
It’s Like Python But: Towards Supporting Transfer
of Programming Language Knowledge
Nischal Shrestha

NC State University
Raleigh, NC, USA
nshrest@ncsu.edu

Titus Barik
Microsoft

Redmond, WA, USA
titus.barik@microsoft.com

Chris Parnin
NC State University
Raleigh, NC, USA
cjparnin@ncsu.edu

Abstract—Expertise in programming traditionally assumes a
binary novice-expert divide. Learning resources typically target
programmers who are learning programming for the first time, or
expert programmers for that language. An underrepresented, yet
important group of programmers are those that are experienced
in one programming language, but desire to author code in
a different language. For this scenario, we postulate that an
effective form of feedback is presented as a transfer from concepts
in the first language to the second. Current programming
environments do not support this form of feedback.

In this study, we apply the theory of learning transfer to teach
a language that programmers are less familiar with––such as
R––in terms of a programming language they already know–
–such as Python. We investigate learning transfer using a new
tool called Transfer Tutor that presents explanations for R code
in terms of the equivalent Python code. Our study found that
participants leveraged learning transfer as a cognitive strategy,
even when unprompted. Participants found Transfer Tutor to be
useful across a number of affordances like stepping through and
highlighting facts that may have been missed or misunderstood.
However, participants were reluctant to accept facts without code
execution or sometimes had difficulty reading explanations that
are verbose or complex. These results provide guidance for future
designs and research directions that can support learning transfer
when learning new programming languages.

I. INTRODUCTION

Programmers are expected to be fluent in multiple pro-
gramming languages. When a programmer switches to a new
project or job, there is a ramp-up problem where they need
to become proficient in a new language [1]. For example, if
a programmer was proficient in Python, but needed to learn
R, they would need to consult numerous learning resources
such as documentation, code examples, and training lessons.
Unfortunately, current learning resources typically do not take
advantage of a programmer’s existing knowledge and instead
present material as if they were a novice programmer [2]. This
style of presentation does not support experienced program-
mers [3] who are already proficient in one or more languages
and harms their ability to learn effectively and efficiently [4].

Furthermore, the new language may contain many inconsis-
tencies and differences to previous languages which actively
inhibit learning. For example, several blogs and books [5]
have been written for those who have become frustrated or
confused with the R programming language. In an online
document [6], Smith lists numerous differences of R from

other high-level languages which can confuse programmers
such as the following:

Sequence indexing is base-one. Accessing the zeroth
element does not give an error but is never useful.

In this paper, we explore supporting learning of program-
ming languages through the lens of learning transfer, which
occurs when learning in one context either enhances (positive
transfer) or undermines (negative transfer) a related perfor-
mance in another context [7]. Past research has explored
transfer of cognitive skills across programming tasks like
comprehension, coding and debugging [8], [9], [10]. There has
also been research exploring the various difficulties of learn-
ing new programming languages [11], [12] and identifying
programming misconceptions held by novices [13]. However,
limited research has focused on the difficulties of learning
languages for experienced programmers and the interactions
and tools necessary to support transfer.

To learn how to support transfer, we built a new training
tool called Transfer Tutor that guides programmers through
code snippets of two programming languages and highlights
reusable concepts from a familiar language to learn a new lan-
guage. Transfer Tutor also warns programmers about potential
misconceptions carried over from the previous language [14].

We conducted a user study of Transfer Tutor with 20
participants from a graduate Computer Science course at
North Carolina State University. A qualitative analysis on
think-aloud protocols revealed that participants made use of
learning transfer even without explicit guidance. According to
the responses to a user satisfaction survey, participants found
several features useful when learning R, such as making analo-
gies to Python syntax and semantics. However, participants
also pointed out that Transfer Tutor lacks code executability
and brevity. Despite these limitations, we believe a learning
transfer tool can be successful in supporting expert learning
of programming languages, as well as other idioms within
the same language. We discuss future applications of learning
transfer in other software engineering contexts, such as assist-
ing in code translation tasks and generating documentation for
programming languages.

II. MOTIVATING EXAMPLE

Consider Trevor, a Python programmer who needs to switch
to R for his new job as a data analyst. Trevor takes an online978-1-5386-4235-1/18/$31.00 ©2018 IEEE

1 df = pd.read_csv('Questions.csv')
2 df = df[df.Score > 0][0:5]

(a) Python

1 df <- read.csv('Questions.csv')
2 df <- df[df$Score > 0,][1:5,]

(b) R

Fig. 1. (a) Python code for reading data, filtering for positive scores and selecting 5 rows. (b) The equivalent code in R.

course on R, but quickly becomes frustrated as the course
presents material as if he is a novice programmer and does
not make use of his programming experience with Python and
Pandas, a data analysis library. Now, Trevor finds himself ill-
equipped to get started on his first task at his job, tidying data
on popular questions retrieved from Stack Overflow (SO), a
question-and-answer (Q&A) community [15]. Even though he
is able to map some concepts over from Python, he experiences
difficulty understanding the new syntax due to his Python
habits and the inconsistencies of R. Trevor asks help from
Julie, a seasoned R programmer, by asking her to review his
R script (see Fig. 1) so he can learn proper R syntax and
semantics.

Trevor’s task is to conduct a typical data analysis activity,
tidying data. He is tasked with the following: 1) read in a
comma-separated value (csv) file containing Stack Overflow
questions 2) filter the data according to positive scores and 3)
select the top five rows. Julie walks him through his Python
code and explains how they relate to the equivalent code she
wrote in R.

Julie teaches Trevor that R has several assignment operators
that he can use to assign values to variables but tells him
that the <- syntax is commonly used by the R community.
However, she tells him that the = operator can also be used
in R just like Python. To read a csv file, Julie instructs Trevor
to use a built-in function called read.csv() which is quite
similar to Python’s read csv() function.

Moving on to the next line, Julie explains that selecting rows
and columns in R is very similar to Python with some subtle
differences. The first subtle difference that she points out is
that when subsetting (selecting) rows or columns from a data
frame in Python, using the [syntax selects rows. However,
using the same operator in R will select columns. Julie explains
that the equivalent effect of selecting rows works if a comma
is inserted after the row selection and the right side of the
comma is left empty (Figure 1b). Julie tells him that since the
right side is for selecting columns, leaving it empty tells R to
select all the columns. To reference a column of a data frame
in R, Julie explains that it works almost the same way as in
Python, except the . (dot) must be replaced with a $ instead.
Finally, Julie points out that R’s indexing is 1-based, so the
range for selecting the five rows must start with 1, and unlike
Python, the end index is inclusive. Trevor now has some basic
knowledge of R. Could tools help Trevor in the same way
Julie was able to?

III. TRANSFER TUTOR

A. Design Rationale
We created a new training tool called Transfer Tutor that

takes the place of an expert like Julie and makes use of

learning transfer to teach a new programming language.
Transfer Tutor teaches R syntax and semantics in terms
of Python to help provide scaffolding [16] so programmers
can start learning from a familiar context and reuse their
existing knowledge. Our approach is to illustrate similarities
and differences between code snippets in Python and R with
the use of highlights on syntax elements and different types
of explanations.

We designed Transfer Tutor as an interactive tool to promote
“learnable programming” [17] so that users can focus on a
single syntax element at a time and be able to step through
the code snippets on their own pace. We made the following
design decisions to teach data frame manipulations in R: 1)
highlighting similarities between syntax elements in the two
languages 2) explicit tutoring on potential misconceptions and
3) stepping through and highlighting elements incrementally.

B. Learning Transfer

Transfer Tutor supports learning transfer through these
feedback mechanisms in the interface:

• Negative Transfer: ‘Gotchas’ warn programmers about
a syntax or concept that either does not work in the
new language or carries a different meaning and therefore
should be avoided.

• Positive Transfer: ‘Transfer’ explanations describe a
syntax or concept that maps over to the new language.

• New Fact: ‘New facts’ describe a syntax or concept that
has little to no mapping to the previous language.

Each type of feedback consists of a highlighted portion
of the code in the associated language (Python or R) with
its respective explanation, which serves as affordances for
transfer [18]. Furthermore, we support deliberate connections
between elements, by allowing participants to step through
the code, which helps them make a mindful abstraction of the
concepts [19]. Finally, we focus on transferring declarative
knowledge [20], such as syntax rules, rather than procedural
knowledge, such as general problem-solving strategies.

C. User Experience

This section presents screenshots of Transfer Tutor and a
use case scenario. The user experience of Transfer Tutor is
presented from the perspective of Trevor who decides to use
the tool to learn how to select columns of a data frame in
R, a 2D rectangular data structure which is also used in
Python/Pandas. The arrows and text labels are used to annotate
the various features of the tool and are not actually presented
to the users.

1) Code Snippets and Highlighting: Trevor opens up Trans-
fer Tutor and notices that the tool displays two lines of code,
where the top line is Python, the language that he is already
familiar with and on the bottom is the language to learn which
is R. Trevor examines the stepper buttons below the snippets
and clicks 3 which begins the lesson and highlights some
syntax elements:

2b

2a

1

3

4 5

6

Start Over

Finish Lesson

Highlight Previous Element

Begin / Highlight Next Element

Current Element
R Transfer Element

Python Transfer Element

Travis notices 1 points to the current syntax element in
Python and R indicated by 2a and 2b . Trevor looks over to
the right at the explanation box:

2) Explanation Box: Trevor sees 1 which refers to a
Python ‘transfer’ with 2 showing the transfer icon. He reads

3 and learns that the [operator can be used in R. Transfer
Tutor treats this syntax as a positive transfer since it can be
reused. Trevor moves on to the next element:

Trevor looks at 1 which is a red highlight on the Python
code. He reads 2 in the explanation box for clarification.

Trevor learns about a Python ‘gotcha’: the [[syntax from
Python can’t be used in R. Trevor then reads 3 which explains
an R ‘gotcha’ about how the [[syntax is legal in R, but
semantically different from the Python syntax as it only selects
a single column. In this case, Transfer Tutor warns him about
a subtle difference, a negative transfer that could cause him
issues in R. Trevor moves on to the next element and examines
the elements that are highlighted blue:

Trevor looks at 1 then 2 and realizes he’s looking at a ‘new
fact’ about R. Transfer Tutor describes the c() function used
to create a vector in R, which doesn’t have a direct mapping
to a Python syntax.

3) Code Output Box: Finally, Trevor steps through the code
to the end, and the code output box now appear at the bottom
which displays the state of the data frame:

Trevor reads 1 and inspects 2 to understand the contents
of the data frame in R and how it differs from Python’s data
frame: 1) NaNs from Python are represented as NAs and 2) Row

indices start from 1 as opposed to 0. Transfer Tutor makes it
clear that selecting columns of a data frame in R is similar to
Python with some minor but important differences.

IV. METHODOLOGY

A. Research Questions

We investigated three research questions using Transfer
Tutor to: 1) determine face validity of teaching a new language
using an interactive tool 2) examine how programmers use
Transfer Tutor and 3) determine which affordances they found
to being useful for learning a new language.

RQ1: Are programmers learning R through Transfer
Tutor? To identify if training through learning transfer is
an effective approach in the context of programming, this
question is used to determine the face validity of Transfer
Tutor’s ability to teach R.

RQ2: How do programmers use Transfer Tutor? In-
vestigating how programmers use Transfer Tutor can identify
when it supports learning transfer, and whether the affordances
in the tool align with the way programmers reason about the
problem.

RQ3: How satisfied are programmers with learning R
when using the Transfer Tutor? We want to learn what
features of Transfer Tutor programmers felt were useful to
them. If programmers are satisfied with the tool and find it
useful, it is more likely to be used.

B. Study Protocol

1) Participants: We recruited 20 participants from a grad-
uate Computer Science course at our University, purposely
sampling for participants with experience in Python, but not
R. We chose to teach R for Python programmers because both
languages are used for data science programming tasks, yet
have have subtle differences that are known to perplex novice
R programmers with a background in Python [5], [6], [21].

Through an initial screening questionnaire, participants re-
ported programming experience and demographics. Partici-
pants reported their experience with Python programming with
a median of “1-3 years” (7), on a 4-point Likert-type item
scale ranging from “Less than 6 months”, “1-3 years”, “3-5
years”, and “5 years or more” (). Participants reported a
median of “Less than 6 months” (19) of experience with R
programming (), and reported a medium of “1-3 years”
with data analysis activities (). 16 participants reported
their gender as male, and four as female; the average age of
participants was 25 years (sd = 5).

All participants conducted the experiment in a controlled
lab environment on campus, within a 1-hour time block. The
first author of the paper conducted the study.

2) Onboarding: Participants consented before participating
in the study. They were presented with a general instruc-
tions screen which described the format of the study and
familiarized them with the interface. The participants then
completed a pre-test consisting of seven multiple choice or
multiple answer questions, to assess prior knowledge on R
programming constructs for tasks relating to indexing, slicing,

and subsetting of data frames. The questions were drawn
from our own expertise in the language and quizzes from an
online text.1 The presentation of questions was randomized to
mitigate ordering effects. We also asked participants to think-
aloud during the study, and recorded these think-aloud remarks
as memos.

3) Study Materials: The authors designed four lessons on
the topic of data frame manipulation, where each lesson
consists of a one line code snippet in both languages and
explanations associated with the relevant syntax elements. The
authors also designed questions for the pre-test and post-test
(see Table I). Finally, the authors designed a user satisfaction
survey of Transfer Tutor. The study materials are available
online.2

4) Tasks: Participants completed the following lessons on
R: 1) assignment and reading data, 2) selecting columns,
3) filtering, and 4) selecting rows and sorting. Participants
stepped through each lesson as described in Section III. Within
each lesson, participants interacted with 5–8 highlights and
corresponding explanation boxes.

5) Wrap-up: At the end of the study, participants completed
a post-test containing the same questions as the pre-test.
Participants completed a user satisfaction survey asking the
participants for additional feedback on the tool. The survey
asked them to rate statements about the usefulness of the tool
using a 5-point Likert scale. These statements targeted differ-
ent features of the tool such as whether or not highlighting
syntax elements was useful for learning R. The survey also
contained free-form questions for feedback regarding the tool
such as the most positive and negative aspects, how they could
benefit from using the tool and what features they would add
to make it more useful. Finally, participants were given the
opportunity to debrief for any general questions they may have
had about the study.

C. Analysis

RQ1: Are programmers learning R through Transfer
Tutor? We used differences in pre-test and post-test perfor-
mance as a proxy measure for learning. We assigned equal
weight to each question, with each question being marked as
incorrect (0 points) or correct (1 point), allowing us to treat
them as ordinal values. For the multiple answer questions, the
participants received credit if they choose all the correct an-
swers. A Wilcoxon signed-rank test between the participants’
pre-test and post-test scores was computed to identify if the
score differences were significant (α = 0.05).

RQ2: How do programmers use Transfer Tutor? All au-
thors of the paper jointly conducted an open card sort—a qual-
itative technique for discovering structure from an unsorted list
of statements [22]. Our card sorting process consisted of two
phases: preparation and execution. In the preparation phase,
we extracted the think-aloud and observational data from the
written memos into individual cards, with each card containing

1http://adv-r.had.co.nz, chapters “Data Structures” and “Subsetting.”
2https://github.com/alt-code/Research/tree/master/TransferTutor

http://adv-r.had.co.nz
https://github.com/alt-code/Research/tree/master/TransferTutor

TABLE I
PRE-TEST AND POST-TEST QUESTIONS

ID Question Text Tot.1 ∆2

1 Select all the valid ways of assigning a 1 to a
variable ‘x’ in R.

0 18

2 Select all the valid vector types that can be used to
subset a data frame.

13 2

3 How would one check if ‘x’ is the value NA? 0 20
4 Given a data frame df with column indices 1, 2,

and 3, which one of these will cause an error?
10 3

5 Which one of these correctly selects the first row of
a data frame df?

0 20

6 Which one of these correctly subsets the first five
rows and the first column of a data frame df and
returns the result as a data frame?

0 18

7 All of these statements correctly select the column
‘c’ from a data frame df except

0 1

1 Total number of participants who answered correctly in pre-test.
2 Difference in the number of participants who answered correctly in pre-test
and post-test.

a statement or participant observation. We labeled each of the
cards as either being an indicator of positive transfer, negative
transfer, or non-transfer. To do so, we used the following rubric
to guide the labeling process:

1) Statements should not be labeled if it includes verbatim
or very close reading of the text provided by Transfer
Tutor.

2) The statement can be labeled as positive if it demonstrates
the participant learning a syntax or concept from Python
that can be used in R.

3) The statement can be labeled as negative if it demon-
strates the participant learning a syntax or concept in R
that is different from Python or breaks their expectation.

4) The statement can be labeled as a non-transfer if it
demonstrates the participant encountering a new fact in
R for which there is no connection to Python.

In the execution phase, we sorted the cards into meaningful
themes. The card sort is open because the themes were not
pre-defined before the sort. The result of a card sort is not to
a ground truth, but rather, one of many possible organizations
that help synthesize and explain how programmers interact
with tool.

RQ3: How satisfied are programmers with learning
R when using Transfer Tutor? We summarized the Likert
responses for each of the statements in the user satisfaction
survey using basic descriptive statistics. We also report on
suggestions provided by participants in the free-form re-
sponses for questions, which include suggestions for future
tool improvements.

V. RESULTS

In this section we present the results of the study, organized
by research question.

A. RQ1: Are programmers learning R after using Transfer
Tutor?

All participants had a positive increase in overall score (n
= 20). The Wilcoxon signed rank test identified the post-
test scores to be significantly higher than the pre-test scores
(S = 105, p < .0001), and these differences are presented
in Table I. Questions 1, 3, 5 and 6 provide strong support
for learning transfer. In Question 2 and Question 4, most
participants already supplied the correct answer with the pre-
test: thus, there was a limited increase in learning transfer. The
result of Question 7, however, was unexpected: no participants
answered the pre-test question correctly, and there was es-
sentially no learning transfer. We posit potential explanations
for this in Limitations (Section VI). Based on these results,
using test performance has face validity in demonstrating
Transfer Tutor’s effectiveness in supporting learning transfer
from Python to R.

B. RQ2: How do programmers use Transfer Tutor?

The card sorting results of the observational and think-
aloud memos are presented in this section, organized into four
findings.

Evidence of using transfer: We collected 398 utterances
from our participants during their think-aloud during card
sorting. All participants’ think-aloud contained utterances re-
lated to learning transfer. 35.9% of the total utterances related
to transfer, revealing positive (18.9%) and negative transfers
(66.4%). They also verbalized or showed behavior to indicate
that they were encountering something that was new and didn’t
map to something they already knew (14%). Other utterances
not related to transfer involved verbatim reading of text or
reflection on the task or tool.

Participants identified several positive transfers from
Python, often without explicit guidance from Transfer Tutor.
P4 guessed that the range for selecting a column in the Python
code was equivalent to the one in R without Transfer Tutor
explicitly mentioning this fact: “both are the same, 2 colon in
Python means 3 in R.” Another participant correctly related
Python’s dot notation to reference a data frame’s column to
R’s use of dollar sign: “Oh looks like $ sign is like the dot.”
[P17]. This is evidence that programmers are naturally using
learning transfer and Transfer Tutor helps support this strategy.

Participants also encountered several negative transfers from
either Python or their previous languages. P15 thought the
dot in the read.csv() function signified a method call and
verbalized that the “read has a csv function” and later realized
the mistake: “read is not an Object here which I thought
it was!” P5 expressed the same negative transfer, thinking
that “R has a module called read.”. This indicates a negative
transfer from object-oriented languages where the dot notation
is typically used for a method call.

Participants would also verbalize or show signs of behavior
indicating that they have encountered a new fact, or a non-
transfer, in R. This behavior occurred before progressing to
the element with its associated explanation. P7 encountered
the subsetting syntax in R and wondered, “Why is the left side

TABLE II
FOLLOW-UP SURVEY RESPONSES

Likert Resp. Counts1

% Agree SD D N A SA Distribution2

50% 50%0%

The highlighting feature was useful in learning about R. 95% 0 0 1 5 14
Stepping through the syntax was useful in learning about R. 79% 0 1 3 2 14
The explanations that related R back to another language like Python was useful. 89% 1 0 1 6 12
The ‘new facts’ in the information box helped me learn new syntax and concepts. 95% 0 0 1 6 13
The ‘gotchas’ in the information box were helpful in learning about potential pitfalls. 93% 0 2 0 6 12
The code output box helped me understand new syntax in R. 79% 3 0 1 8 8
I found opunit unnecessarily complex. 0% 1 3 0 0 0

1 Likert responses: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), Strongly Agree (SA).
2 Net stacked distribution removes the Neutral option and shows the skew between positive (more useful) and negative (less useful) responses.

Strongly Disagree, Disagree, Agree; Strongly Agree.

of the comma blank?” Another participant wondered about the
meaning of a negative sign in front of R’s order function by
expressing they “don’t get why the minus sign is there.” [P8].

Tool highlighted facts participants may have misunder-
stood or missed: The highlighting of the syntax elements and
stepping through the code incrementally helped participants
focus on the important parts of the code snippets. For addi-
tional feedback, one participant said “I was rarely confused
by the descriptions, and the colorized highlighting helped me
keep track of my thoughts and reference what exactly it was
I was reading about with a specific example” [P17]. P13
had a similar feedback remarking that the “highlighting was
good since most people just try to summarize the whole code
at once.” However, a few participants found the stepper to
progress the lesson too slowly. P17 read the entire line of
code on the ‘Selecting rows and sorting’ lesson and said that
they “didn’t understand drop=FALSE, hasn’t been mentioned”
before Transfer Tutor had the opportunity to highlight it.

Reluctance of accepting facts without execution or exam-
ples: Participants were reluctant to accept certain facts without
confirming for themselves through code execution, or without
seeing additional examples. One participant was “not too sold
on the explanation” [P2] for why parentheses aren’t required
around conditions when subsetting data frames. Another par-
ticipant expressed doubt and confusion when reading about an
alternate [syntax that doesn’t require specifying both rows and
columns: “Ok but then it says you can use an alternate syntax
without using the comma” [P20]. Regarding the code output,
one participant suggested that “it would’ve been more useful if
I could change [the code] live and observe the output” [P18].
There were a few participants who wanted more examples.
For example, P17 was unclear on how to use the [[syntax in
R and suggested that “maybe if there was a specific example
here for the [[that would help”.

Information overload: Although several participants re-
ported that Transfer Tutor is “interactive and easy to use”
[P13], there were a few who thought that there was “informa-
tion overload in the textual explanations” [P1]. Some syntax

elements had lengthy explanations and one participant felt that
“sometimes too many new things were introduced at once”
[P18] and P5 expressed that “complex language is used” to
describe a syntax or concept in R. Participants also expressed
that they wanted “more visual examples” [P5].

C. RQ3: How satisfied are programmers with learning R when
using Transfer Tutor?

Table II shows the distribution of responses for each state-
ment from the user satisfaction survey, with each statement
targeting a feature of Transfer Tutor. Overall, participants
indicated that features of Transfer Tutor were useful in learn-
ing R. However, a few participants strongly disagreed about
the usefulness of explanations relating back to R, and the
output boxes. The free-form responses from participants offers
additional insight into the Likert responses which will be
discussed next.

The highlighting feature had no negative ratings and all
participants indicated that it was useful to them in some way.
One participant thought that “the highlighting drew [their]
attention” [P2] while another commented that “it showed the
differences visually and addressed almost all my queries” [P1].

The stepper received some neutral (3) ratings and one
participant disagreed on its usefulness. Nevertheless, most
participants did find the stepper useful and expressed that they
“like how it focuses on things part by part” [P20].

Participants generally found the explanations relating R to
Python was useful in learning R. One of the participants “liked
the attempt to introduce R syntax based on Python syntax”
[P18] and P14 thought that “comparing it with Python makes
it even more easy to understand R language”. All participants
thought this feature was useful except for one. This participant
did not provide any feedback for why.

The ‘new facts’ explanations also had no negative ratings
and was useful to all participants. Although participants didn’t
speak explicitly about the feature, P8 expressed that there was
“detailed explanation for each element” and P16 said that
“Every aspect of the syntax changes has been explained very

well”. Most participants also found ‘gotchas’ to be useful. P7
for example said that “Gotchas! were interesting to learn and
to avoid errors while coding.”

For the explanation box, some participants suggested that
this affordance would need to “reduce the need for scrolling
and (sadly) reading” [P2]. Still other participants wanted
deeper explanations for some concepts, perhaps with “links
to more detailed explanations” [P12]. For the output boxes,
participants who disagreed with its usefulness suggested that
the output boxes would be more useful if the output code be
dynamically adjusted by changing the code [P6, P9, P12], and
P17 suggested that the output boxes were “a little difficult to
read” because of the small font.

VI. LIMITATIONS

A. Construct Validity

We used pre-test and post-test questions as a proxy to assess
the participants’ understanding of R concepts as covered by
Transfer Tutor. Because of time constraints in the study, we
could only ask a limited number of questions. Consequently,
these questions are only approximations of participants’ under-
standing. For instance, Question 7 illustrates several reasons
why questions may be problematic for programmers. First, the
question may be confusingly-worded, because of the use of
except in the question statement. Second, the response may be
correct, but incomplete—due to our scoring strategy, responses
must be completely correct to receive credit. Third, questions
are only approximations of the participants’ understanding. A
comparative study is necessary to properly measure learning
from using Transfer Tutor to other traditional methods of
learning languages by measuring performance on program-
ming tasks.

B. Internal Validity

Participants in the study overwhelmingly found the features
of Transfer Tutor to be positive (Section V-C). It’s possible,
however, that this positivity is artificially high due to social de-
sirability bias [23]—a phenomenon in which participants tend
to respond more positively in the presence of the experimenters
than they would otherwise. Given the novelty of Transfer
Tutor, it is likely that they assumed that the investigator was
also the developer of the tool. Thus, we should be conservative
about how we interpret user satisfaction with Transfer Tutor
and its features.

A second threat to internal validity is that we expected
Transfer Tutor to be used by experts in Python, and novices
in R. Although all of our participants have limited knowledge
with R, very few participants were also experts with Python
or the Pandas library (Section IV). On one hand, this could
suggest that learning transfer would be even more effective
with expert Python/Pandas participants. On the other hand,
this could also suggest that there is a confounding factor that
explains the increase in learning that is not directly due to the
tool. For instance, it may be that explanations in general are
useful to participants, whether or not they are phrased in terms
of transfer [24], [25].

C. External Validity

We recruited graduate students with varying knowledge of
Python and R, so the results of the study may not generalize
to other populations, such as industry experts. The choice
of Python and R, despite some notable differences, are both
primarily intended to be used as scripting languages. How
effective language transfer can be when language differences
are more drastic is still an open question; for example, consider
if we had instead used R and Rust—languages with very
different memory models and programming idioms.

VII. DESIGN IMPLICATIONS

This section presents the design implications of the results
and future applications for learning transfer.

A. Affordances for supporting learning transfer

Stepping through each line incrementally with correspond-
ing highlighting updates allows programmers to focus on the
relevant syntax elements for source code. This helps novice
programmers pinpoint misconceptions that could be easily
overlooked otherwise, but prevents more advanced program-
mers from easily skipping explanations from Transfer Tutor.
Despite the usefulness of always-on visualizations in nice en-
vironments [26], [27], an alternative implementation approach
to always-on may be to interactively allow the programmer to
activate explanations on-demand.

We found that live code execution is an an important factor
for programmers as they can test new syntax rules or confirm
a concept. We envision future iterations of Transfer Tutor
that could allow code execution and adapt explanations in the
context of the programmers’ custom code.

Reducing the amount of text and allowing live code exe-
cution were two improvements suggested by the participants.
This suggests that Transfer Tutor needs to reduce information
overload and balance the volume of explanation against the
amount of code to be explained. One solution is to externalize
additional explanation to documentation outside of Transfer
Tutor, such as web resources. Breaking up lessons into smaller
segments could also reduce the amount of reading required.

B. Expert learning can benefit from learning transfer

To prevent negative consequences for experienced learners,
we intentionally mitigated the expertise reversal effect [4] by
presenting explanations in terms of language transfer—in the
context of a language that the programmer is already an expert
at. Participants in our study tried to guess positive transfers on
their own, which could lead to negative transfers from their
previous languages. This cognitive strategy is better supported
by a tool like Transfer Tutor as it guides programmers on
the correct positive transfers and warns them about potential
negative transfers. We think that tools such as ours serves as a
type of intervention design: like training wheels, programmers
new to the language can use our tool to familiarize themselves
with the language. As they become experts, they would reduce
and eventually eliminate use of Transfer Tutor.

C. Learning transfer within programming languages

Our study explored learning transfer between programming
languages, but learning transfer issues can be found within
programming languages as well, due to different programming
idioms within the same language. For example, in the R com-
munity, a collection of packages called tidyverse encourage
an opinionated programming style that focuses on consistency
and readability, through the use of a fluent design pattern. In
contrast to ‘base’ R—which is usually structured as a sequence
of data transformation instructions on data frames—the fluent
pattern uses ‘verbs’ that pipe together to modify data frames.

D. Applications of learning transfer beyond tutorials

Learning transfer could be applied in other contexts, such as
within code review tools, and within integrated development
environments such as Eclipse and Visual Studio. For example,
consider a scenario in which a software engineer needs to
translate code from one programming language to another: this
activity is an instance in which learning transfer is required.
Tools could assist programmers by providing explanations in
terms of their expert language through existing affordances
in development environments. Learning transfer tools can be
beneficial even when the language conversion is automatic.
For example, SMOP (Small Matlab and Octave to Python
compiler) is one example of a transpiler—the system takes in
Matlab/Octave code and outputs Python code.3 The generated
code could embed explanations of the translation that took
place so that programmers can better understand why the
translation occurred the way that it did.

Another potential avenue for supporting learning transfer
with tools can be found in the domain of documentation gener-
ation for programming languages. Since static documentation
can’t support all types of readers, authors make deliberate
design choices to focus their documentation for certain au-
diences. For example, the canonical Rust book4 makes the
assumption that programmers new to Rust have experience
with some other language—though it tries not to assume any
particular one. Automatically generating documentation for
programmers tailored for prior expertise in a different language
might be an interesting application for language transfer.

VIII. RELATED WORK

There are many studies on transfer between tools [28],
[29], [30], [31] but fewer studies examining transfer in pro-
gramming. Transfer of declarative knowledge between pro-
gramming languages has been studied by Harvey and Ander-
son [20], which showed strong effects of transfer between Lisp
and Prolog. Scholtz and Wiedenbeck [11] conducted a think-
aloud protocol where programmers who were experienced in
Pascal or C tried implementing code in Icon. They demon-
strated that programmers could suffer from negative transfer
of programming languages. Wu and Anderson conducted a
similar study on problem-solving transfer, where programmers

3https://github.com/victorlei/smop
4https://doc.rust-lang.org/book/second-edition/

who had experience in Lisp, Pascal and Prolog wrote solutions
to programming problems [12]. The authors found positive
transfer between the languages which could improve program-
mer productivity. Bower [32] used a new teaching approach
called Continual And Explicit Comparison (CAEC) to teach
Java to students who have knowledge of C++. They found
that students benefited from the continual comparison of C++
concepts to Java. However, none of these studies investigated
tool support.

Fix and Wiedenbeck [14] developed and evaluated a tool
called ADAPT that teaches Ada to programmers who know
Pascal and C. Their tool helps programmers avoid high level
plans with negative transfer from Pascal and C, but is targeted
at the planning level. Our tool teaches programmers about
negative transfers from Python, emphasizing both syntax and
semantic issues by highlighting differences between the syntax
elements in the code snippets of the two languages. Transfer
Tutor also covers pitfalls in R that doesn’t relate to Python.

We leverage existing techniques used in two interactive
learning tools for programming, namely Python Tutor [33] and
Tutorons [34]. Python Tutor is an interactive tool for computer
science education which allows the visualization and execution
of Python code. We borrowed the idea of Python Tutor’s
ability to step through the code and pointing to the current
line the program is executing to help the programmer stay
focused. Head et al. designed a new technique of generating
explanations or Tutorons that helps programmers learn about
code snippets on the web browser by providing pop-ups with
brief explanations of user highlighted code [34]. Although
our tool does not automatically generate explanations for
highlighted code, it uses the idea of providing details about
syntax elements as the programmer steps through the syntax
elements which are already highlighted for them.

IX. CONCLUSION

In this paper, we evaluated the effectiveness of using
learning transfer through a training tool for expert Python
developers who are new to R. We found that participants were
able to learn basic concepts in R and they found Transfer Tutor
to be useful in learning R across a number of affordances.
Observations made in the think-aloud study revealed that
Transfer Tutor highlighted facts that were easy to miss or
misunderstand and participants were reluctant to accept certain
facts without code execution. The results of this study suggest
opportunities for incorporating learning transfer feedback in
programming environments.

ACKNOWLEDGEMENTS

This material is based in part upon work supported by the
National Science Foundation under Grant Nos. 1559593 and
1755762.

REFERENCES

[1] S. E. Sim and R. C. Holt, “The ramp-up problem in software projects:
A case study of how software immigrants naturalize,” in International
Conference on Software Engineering (ICSE), 1998, pp. 361–270.

https://github.com/victorlei/smop
https://doc.rust-lang.org/book/second-edition/

[2] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M.
Burnett, “Programming, problem solving, and self-awareness: Effects
of explicit guidance,” in Human Factors in Computing Systems (CHI),
2016, pp. 1449–1461.

[3] L. M. Berlin, “Beyond program understanding: A look at programming
expertise in industry,” Empirical Studies of Programmers (ESP), vol. 93,
no. 744, pp. 6–25, 1993.

[4] S. Kalyuga, P. Ayres, P. Chandler, and J. Sweller, “The expertise reversal
effect,” Educational Psychologist, vol. 38, no. 1, pp. 23–31, 2003.

[5] P. Burns. (2012) The R Inferno. [Online]. Available: http://www.
burns-stat.com/documents/books/the-r-inferno/

[6] T. Smith and K. Ushey, “aRrgh: a newcomer’s (angry) guide to R,”
http://arrgh.tim-smith.us.

[7] D. N. Perkins, G. Salomon, and P. Press, “Transfer of learning,” in
International Encyclopedia of Education. Pergamon Press, 1992.

[8] P. Pirolli and M. Recker, “Learning strategies and transfer in the domain
of programming,” Cognition and Instruction, vol. 12, no. 3, pp. 235–275,
1994.

[9] C. M. Kessler, “Transfer of programming skills in novice LISP learners,”
Ph.D. dissertation, Carnegie Mellon University, 1988.

[10] N. Pennington, R. Nicolich, and J. Rahm, “Transfer of training between
cognitive subskills: Is knowledge use specific?” Cognitive Psychology,
vol. 28, no. 2, pp. 175–224, 1995.

[11] J. Scholtz and S. Wiedenbeck, “Learning second and subsequent pro-
gramming languages: A problem of transfer,” International Journal of
Human–Computer Interaction, vol. 2, no. 1, pp. 51–72, 1990.

[12] Q. Wu and J. R. Anderson, “Problem-solving transfer among program-
ming languages,” Carnegie Mellon University, Tech. Rep., 1990.

[13] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman,
“Identifying student misconceptions of programming,” in Computer
Science Education (SIGCSE), 2010, pp. 107–111.

[14] V. Fix and S. Wiedenbeck, “An intelligent tool to aid students in
learning second and subsequent programming languages,” Computers
& Education, vol. 27, no. 2, pp. 71 – 83, 1996.

[15] “Stack Overflow,” https://stackoverflow.com.
[16] R. K. Sawyer, The Cambridge Handbook of the Learning Sciences.

Cambridge University Press, 2005.
[17] B. Victor. (2012) Learnable programming. [Online]. Available:

http://worrydream.com/LearnableProgramming/
[18] J. G. Greeno, J. L. Moore, and D. R. Smith, “Transfer of situated

learning.” in Transfer on trial: Intelligence, cognition, and instruction.
Westport, CT, US: Ablex Publishing, 1993, pp. 99–167.

[19] D. H. Schunk, Learning Theories: An Educational Perspective, 6th ed.
Pearson, 2012.

[20] L. Harvey and J. Anderson, “Transfer of declarative knowledge in com-
plex information-processing domains,” Human-Computer Interaction,
vol. 11, no. 1, pp. 69–96, 1996.

[21] A. Ohri, Python for R Users: A Data Science Approach. John Wiley
& Sons, 2017.

[22] D. Spencer, Card Sorting: Designing Usable Categories. Rosenfeld,
2009.

[23] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “‘Yours
is better!’: Participant response bias in HCI,” in Human Factors in
Computing Systems (CHI), 2012, pp. 1321–1330.

[24] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W.-K. Wong,
“Too much, too little, or just right? Ways explanations impact end users’
mental models,” in Visual Languages and Human-Centric Computing
(VL/HCC), 2013, pp. 3–10.

[25] A. Bunt, M. Lount, and C. Lauzon, “Are explanations always impor-
tant?” in Intelligent User Interfaces (IUI), 2012, pp. 169–178.

[26] H. Kang and P. J. Guo, “Omnicode: A novice-oriented live programming
environment with always-on run-time value visualizations,” in User
Interface Software and Technology (UIST), 2017, pp. 737–745.

[27] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code with in
situ visualizations to aid program understanding,” in Human Factors in
Computing Systems (CHI), 2018, pp. 532:1–532:12.

[28] P. G. Polson, “A quantitative theory of human-computer interaction,” in
Interfacing Thought: Cognitive Aspects of Human-Computer Interaction,
1987, pp. 184–235.

[29] P. G. Polson, S. Bovair, and D. Kieras, “Transfer between text editors,” in
Human Factors in Computing Systems and Graphics Interface (CHI/GI),
vol. 17, no. SI, 1986, pp. 27–32.

[30] P. G. Polson, E. Muncher, and G. Engelbeck, “A test of a common
elements theory of transfer,” in Human Factors in Computing Systems
(CHI), vol. 17, no. 4, 1986, pp. 78–83.

[31] M. K. Singley and J. R. Anderson, “A keystroke analysis of learning
and transfer in text editing,” Human-Computer Interaction, vol. 3, no. 3,
pp. 223–274, 1987.

[32] M. Bower and A. McIver, “Continual and explicit comparison to pro-
mote proactive facilitation during second computer language learning,”
in Innovation and Technology in Computer Science Education (ITiCSE),
2011, pp. 218–222.

[33] P. J. Guo, “Online Python Tutor: Embeddable web-based program visu-
alization for cs education,” in Computer Science Education (SIGCSE),
2013, pp. 579–584.

[34] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons: Gen-
erating context-relevant, on-demand explanations and demonstrations
of online code,” in Visual Languages and Human-Centric Computing
(VL/HCC), 2015, pp. 3–12.

http://www.burns-stat.com/documents/books/the-r-inferno/
http://www.burns-stat.com/documents/books/the-r-inferno/
http://arrgh.tim-smith.us
https://stackoverflow.com
http://worrydream.com/LearnableProgramming/

	Introduction
	Motivating Example
	Transfer Tutor
	Design Rationale
	Learning Transfer
	User Experience
	Code Snippets and Highlighting
	Explanation Box
	Code Output Box

	Methodology
	Research Questions
	Study Protocol
	Participants
	Onboarding
	Study Materials
	Tasks
	Wrap-up

	Analysis

	Results
	RQ1: Are programmers learning R after using Transfer Tutor?
	RQ2: How do programmers use Transfer Tutor?
	RQ3: How satisfied are programmers with learning R when using Transfer Tutor?

	Limitations
	Construct Validity
	Internal Validity
	External Validity

	Design Implications
	Affordances for supporting learning transfer
	Expert learning can benefit from learning transfer
	Learning transfer within programming languages
	Applications of learning transfer beyond tutorials

	Related Work
	Conclusion
	References

