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ABSTRACT
After decades of research, there is still no comprehensive, validated
model of program comprehension. Recently, researchers have been
applying psycho-physiological measures to expand our understand-
ing of program comprehension. In this position paper, we argue that
measuring program comprehension simultaneously with functional
magnetic resonance imaging (fMRI) and eye tracking is promising.
However, due to the different nature of both measures in terms
of response delay and temporal resolution, we need to develop
suitable tools. We describe the challenges of conjoint analysis of
fMRI and eye-tracking data, and we also outline possible solution
strategies.
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1 INTRODUCTION
Understanding program comprehension is important, as program-
mers spend most of their time comprehending existing source
code [LaToza et al. 2006; Standish 1984; Tiarks 2011]. For decades,
researchers have been trying to understand how programmers
comprehend code, which is challenging due to the complexity of
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the underlying cognitive processes. Program comprehension in-
volves many cognitive subprocesses, including language compre-
hension, attention, and problem solving [Siegmund et al. 2014, 2017].
Past research observed program comprehension with think-aloud
protocols, interviews, and comprehension summaries. However,
these conventional methods are limited in accurately and holisti-
cally capturing internal cognitive subprocesses of program compre-
hension [Siegmund 2016]. Hence, researchers have been applying
psycho-physiological measures to observe program comprehension
from a new perspective [Crk et al. 2015; Floyd et al. 2017; Fritz et al.
2014; Nakagawa et al. 2014; Sharif and Maletic 2010; Siegmund et al.
2014].

1.1 Eye Tracking
One wide-spread measurement tool for observing program compre-
hension is eye tracking [Bednarik and Tukiainen 2006; Busjahn et al.
2015; Sharif and Maletic 2010; Yusuf et al. 2007]. Eye tracking offers
insight into the visuo-spatial attention of programmers [Holmqvist
et al. 2011]. For example, Sharif and Maletic studied the difference
in program comprehension between camelCase and under_score
identifier styles [Sharif and Maletic 2010]. Busjahn et al. distin-
guished reading styles between novices and experts, also using
an eye tracker [Busjahn et al. 2015]. So, eye tracking is an effec-
tive measure to gain insight into the behavior and strategy during
program comprehension.

However, research with eye tracking often focuses on eye gaze
(i.e., fixations and saccades), which allows one to make only limited
claims on higher level cognitive processes (e.g., language com-
prehension, decision making, memory). While other eye-tracking
properties, such as pupil dilation or spontaneous blink rates, have
been shown to be an effective measure of cognitive load [Beatty and
Lucero-Wagoner 2000; ?], these measures have not progressed be-
yond the planning stage in program-comprehension studies [Behroozi
et al. 2018; Ford et al. 2015; Nolan et al. 2015].

To increase the predictive power of eye-tracking experiments,
researchers have combined eye tracking with dedicated measures
to capture programmers’ cognitive load. For example, Fakhoury
et al. used simultaneously eye tracking and functional near-infrared
spectroscopy (fNIRS) to observe the effect of the quality of identifier
names on programmers’ cognitive load [Fakhoury et al. 2018]. In
the same vein, there have been studies with simultaneous eye track-
ing and electroencephalography (EEG) to predict task difficulty
and programmer expertise [Fritz et al. 2014; Lee et al. 2017]. These
studies illustrate how a combination of methods strengthens an
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experiment’s predictive power to understand program comprehen-
sion. We previously proposed a study with simultaneous functional
magnetic resonance imaging (fMRI) and eye tracking [Peitek et al.
2017]. Overall, the combination of behavior-capturing eye tracking
with a cognitive-load capturing measure (e.g., EEG, fNIRS, fMRI)
appears to be promising.

1.2 fMRI
In our work, we study fMRI as a way to understand the underlying
cognitive subprocesses of program comprehension. fMRI allows us
to observe brain activation and thus identify neural correlates of
cognitive processes [Gazzaniga et al. 2013].

In the first fMRI study of program comprehension, we have found
five dedicated activated brain areas during bottom-up comprehen-
sion [Siegmund et al. 2012, 2014]. In a follow-up study, we collected
empirical evidence showing a difference in neural efficiency be-
tween bottom-up and top-down comprehension [Siegmund et al.
2017]. However, we failed to observe an expected effect of rich iden-
tifier names (i.e., beacons [Brooks 1983]), which may be due to the
cognitive complexity of program comprehension and limitations of
the fMRI analysis, in which we averaged activation across the whole
comprehension process without considering the phases specifically
related to the beacons. Program comprehension consists of mul-
tiple phases. For example, when programmers understand source
code, they have to decide on how to solve presented task (strategy
finding). Next, they have to extract and integrate the meaning of in-
dividual code lines (semantic chunking), mentally execute code, and
eventually conclude their understanding. Throughout these tasks,
the cognitive subprocesses vary in their intensities. While fMRI can
capture these differences, we currently lack the knowledge of how
to accurately determine the timing of the phases to identify brain
activation more specifically. Thus, we integrated simultaneous eye
tracking during our fMRI experiments with the goal to identify the
comprehension phases based on the observed visual attention.

1.3 Simultaneous fMRI and Eye Tracking
Simultaneous measurement with fMRI and eye tracking may offer
detailed insight toward a more holistic understanding of program
comprehension [Peitek et al. 2017]. Integrating simultaneous and
precise eye tracking into our fMRI study framework is challenging
on a technical level.We resolved themethod synchronization details
and successfully conducted a full study, which revealed difficulties
regarding the quality of the eye-tracking data (cf. Section 2).

However, the simultaneous recording of eye gaze and brain ac-
tivation is only half the problem: The next challenge is to actu-
ally apply fruitful analysis to the two data streams. They could
be viewed independently (e.g., observe top-down and bottom-up
comprehension and separately compare brain activation strength
and fixation count). However, in our view, the true value lies in
integrating observations from the two separate data streams (i.e., a
conjoint analysis of both data streams).

Duraes et al. studied debugging with simultaneous measure-
ment via fMRI and eye tracking, but do not report how successful
and precise the recorded eye-tracking data were in their experi-
ment. Furthermore, they did not appear to use the eye-movement
data [Duraes et al. 2016].

An analysis of simultaneous fMRI and eye tracking is challenging,
because the two have fundamentally distinct characteristics. They
are not just different in temporal resolution, but fMRI relies on the
haemodynamic response, which means observed brain-activation
data are delayed by around five seconds [Chance et al. 1993]. A
conjoint analysis of instant eye-tracking data and delayed fMRI
data will need to take this into account.

1.4 Multi-Modal Experiments
In our view, the future of program-comprehension research will
exemplify this struggle of creating valuable analysis as we are
moving toward multi-modality. While this paper focuses on the
combination of fMRI and eye-movement data, we are investigat-
ing further expansions of our fMRI study framework. Specifically,
we are experimenting with recording pupil dilation, spontaneous
blink rates, and physiological data (i.e., heart rate, respiration, and
electrodermal activity), which also acts as an indicator of cognitive
load [Boucsein 2012]. Thus, in the upcoming future, we will have
numerous characteristically different measures observing the same
cognitive process.

In the next section, we describe the conducted experiment. In
Section 3, we outline possible conjoint analyses of simultaneous
fMRI and eye-tracking data. We argue for the need of a proper tool
support in Section 4. We conclude the paper in Section 5.

2 EXPERIMENT
In a pilot study with 22 student participants, we investigated ob-
serving program comprehension with simultaneous fMRI and eye
tracking. For this purpose, we replicated our previous fMRI study
on contrasting bottom-up and top-down comprehension [Sieg-
mund et al. 2017]. The study was conducted on a 3-Tesla scanner,1
equipped with a 32-channel head coil at the Leibniz Institute for
Neurobiology inMagdeburg, Germany.We used anMRI-compatible
EyeLink 10002 eye-tracker for simultaneous measurement of eye
movements. The EyeLink eye tracker offers 1000 Hz temporal reso-
lution, <0.5° average accuracy, and 0.01° root mean square (RMS).

The eye tracker collected eye gazes, events (i.e., fixations, blinks,
saccades), and pupil dilation. Details on participant demographics,
method synchronization and analysis procedure can be found on
the project’s Web site.3

2.1 Eye-Tracking Quality
A preliminary analysis of the eye-tracking data that we obtained
revealed some problems. In short, a major issue is the low success
rate of eye tracking (only 8 out of 22 participants resulted in an
eye-tracking dataset with, at least, 85% of recorded frames). For
successful participants, the spatial error is around 20 - 60 pixels,
which results at a used line height of 40 pixels in an uncertainty re-
garding fixation lines. We observed a minimal drift, but in contrast
to the general spatial error, it is not a factor. Overall, the pilot study
demonstrated that the simultaneous measurement and individual
evaluation of each data stream is possible, but we still need to refine

1Philips Achieva dStream, Best, The Netherlands
2SR Research Ltd, Ottawa, Ontario, Canada, http://www.sr-research.com
3https://github.com/brains-on-code/simultaneous-fmri-and-eyetracking
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Figure 1: BOLDResponse in BA21 fromOur Top-DownCom-
prehension Study [Siegmund et al. 2017]

our setup. For complete fMRI and eye-tracking datasets, we can an-
alyze a comprehensive perspective of participants comprehending
code.

3 STRATEGIES FOR DATA ANALYSIS
As far as we are aware of, there are no established procedures to
conjointly analyze simultaneous fMRI and eye-tracking data. In this
section, we present three ideas on how we may extract knowledge
from simultaneous fMRI and eye-tracking data.

3.1 Hypothesis Generation
We can use the two data streams to make observations of a pro-
grammer’s behavior and generate new hypotheses. Investigating
programmers individually with fMRI or eye tracking already offers
an interesting perspective on programmers’ minds. If we are able
to simultaneously explore both data sets, for example, by a real-
time video replay, we may be able to generate new hypotheses of
program comprehension.

An intuitive exploration of fMRI and eye tracking (and in the
future possibly with behavior data, pupil dilation, and physiolog-
ical data) would allow us to delve into many aspects of program
comprehension.

3.2 Hypothesis Testing
A further possibility is to analyze the data to test specific hypotheses
and cover another step in the scientific method. This is critical, as
each measure offers unique insights into program comprehension.

For example, we found no significant effect of using rich identifier
names in our study on top-down comprehension when analyzing
the averaged brain activation strength across the entire 30 second
task length [Siegmund et al. 2017]. However, Figure 1 illustrates a
stronger activation in a language-processing brain area between
5 and 10 seconds after task onset, which fits the typical delay of the
haemodynamic response [Chance et al. 1993]. Our hypothesis is
that, at the beginning of presenting source code, programmers fixate
on a meaningful identifier and recall a matching programming plan.
However, since we cannot observe the exact participant behavior in
the fMRI scanner, this is speculation. With simultaneous fMRI and
eye tracking, we could objectively assess this hypothesis. We can
evaluate whether programmers indeed fixate on a rich identifier,
which then triggers the increase on brain activation.

Generally, we may detect specific events with eye tracking indi-
cating particular behavior (e.g., mentally executing a loop) and use
that as starting point for the resulting haemodynamic response of
brain activation. Such individual analysis would allow us to answer
our question on the effect of rich identifier names. Similarly, other
analyses of particular phenomena are also possible.

3.3 Informed fMRI Analysis
In the long term, we have the vision of an eye-tracking-informed
fMRI analysis for studies of program comprehension. Currently,
the entire task of 30 to 60 seconds is viewed as one black box
of program comprehension. However, it actually consists of many
smaller phases and cognitive subprocesses with varying intensity. In
such eye-tracking-informed fMRI analysis, we would like to use eye
tracking to gather information on the programmers’ behavior and
then feed it into a general linear model (GLM) analysis of the fMRI
data. This way, instead of having one large black box of program
comprehension, fMRI data analysis could be more fine-grained
and thus allow us to separately evaluate phases of, for example,
identifier recognition, loop execution, and result computation. Such
detailed analysis may help us to understand the brain activation
for each phase in more detail, and in the long-term, make fMRI
experiments more valuable to our community.

4 PROPOSED TOOL SUPPORT
After presenting our vision for multi-modal experiments and, more
specifically, our ideas for conjoint analyses of fMRI and eye-tracking
data, we would like to stress a clear-cut need for proper tool support
for each of the three analyses. Ogama is an established eye-tracking
analysis tool [Voßkühler et al. 2008], which provides capabilities
for replaying recorded data, heat maps, area-of-interest (AOI) anal-
ysis, and statistical analysis (e.g., fixation counts, saccade lengths,
regressions). We see the need for a dedicated open-source tool that
similarly sets the base for simultaneous fMRI and eye-tracking ex-
periments and, in the long term, for multi-modal experiments of
program comprehension.

This may be implemented as an extension to an existing tool.
For example, we may extend Ogama and add the necessary brain-
related features and customize the existing eye-tracking functions
for our needs. Alternatively, we could extend an fMRI analysis tool,
such as BrainVoyager, with eye-tracking functionalities. Finally, the
tool could be a dedicated implementation. In either case, we see the
need for two different modes, data exploration and data analysis.

4.1 Data Exploration
To support hypothesis generation based on exploring observations
of fMRI and eye tracking, the envisioned tool needs to provide a
compelling exploration view. To implement such a view, the tool
should be able to import the brain activation data, either as raw
data or pre-processed, and the eye-tracking data. The tool would
need to take the haemodynamic response, which delays the brain
activation by several seconds, into account. We cannot directly map
the instant eye-tracking observation to the delayed brain activation.

Moreover, the exploration view should be configurable and pro-
vide different views. For example, on the eye-tracking side, it may
offer a scanpath or fixation view. On the brain-activation side, it may
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Figure 2: Mockup of Tool UI for Data Exploration

Figure 3: Screen of Multi-Modal Annotation Tool
ATLAS [Meudt et al. 2012]

offer a whole-brain activation view or a focus on specific regions-
of-interest. We created a mock-up for our vision in Figure 2, which
presents eye-tracking replay (left side), whole-brain activation (top-
right), and a selected subset of brain areas (bottom-right).

Whilewe focused in this paper on eye-tracking and brain-activation
data, future studieswill move towardmulti-modal experiments. Cur-
rently, we are experimenting with numerous other data streams:
pupil dilation, spontaneous blink rates, and physiological data
(heart rate, respiration, electrodermal activity). We potentially may
integrate simultaneous EEG as well. Thus, in the long-term, the
tool should be further generalized beyond fMRI and eye tracking.
This way, it would be flexible and support any multi-modal view of
the data, depending on the collected data set.

4.2 Data Analysis
The second mode of the tool should cover hypotheses testing and
informed fMRI analysis. To support these analyses, we split the
requirements in two parts: (manual or automated) data annotation
and informed fMRI analysis.

Manual Data Annotation. To conduct an eye-tracking-informed
fMRI data analysis, we would need to annotate eye-tracking events,
such as a fixation on a rich identifier or mental loop execution. In
a first stage, we could manually detect eye-tracking events. The
proposed tool should allow us to manually annotate data streams.
We envision a UI similar to ATLAS, which is a tool for annotating

multi-modal data streams of human-computer interaction exper-
iments [Meudt et al. 2012]. Figure 3 shows ATLAS with multiple
data streams. Initially, the tool may only support fMRI and eye
tracking, but eventually could be extended to support multi-modal
annotation (e.g., behavioral or physiological data).

Automated Eye-Tracking Event Detection. The manual detection
of events in the first stage introduces human error and inconsis-
tencies to the data annotation. Thus, in the long term, we would
prefer to automatically detect eye-tracking events. We would need
to describe the event criteria in a flexible manner and store them in
a database. Similarly, much like Ogama allows researchers to define
and store AOIs, we would need to describe complex eye-tracking
events (e.g., fixation for at least half a second on a rich-identifier
AOI). As our current experiments do not permit scrolling, we can
use static AOIs. Once we extent our studies to allow scrolling, and
thus the code display is dynamic, we may need to implement an
automated detection of AOIs [Barik et al. 2017].

Informed fMRI Analysis. An important feature of the envisioned
tool would be connecting the annotated eye-tracking data to an
fMRI data analysis tool. For example, the tool could feed the insights
as a parameter input into nipype, a Python-based neuro-imaging
data processing tool [Gorgolewski et al. 2011]. Nipype could, with
the event-enriched data, create an individualized GLM model and
enable an thorough analysis of the fMRI data.

5 CONCLUSION
In this paper, we have discussed why simultaneous fMRI and eye
tracking can be insightful, but also challenging. Once we can con-
jointly analyze both data streams, we may generate new hypotheses
for program comprehension, test existing hypotheses, and eventu-
ally create a theory of program comprehension. To properly support
all these goals, we see the need for tool support. This includes a
way of annotating eye-tracking data with events, which should be
customizable for each experiment and stimuli and dealing with the
haemodynamic delay of fMRI data. Such tool support would facili-
tate a more fine-grained analysis of brain activation and increase
the value of fMRI studies on program comprehension.

In the long term, multi-modal experiments like simultaneous
fMRI and eye tracking may help to considerably move our under-
standing of program comprehension forward. While the future
work is a long road ahead, it offers a revolutionizing perspective
and, in our mind, is worth to be pursued.
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