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ABSTRACT

Recently, eye-tracking analysis for finding the cognitive load and
stress while problem-solving on the whiteboard during a technical
interview is finding its way in software engineering society. How-
ever, there is no empirical study on analyzing how much the inter-
view setting characteristics affect the eye-movement measurements.
Without knowing that, the results of a research on eye-movement
measurements analysis for stress detection will not be reliable. In
this paper, we analyzed the eye-movements of 11 participants in
two interview settings, one on the whiteboard and the other on
the paper, to find out if the characteristics of the interview settings
affect the analysis of participants’ stress. To this end, we applied
7 Machine Learning classification algorithms on three different la-
beling strategies of the data to suggest researchers of the domain a
useful practice of checking the reliability of the eye-measurements
before reporting any results.
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1 INTRODUCTION

Problem-solving on the whiteboard is a common type of a technical
interview for software developers. With this interview format, an
interviewer is able to observe the thought processes of a candidate
and interact with candidate by asking questions or providing hints.
Unfortunately, software developers can be uncomfortable with
this style of interview, often because they are being asked to a)
think-aloud while problem solving, which can cause high cognitive
load [Dawson 2003], and b) perform under time pressure and fear
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of failure, which can cause high stress in candidates [Caviola et al.
2017]. As a result, technical interviews may bias the selection of
candidates toward those who perform well under pressure or have
had more opportunity to engage in extensive interview preparation.
Although research has investigated eye movement of programmers
when reading source code [Busjahn et al. 2011], and measured task
difficulty [Fritz et al. 2014] using psycho-physiological measures
such as electroencephalography (EEG), eye-gaze, electrodermal
activity (EDA), limited research has investigated coding in technical
interview settings.

Previously, we performed a study [Behroozi et al. 2018] using
eye-tracking to investigate if problem-solving in a whiteboard set-
ting contributed to high levels of cognitive load and stress. Eleven
participants solved programming problems in two settings: either
on a whiteboard in front of an interviewer or privately on a paper.
Based on eye movement data, we observed significantly different
measures that were previously associated in literature with high
cognitive load and stress. Specifically, we observed significantly
shorter duration for fixations and higher saccade duration aver-
age and saccade velocity average when participants were solving
problems on the whiteboard than compared to on paper.

While our study providing some preliminary insights, there were
several limitations with our analysis. Because we only focused on
observing differences in eye movement measures across interview
settings, we had limited ability to distinguish how different features
and settings could interact. Eye movement characteristics highly
depends on the context of a particular task and the environment
during everyday actions [Foulsham 2015]. Thus, it is an open ques-
tion that how much the interview setting or other factors affects
the eye movement measurements and our resulting interpretations.

In this paper, we extend the analysis from our previous study [Beh-
roozi et al. 2018] in several ways. First, we consider in addition to the
interview setting, a self-rated ranking of stress by the participant in
our analysis. Second, rather than using aggregated measures across
the entire session, we also analyze individual eye movement events.
Third, to support a better understanding of how the different eye
movement measures interact, we build prediction models using
various machine learning classification algorithms.

We found that our train classifiers could predict self-reported
stress levels of participants reliably when trained for a specific in-
terview setting (i.e. either whiteboard or paper). When attempting
to train classifiers that mixed the settings in order to predict stress,
their performance declined. Our classifiers could also reliably pre-
dict the interview setting. We believe these results complement our
previous findings. Future applications can incorporate these tech-
niques for building training/coaching tools for interview applicants
or to enhance the analysis of eye movement data.
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2 APPROACH
2.1 Data set

In this study we use a data set consisting of the eye movement
events of 11 participants, consisting 8 computer science graduate
and 3 undergraduate students, while solving two coding problems
of the same difficulty once on the whiteboard and once on the paper.
The data has been collected using SMI head-mounted eye-tracker
with sampling rate of 60Hz. At the end of each problem solving
session, the participants has been asked to determine which setting
was stressful for them and which was not. 4 participants reported
that they were stressed on the paper but not on the whiteboard and
the rest reported the reverse.

Eye movement consists of three events: VI, saccade and blink. As
Behroozi et al’s study showed that VI-related and saccade-related
measurements were statistically different in two interview settings,
we extracted the VI and saccade events to study more and ignored
blink events for this study. Table 1 shows the 8 VI-related and 9
saccade-related measurements we used in this study.

In order to find out if the characteristics of the interview set-
ting affects the eye movement measurements or not, we devised
three partitioning methods on the data set (see Table 2 for more
information):

(1) Setting and Stress Rating
Labeling based on user survey (stressed/not stressed) given
the interview setting: In this labeling, we split the data into
4 parts: saccade in whiteboard setting, VI in whiteboard
setting, saccade in paper setting, VI in paper setting.

(2) Setting
Labeling based on the paper and whiteboard setting: Here we
partitioned the data into two parts: all the saccade-related
measurement in one data set and all the VI-related measure-
ments in another data set.

(3) Stress Rating
Labeling based on user survey (stressed/not stressed): Here we
partitioned the data into two parts: all the saccade-related
measurement in one file and all the VI-related measurements
in another file.
By comparing the results from this labeling with Setting and
Stress Rating labeling, we will be able to see how robust are
the classifiers to predict the stress with or without being
provided the interview setting.

2.2 Classification Algorithms

We applied the following classification algorithms on the data, after
applying three labeling strategies, using the WEKA data mining
software [Hall et al. 2009; Witten et al. 2016]:

We applied seven classification algorithms: Naive Bayes (NB)
[John and Langley 1995], Random Forest (RF) [Breiman 2001], Multi-
Layer Perceptron (MLP), SVM [Keerthi et al. 2001; Zeng et al. 2008],
KNN [Aha et al. 1991], Logistic Regression (LR) [Le Cessie and
Van Houwelingen 1992] and Decision Tree (DT) [Salzberg 1994].
Table4 shows the detailed setting information of each classifier in
WEKA.
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Table 1: List of VI-based and saccade-based measurements

VI-based measurements Saccade-based measurements

Saccade Duration [ms]
Saccade Start Position X [px]
Saccade Start Position Y [px]

Visual Intake Duration [ms]

Visual Intake Position X [px]

Visual Intake Position Y [px]

Visual Intake Average Pupil Size X [px] Saccade End Position X [px]

Visual Intake Average Pupil Size Y [px] Saccade End Position Y [px]

Visual Intake Average Pupil Diameter [mm] Saccade Amplitude [°]

Visual Intake Dispersion X [px] Saccade Acceleration Average [°/s?]

Visual Intake Dispersion Y [px] Saccade Velocity Average [°/s]
Saccade Peak Velocity at [%]

2.3 Performance Measures and Statistical
Methods

2.3.1 Model Validation: Throughout the study, we used 10-
fold-cross-validation technique for validating the generalization of
our results obtained from applying classification algorithms on our
data [Kohavi et al. 1995].

2.3.2 Statistical analysis of binary classification: To evalu-
ate the accuracy of the results obtained from classifiers, we reported
weighted F-measure along with accuracy, weighted precision and
weighted recall of both classes. To illustrate the diagnostic ability of
each of the binary classifiers on our data, we also reported the area
under receiver operating characteristic curve (ROC Area) [Powers
2011].

3 RESULTS

From Table 3 we can see that classifiers were more successful and
accurate on Setting and Stress Rating labeling, specially when it
comes to considering VI-related measurements. This shows that
VlI-related and saccade-related measurements are representative of
stress in each of the settings. Comparing the results from Setting
labeling and Stress labeling, the classifiers performed better on Set-
ting labeling, except for the saccade in top 3 classifiers where Stress
labeling performed slightly better. Hence, we can infer that the
properties of the setting affects the eye-movement measurements
across the interview settings. Although the effect of the interview
settings did not decrease the performance of the classifiers in Stress
labeling dramatically, it reveals the importance of checking any
potential effect of the setting on eye-movement measurements. The
results still confirms the hypothesis that the whiteboard setting
bears more stress on participants.

The best performing classifier for all the labeling strategies was
Random Forest. It achieved F-measure of 0.88, 0.77 and 0.78 or better
for Setting and Stress Rating labeling, Setting labeling and Stress
labeling respectively. The worse performing classifiers were SVM
and Naive Bayes with F-measures as worse as 0.43 and not better
than 0.80.

We did not apply normalization on the data set since each of the
features are meaningful and scaling might hurt the quality of the
data. Hence, it was expected that Random Forest performs better
in this context and SVM fails to demonstrate its power. Because
Random Forest is a tree-based ensemble classifier and, like decision
trees, it is a graphical-model based classifier. But SVM tries to
maximize the margin and it relies on the concept of distance. Thus,
SVM cannot tolerate different scales of the features. Applying SVM
with different kernels or finding the best feature scaling and shaping
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Table 2: Data set information

SETTING AND STRESS RATING SETTING STRESS RATING
Board Saccade Board VI Paper Saccade Paper VI Saccade VI Saccade VI
Number of columns (features) 9 8 9 8 9 8 9 8
Number of rows (records) 6694 7451 10440 11723 17134 19174 17134 19174
Ratio of records labeled as stressed to not stressed 5200/1494 5696/1755 4781/5659

Ratio of records labeled as whiteboard to paper - -

5537/6186 9981/7153  11233/7941

6694/10440  7751/11723

Table 3: Results from applying classifiers on the labeling based on the participant survey (stressed/not stressed) using 10-fold

cross validation. Sorted in descending order of accuracy.

SETTING AND STRESS RATING SETTING STRESS RATING
Classifier Measure Board Saccade Board VI  Paper Saccade Paper VI Saccade VI Saccade VI
RF Accuracy% 90.35 95.80 87.92 96.80 77.52 96.45 78.05 94.86
Precision 0.90 0.96 0.88 0.97 0.77 097  0.78 0.95
Recall 0.90 0.96 0.88 0.97 0.78 0.97 0.78 0.95
F-measure  0.90 0.96 0.88 0.97 0.77 0.97 0.78 0.95
ROC Area  0.94 0.99 0.95 0.99 0.85 0.99 0.86 0.99
DT Accuracy% 86.93 93.83 84.89 95.28 72.20 94.63 72.45 92.24
Precision 0.87 0.94 0.85 0.95 0.72 0.95 0.72 0.92
Recall 0.87 0.94 0.85 0.95 0.72 0.95 0.73 0.92
F-measure 0.87 0.94 0.85 0.95 0.72 0.95 0.72 0.92
ROC Area  0.82 0.94 0.87 0.96 0.76 0.95 0.76 0.94
KNN Accuracy% 81.10 92.08 80.52 96.71 66.66 93.10 67.16 90.39
Precision 0.81 0.92 0.81 0.97 0.67 0.93 0.67 0.90
Recall 0.81 0.92 0.81 0.97 0.67 093  0.67 0.90
F-measure  0.81 0.92 0.81 0.97 0.67 0.93 0.67 0.90
ROC Area  0.72 0.90 0.80 0.97 0.65 093  0.66 0.90
MLP Accuracy% 81.40 92.08 82.81 93.07 65.44 89.02 60.36 75.02
Precision 0.80 0.92 0.83 0.93 0.65 089  0.61 0.75
Recall 0.81 0.92 0.83 0.93 0.65 0.89 0.60 0.75
F-measure 0.78 0.92 0.83 0.93 0.61 0.89  0.52 0.75
ROC Area 0.79 0.96 0.88 0.97 0.65 0.95 0.63 0.84
LR Accuracy% 83.25 90.06 79.44 77.57 66.17 75.56  62.55 64.23
Precision 0.82 0.90 0.80 0.78 0.67 0.75 0.63 0.63
Recall 0.83 0.90 0.80 0.78 0.66 0.76 0.63 0.64
F-measure  0.81 0.90 0.80 0.78 0.61 0.75 0.58 0.63
ROC Area  0.83 0.91 0.84 0.83 0.69 0.79  0.66 0.69
SVM Accuracy% 78.03 81.01 79.89 77.21 62.61 75.27 58.28 61.40
Precision 0.80 0.81 0.80 0.78 0.72 0.76 0.63 0.66
Recall 0.78 0.81 0.80 0.78 0.63 0.75 0.58 0.61
F-measure  0.69 0.77 0.80 0.78 0.50 0.74 0.43 0.52
ROC Area  0.51 0.61 0.80 0.78 0.52 0.71 0.50 0.54
NB Accuracy% 80.83 80.08 56.51 72.77 63.30 76.28 57.93 59.54
Precision 0.80 0.781 0.65 0.73 0.64 0.77 0.54 0.58
Recall 0.80 0.80 0.57 0.73 0.63 0.76  0.58 0.60
F-measure  0.77 0.77 0.45 0.73 0.55 0.75 0.48 0.53
ROC Area  0.69 0.82 0.75 0.76 0.63 0.79  0.54 0.63

techniques [Chapelle and Keerthi 2011; Forman et al. 2009] might
help SVM to perform better but this is not the concern of this study.

Another interesting result is that VI-related measurements were
more representative of both the interview setting and the stress of
the participants. In other words, values of VI-related measurements
are more distinctive than saccade-related measurements. When
the top three classifiers do classification based on VI-related mea-
surements, they show F-measures 0.92-0.97, 0.93-0.97 and 0.90-0.95

for Setting and Stress Rating labeling, Setting labeling and Stress
labeling, respectively. However, when they use saccade-related mea-
surements, they cannot achieve better F-measures than 0.81-0.90,
0.67-0.77 and 0.67-0.78 for Setting and Stress Rating labeling, Setting
labeling and Stress labeling, respectively.

Results obtained from applying classifiers on three different
labeling of the data showed that the eye-movement measurements
are representative of stress if they are analyzed in an interview
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Table 4: Detailed parameter settings of the classifiers in WEKA

Classifier ~Parameter setting

RF -P 100 -1 100 -num-slots 1 -K 0 -M 1 -V 0.001 -S 1

DT -C0.25-M 2

KNN -K 1-W 0 -A "wka.core.neighboursearch.LinearNNSearch -A "weka.core.EuclidianDistance -R first-last"

MLP -L0.3-M02-N500-V0-S0-E20-Ha

LR 10-M 500 -H 50 -W 0

SVM -C1-L0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.PolyKernel -E 1 -C 250007" -calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
NB

setting without any mixture of the records from another setting.
They are also representative of the properties of the interview
setting. This means that eye-movement shows the stress differently
from setting to setting. This is the reason why classifiers performed
best when applied on Setting and Stress Rating labeling.

4 DISCUSSION
4.1 Prediction Approaches

In this study we separated VI-related and saccade-related mea-
surements for the following reasons. First, concentrate on each of
these two eye-movement events to see their prediction ability in
absence of another one. Because there is a probability that each eye-
movement event be affected by the characteristic of the interview
setting differently. Second, the eye-movement events take place at
each moment exclusively. Also, the number of the features for VI
events and saccade events are not the same.

But it is still interesting to find an strategy to combine the VI-
related and saccade-related measurement, such as fitting them in
time windows, to see if they can enhance the performance of the
classifiers.

4.2 Other Measures

There are other measurements which we can take into account in
future studies such as blink information. We can also investigate
AOQ], revisits, information seeking patterns (linearity), etc. Lallé et al.
in [Lallé et al. 2016] tried to reveal confusion through eye tracking.
In their study they found that pupil size and the distance of the
participant’s head from the screen can show confusion. It is worth
studying whether it is also representative of stress or not.

4.3 Applications

Another interesting application is automated detection of stress
towards coaching and training. For example, in this application, we
can break a coaching/training process to several sessions and ana-
lyze the stress level of a participant and customize coaching/training
for each person based on their stress. As another example, suppose
that we have a number of professional interview settings or even
different IDEs for the candidate to take the interview. If the candi-
date is not sure about which setting to choose, we can help them
with giving them a chance to examine different settings and the
classifiers can do real-time decision making on suggesting the set-
ting in which the candidate was less stressed. It is worth noting that
for the last application, we need sufficient labeled eye-movement
records in each of the settings in order to train the classifiers.

In some cases, stress handling might be critical for recruiting
a candidate. As having stress is not always devastating but might
be a means of pushing someone to better finish a task, it might

be interesting for some recruiters to see how a stressed candidate
benefits from controlling his/her stress to finish a task in a timely
manor or in a better shape.

Finally, our approach may be considered in the future for other
contexts with dynamic environments, such as measuring eye-tracking
while driving.

4.4 Limitations and Future Work

Stress level varies throughout an interview session. Hence, it is bet-
ter to consider the stress finding problem, as a multi-class classifica-
tion problem rather than binary class classification. Also, labeling
the whole interview session can obscure the results of the analysis
as the stress level is not constant during the session. As a result, it
might be better to break the session into specific time frames and
find a way to ask the candidates to survey what is their stress level
at that moment. Besides eye-tracking measurements, integrating
the eye-movement analysis with other bio-metrics such as heart
rate can enhance the predictability of the stress.

In classification problems, imbalance data can affects the results
negatively. Although the data we used in this study is not severely
imbalance, still devising oversampling and undersampling tech-
niques to balance the class distribution can enhance the results.
The most common technique for oversampling is Synthetic Minor-
ity Over-sampling Technique (SMOTE) [Chawla et al. 2002]. Cluster
centroids [Yen and Lee 2009] and Tomek links [Tomek 1976] are
the examples of undersampling techniques.

Feature scaling is another concern in the data we used. Since
some of the eye-movement measurements such as saccade velocity
peak have large ranges, they can affect the accuracy of the classifiers,
specially those that do distance based classification such as SVM.
But at the same time, we might lose data information by feature
scaling.

To generalize our findings, we need a larger data set. Although
each experiment has thousands of records, still we have to investi-
gate more experiments to be confident about generalization of the
results.

5 CONCLUSION

Comprehending the stress level of the participants during technical
interviews helps toward refining the interview process. Interview
setting characteristic can affect eye movement measurements. Thus,
it is important to check if the eye tracking measurements are rep-
resentative of the cognitive load and stress or it is diluted by the
interview setting characteristics. With the proposed approach we
can make sure that a set of eye movement measurements are de-
pendable and can be used toward stress and cognitive load study.



Can We Predict Stressful Technical Interview Settings
Through Eye-tracking?

REFERENCES

David W Aha, Dennis Kibler, and Marc K Albert. 1991. Instance-based learning
algorithms. Machine learning 6, 1 (1991), 37-66.

Mahnaz Behroozi, Alison Lui, lan Moore, Denae Ford, and Chris Parnin. 2018. Dazed:
Measuring the Cognitive Load of Solving Technical Interview Problems at the
Whiteboard. In 40th International Conference on Software Engineering, NIER Track
(ICSE’18).

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.

Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. 2011. Analysis of Code Reading
to Gain More Insight in Program Comprehension. In Proceedings of the 11th Koli
Calling International Conference on Computing Education Research (Koli Calling ’11).
ACM, New York, NY, USA, 1-9. https://doi.org/10.1145/2094131.2094133

Sara Caviola, Emma Carey, Irene C Mammarella, and Denes Szucs. 2017. Stress, Time
Pressure, Strategy Selection and Math Anxiety in Mathematics: A Review of the
Literature. Frontiers in psychology 8 (2017), 1488.

Olivier Chapelle and S Sathiya Keerthi. 2011. Multi-class feature selection with support
vector machines.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321-357.

Jane Dawson. 2003. Reflectivity, creativity, and the space for silence. Reflective Practice
4,1 (2003), 33-39.

George Forman, Martin Scholz, and Shyamsundar Rajaram. 2009. Feature shaping
for linear SVM classifiers. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 299-308.

Tom Foulsham. 2015. Eye movements and their functions in everyday tasks. Eye 29, 2
(2015), 196.

Thomas Fritz, Andrew Begel, Sebastian C Miiller, Serap Yigit-Elliott, and Manuela
Zuger. 2014. Using psycho-physiological measures to assess task difficulty in soft-
ware development. In Proceedings of the 36th International Conference on Software

EMIP 18, June 14-17, 2018, Warsaw, Poland

Engineering. ACM, 402-413.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Tan H Witten. 2009. The WEKA data mining software: an update. ACM SIGKDD
explorations newsletter 11, 1 (2009), 10-18.

George H John and Pat Langley. 1995. Estimating continuous distributions in Bayesian
classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., 338-345.

S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Karuturi
Radha Krishna Murthy. 2001. Improvements to Platt’s SMO algorithm for SVM
classifier design. Neural computation 13, 3 (2001), 637-649.

Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection.

Sébastien Lallé, Cristina Conati, and Giuseppe Carenini. 2016. Predicting Confusion
in Information Visualization from Eye Tracking and Interaction Data.

Saskia Le Cessie and Johannes C Van Houwelingen. 1992. Ridge estimators in logistic
regression. Applied statistics (1992), 191-201.

David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. (2011).

Steven L Salzberg. 1994. C4. 5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993. Machine Learning 16, 3 (1994), 235-240.

Ivan Tomek. 1976. Two modifications of CNN. 6 (11 1976).

Tan H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

Show-Jane Yen and Yue-Shi Lee. 2009. Cluster-based under-sampling approaches
for imbalanced data distributions. Expert Systems with Applications 36, 3 (2009),
5718-5727.

Zhi-Qiang Zeng, Hong-Bin Yu, Hua-Rong Xu, Yan-Qi Xie, and Ji Gao. 2008. Fast
training support vector machines using parallel sequential minimal optimization.
In Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International
Conference on, Vol. 1. IEEE, 997-1001.


https://doi.org/10.1145/2094131.2094133

	Abstract
	Introduction
	Approach
	Data set
	Classification Algorithms
	Performance Measures and Statistical Methods

	Results
	Discussion
	Prediction Approaches
	Other Measures
	Applications
	Limitations and Future Work

	Conclusion
	References

