1 then so does dKV (φ(X), φ(Y)). It is
trivial to extend the construction in part (2) to this case.

A.6. Proof of Lemma 6.2.

Lemma 6.2. Let M be a mechanism that adds some random variable Z to its input. Suppose
that φ ∈ G` and that G` is closed under translation of its input (i.e., if g ∈ G then for every
c, the function x → g(x+ c) belongs to G`) then:

dH`G`
(X,Y) ≤ δ ⇒ dH`G`

(M(X),M(Y)) ≤ δ ⇒ dH`
(φ(M(X)), φ(M(Y))) ≤ δ.

Proof. The last implication, dH`G`
(M(X),M(Y)) ≤ δ ⇒ dH`

(φ(M(X)), φ(M(Y))) ≤ δ
follows immediately from the requirement that φ ∈ G`. The first implication can be proved
as follows. Let Z1 and Z2 be two independent random variables having the same distribution
as Z. Assume Z has density p without loss of generality (i.e. replace densities with probability
mass functions for discrete variables, etc). For any given g and constant c, define gc to be
the function gc(x) = g(x+ c). Now,

E[h(g(M(X)))]− E[h(g(M(Y)))] = E[h(g(X+ Z1))]− E[h(g(Y + Z2))]

=

∫
E[h(g(X+ t))] p(t)dt−

∫
E[h(g(Y + t))] p(t)dt
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=

∫
(E[h(gt(X))]− E[h(gt(Y))]) p(t) dt

≤ sup
t

E[h(gt(X))]− E[h(gt(Y))]

≤ sup
h∈H`

sup
g∈G`

E[h(g(X))]− E[h(g(Y))]

≤ dH`G`
(X,Y) ≤ δ.

A.7. Proof of Lemma 6.4.

Lemma 6.4. Sen1(φn0) =
1
n0

maxu,v:u 6=v

(
2n0−1
~θ[u]

+ 2n0+1
~θ[v]

)
for the chi-squared goodness of

fit test statistic φn0.

Proof. Without loss of generality, assume the value 1 from the vector ~xi changes from index
u to index v (u 6= v), and thus Sn0 [u] ≥ 1. The L1 sensitivity can be computed as

Sen1(φn0)

=max
u,v

∣∣∣∣∣
(Sn0 [u]− n0

~θ[u])2

n0
~θ[u]

− (Sn0 [u]− 1− n0
~θ[u])2

n0
~θ[u]

+
(Sn0 [v]− n0

~θ[v])2

n0
~θ[v]

− (Sn0 [v] + 1− n0
~θ[v])2

n0
~θ[v]

∣∣∣∣∣

=max
u,v

∣∣∣∣∣
2(Sn0 [u]− n0

~θ[u])− 1

n0
~θ[u]

+
2(n0

~θ[v]− Sn0 [v])− 1

n0
~θ[v]

∣∣∣∣∣

=
1

n0
max
u,v

∣∣∣∣∣
2Sn0 [u]− 1

~θ[u]
− 2Sn0 [v] + 1

~θ[v]

∣∣∣∣∣

≤ 1

n0
max
u,v

∣∣∣∣∣
2Sn0 [u]− 1

~θ[u]

∣∣∣∣∣+
∣∣∣∣∣
2Sn0 [v] + 1

~θ[v]

∣∣∣∣∣

≤ 1

n0
max
u,v

(
2n0 − 1

~θ[u]
+

2n0 + 1

~θ[v]

)
.

A.8. Proof of Lemma 6.5.

Lemma 6.5. Let H be a subset of the 1-Lipschitz continuous functions and let X and Y be
random variables and φ′ be a positive function such that dH(φ′(X), φ′(Y )) ≡ suph∈H E[h(φ′(X))]−
E[h(φ′(Y ))] ≤ δ and max(E[|φ′(X)|], E[|φ′(Y )|]) ≤ µ for some µ. Let φ be another function
with the same domain as φ′. For any γ ∈ (0, 1), define Bγ =

{
~t : φ(~t)/φ′(~t) ∈ [1− γ, 1 + γ]

}

and let β1 ≥ max(P (X /∈ Bγ), P (Y /∈ Bγ)) and β2 ≥ max(E[|φ′(X)|1[X/∈Bγ ]], E[|φ′(Y )|1[Y /∈Bγ ]]).

Then when we condition on X and Y being in Bγ, dH(φ(X) | Bγ , φ(Y ) | Bγ) ≤ 2γµ
1−β1

+
δ

1−β1
+ 2β2

1−β1
.
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Proof.

dH(φ(X) | Bγ , φ(Y ) | Bγ) ≤dH(φ(X) | Bγ , φ′(X) | Bγ)

+ dH(φ′(X) | Bγ , φ′(Y ) | Bγ)

+ dH(φ(Y ) | Bγ , φ′(Y ) | Bγ).

Now we consider the first term dH(φ(X) | Bγ , φ
′(X) | Bγ). Because we condition on Bγ , the

ratio of φ and φ′ is bounded by 1± γ. Using Lipschitz continuity of h,
∣∣∣E[h(φ(X)) | Bγ ]−

E[h(φ′(X)) | Bγ ]
∣∣∣ ≤ E[|h(φ(X))−h(φ′(X)) | Bγ ] ≤ E

[
|φ(X)−φ′(X)| | Bγ

]
≤ γE[|φ′(X)| |

Bγ ] ≤ γ
1−β1

E[|φ′(X)|] ≤ γµ
1−β1

.

By similar reasoning, the third term is also bounded by γµ
1−β1

.

For the second term, for any h ∈ H, consider E[h(φ′(X)) | Bγ ] − E[h(φ′(Y )) | Bγ ].
Without loss of generality, due to the subtraction, we may assume h(0) = 0 and so due to
1-Lipschitz continuity, h(x) ≤ |x|.
∣∣E[h(φ′(X)) | Bγ ]− E[h(φ′(Y )) | Bγ ]

∣∣ ≤
∣∣∣∣

1

1− β1
E[h(φ′(X))1[X∈Bγ ]]− E[h(φ′(Y ))1[Y ∈Bγ ]]

∣∣∣∣

≤
∣∣∣∣

1

1− β1
E[h(φ′(X))]− E[h(φ′(Y ))]

∣∣∣∣

+

∣∣∣∣
1

1− β1
E[h(φ′(X))1[X/∈Bγ ]]− E[h(φ′(Y ))1[Y /∈Bγ ]]

∣∣∣∣

≤ δ

1− β1
+

1

1− β1

(
E[|φ′(X)|1[X/∈Bγ ]] + E[|φ′(Y )|1[X/∈Bγ ]]

)

≤ δ

1− β1
+

2β2
1− β1

.

Thus it follows that dH(φ(X) | Bγ , φ(Y ) | Bγ) ≤ 2γµ
1−β1

+ δ
1−β1

+ 2β2

1−β1
.
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